Copyright | Copyright (C) 2023 Yoo Chung |
---|---|
License | All rights reserved |
Maintainer | web@chungyc.org |
Safe Haskell | None |
Language | GHC2021 |
Diagrams.Runner
Description
Exports the putDiagram
function for conveniently printing SVG generated from a diagram.
This also re-exports the Diagrams.Prelude and Diagrams.Backend.SVG modules, so that code does not have to import these separately.
Synopsis
- putDiagram :: SVGFloat n => Options SVG V2 n -> QDiagram SVG V2 n Any -> IO ()
- defaultOptions :: SVGFloat n => Options SVG V2 n
- text :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any
- lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
- strict :: Strict lazy strict => Iso' lazy strict
- data Segment c (v :: Type -> Type) n
- index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a
- pattern List :: IsList l => [Item l] -> l
- (~~) :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Point v n -> Point v n -> t
- newtype Any = Any {}
- class (forall a. Functor (p a)) => Bifunctor (p :: Type -> Type -> Type) where
- bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- newtype Sum a = Sum {
- getSum :: a
- newtype Product a = Product {
- getProduct :: a
- stimesIdempotent :: Integral b => b -> a -> a
- stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
- type family N a
- newtype Last a = Last {
- getLast :: a
- newtype First a = First {
- getFirst :: a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- with :: Default d => d
- lazy :: Strict lazy strict => Iso' strict lazy
- trace :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Lens' (QDiagram b v n m) (Trace v n)
- (|||) :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a -> a -> a
- class Semigroup a where
- class Functor f => Applicative (f :: Type -> Type) where
- type D (v :: Type -> Type) n = QDiagram NullBackend v n Any
- (<$) :: Functor f => a -> f b -> f a
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- uncons :: Cons s s a a => s -> Maybe (a, s)
- unsnoc :: Snoc s s a a => s -> Maybe (s, a)
- shift :: Duration Rational -> Active a -> Active a
- rotate :: (InSpace V2 n t, Transformable t, Floating n) => Angle n -> t -> t
- adjust :: (N t ~ n, Sectionable t, HasArcLength t, Fractional n) => t -> AdjustOpts n -> t
- clamp :: Active a -> Active a
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (&) :: a -> (a -> b) -> b
- data (a :: k) :~: (b :: k) where
- apply :: Transformation v n -> v n -> v n
- outer :: (Functor f, Functor g, Num a) => f a -> g a -> f (g a)
- newtype Min a = Min {
- getMin :: a
- newtype Max a = Max {
- getMax :: a
- from :: AnIso s t a b -> Iso b a t s
- to :: (Profunctor p, Contravariant f) => (s -> a) -> Optic' p f s a
- class R1 (t :: Type -> Type) where
- newtype All = All {}
- newtype Endo a = Endo {
- appEndo :: a -> a
- newtype Dual a = Dual {
- getDual :: a
- stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
- newtype Const a (b :: k) = Const {
- getConst :: a
- union :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n
- data Dynamic a = Dynamic {}
- fromDynamic :: Dynamic a -> Active a
- newtype Identity a = Identity {
- runIdentity :: a
- (<|) :: Cons s s a a => a -> s -> s
- cons :: Cons s s a a => a -> s -> s
- newtype WrappedMonoid m = WrapMonoid {
- unwrapMonoid :: m
- type ArgMax a b = Max (Arg a b)
- type ArgMin a b = Min (Arg a b)
- data Arg a b = Arg a b
- cycle1 :: Semigroup m => m -> m
- diff :: Semigroup m => m -> Endo m
- mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
- conjugate :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Transformation v n -> Transformation v n
- class Contravariant (f :: Type -> Type) where
- phantom :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Monoid' m, Enveloped a, Traced a) => a -> QDiagram b v n m
- size :: (V a ~ v, N a ~ n, Enveloped a, HasBasis v) => a -> v n
- (#.) :: Coercible c b => (b -> c) -> (a -> b) -> a -> c
- atMost :: Ord n => Measure n -> Measure n -> Measure n
- newtype E (t :: Type -> Type) = E {}
- value :: forall m b (v :: Type -> Type) n. Monoid m => m -> QDiagram b v n Any -> QDiagram b v n m
- snoc :: Snoc s s a a => s -> a -> s
- class Backend b (v :: Type -> Type) n where
- data Render b (v :: Type -> Type) n
- type Result b (v :: Type -> Type) n
- data Options b (v :: Type -> Type) n
- adjustDia :: (Additive v, Monoid' m, Num n) => b -> Options b v n -> QDiagram b v n m -> (Options b v n, Transformation v n, QDiagram b v n m)
- renderRTree :: b -> Options b v n -> RTree b v n Annotation -> Result b v n
- newtype Point (f :: Type -> Type) a = P (f a)
- pattern Empty :: AsEmpty s => s
- type family Result b (v :: Type -> Type) n
- difference :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n
- intersection :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n
- pattern (:>) :: Snoc a a b b => a -> b -> a
- pattern (:<) :: Cons b b a a => a -> b -> b
- (|>) :: Snoc s s a a => s -> a -> s
- iterateN :: Int -> (a -> a) -> a -> [a]
- pattern Strict :: Strict s t => t -> s
- pattern Lazy :: Strict t s => t -> s
- class Functor f => Additive (f :: Type -> Type) where
- (.#) :: Coercible b a => (b -> c) -> (a -> b) -> a -> c
- thin :: OrderedField n => Measure n
- local :: Num n => n -> Measure n
- data Line
- data Trail' l (v :: Type -> Type) n where
- noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- class Additive f => Metric (f :: Type -> Type) where
- data Style (v :: Type -> Type) n
- hcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] -> a
- hsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n -> [a] -> a
- vcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] -> a
- sep :: forall n f. Functor f => (n -> f n) -> CatOpts n -> f (CatOpts n)
- cat :: (InSpace v n a, Metric v, Floating n, Juxtaposable a, Monoid' a, HasOrigin a) => v n -> [a] -> a
- class Transformable t => Renderable t b where
- translate :: Transformable t => Vn t -> t -> t
- data Name
- data Prim b (v :: Type -> Type) n where
- Prim :: forall p b. (Transformable p, Typeable p, Renderable p b) => p -> Prim b (V p) (N p)
- data Located a = Loc {}
- lookupName :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> QDiagram b v n m -> Maybe (Subdiagram b v n m)
- location :: forall (v :: Type -> Type) n b m. (Additive v, Num n) => Subdiagram b v n m -> Point v n
- arrow :: (TypeableFloat n, Renderable (Path V2 n) b) => n -> QDiagram b V2 n Any
- center :: forall (v :: Type -> Type) n a. (InSpace v n a, Fractional n, Traversable v, Alignable a, HasOrigin a) => a -> a
- class Default a where
- def :: a
- data AdjustSide
- unit :: (Additive t, Num a) => ASetter' (t a) a -> t a
- scale :: forall (v :: Type -> Type) n a. (InSpace v n a, Eq n, Fractional n, Transformable a) => n -> a -> a
- interval :: Fractional a => Time Rational -> Time Rational -> Active a
- class Transformable t where
- transform :: Transformation (V t) (N t) -> t -> t
- data family Options b (v :: Type -> Type) n
- type Diagram b = QDiagram b (V b) (N b) Any
- data V2 a = V2 !a !a
- data QDiagram b (v :: Type -> Type) n m
- renderDia :: forall b (v :: Type -> Type) n m. (Backend b v n, HasLinearMap v, Metric v, Typeable n, OrderedField n, Monoid' m) => b -> Options b v n -> QDiagram b v n m -> Result b v n
- pad :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m
- mkWidth :: Num n => n -> SizeSpec V2 n
- type Monoid' = Monoid
- data Transformation (v :: Type -> Type) n
- data family Render b (v :: Type -> Type) n
- data DImage a b where
- data Embedded
- data Native t
- type family V a :: Type -> Type
- type TypeableFloat n = (Typeable n, RealFloat n)
- newtype Path (v :: Type -> Type) n = Path [Located (Trail v n)]
- data Attribute (v :: Type -> Type) n where
- Attribute :: forall a (v :: Type -> Type) n. AttributeClass a => a -> Attribute v n
- MAttribute :: forall a n (v :: Type -> Type). AttributeClass a => Measured n a -> Attribute v n
- TAttribute :: forall a (v :: Type -> Type) n. (AttributeClass a, Transformable a, V a ~ v, N a ~ n) => a -> Attribute v n
- data ImageData a where
- ImageRaster :: DynamicImage -> ImageData Embedded
- ImageRef :: FilePath -> ImageData External
- ImageNative :: forall t. t -> ImageData (Native t)
- getAttr :: forall a (v :: Type -> Type) n. AttributeClass a => Style v n -> Maybe a
- data SizeSpec (v :: Type -> Type) n
- type OrderedField s = (Floating s, Ord s)
- class Alignable a where
- alignBy' :: (InSpace v n a, Fractional n, HasOrigin a) => (v n -> a -> Point v n) -> v n -> n -> a -> a
- defaultBoundary :: (V a ~ v, N a ~ n) => v n -> a -> Point v n
- alignBy :: (InSpace v n a, Fractional n, HasOrigin a) => v n -> n -> a -> a
- align :: (InSpace v n a, Fractional n, Alignable a, HasOrigin a) => v n -> a -> a
- alignBy'Default :: (InSpace v n a, Fractional n, HasOrigin a) => (v n -> a -> Point v n) -> v n -> n -> a -> a
- centerV :: (InSpace v n a, Fractional n, Alignable a, HasOrigin a) => v n -> a -> a
- envelopeBoundary :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> Point v n
- snug :: (InSpace v n a, Fractional n, Alignable a, Traced a, HasOrigin a) => v n -> a -> a
- snugBy :: (InSpace v n a, Fractional n, Alignable a, Traced a, HasOrigin a) => v n -> n -> a -> a
- snugCenter :: forall (v :: Type -> Type) n a. (InSpace v n a, Traversable v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugCenterV :: (InSpace v n a, Fractional n, Alignable a, Traced a, HasOrigin a) => v n -> a -> a
- traceBoundary :: (V a ~ v, N a ~ n, Num n, Traced a) => v n -> a -> Point v n
- (@@) :: b -> AReview a b -> a
- data Angle n
- class HasTheta t => HasPhi (t :: Type -> Type) where
- class HasTheta (t :: Type -> Type) where
- acosA :: Floating n => n -> Angle n
- angleBetween :: (Metric v, Floating n, Ord n) => v n -> v n -> Angle n
- angleRatio :: Floating n => Angle n -> Angle n -> n
- asinA :: Floating n => n -> Angle n
- atan2A :: RealFloat n => n -> n -> Angle n
- atan2A' :: OrderedField n => n -> n -> Angle n
- atanA :: Floating n => n -> Angle n
- cosA :: Floating n => Angle n -> n
- deg :: Floating n => Iso' (Angle n) n
- fullTurn :: Floating v => Angle v
- halfTurn :: Floating v => Angle v
- normalizeAngle :: (Floating n, Real n) => Angle n -> Angle n
- quarterTurn :: Floating v => Angle v
- rad :: forall n p f. (Profunctor p, Functor f) => p n (f n) -> p (Angle n) (f (Angle n))
- rotation :: Floating n => Angle n -> Transformation V2 n
- sinA :: Floating n => Angle n -> n
- tanA :: Floating n => Angle n -> n
- turn :: Floating n => Iso' (Angle n) n
- type Animation b (v :: Type -> Type) n = QAnimation b v n Any
- type QAnimation b (v :: Type -> Type) n m = Active (QDiagram b v n m)
- animEnvelope :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => QAnimation b v n m -> QAnimation b v n m
- animEnvelope' :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => Rational -> QAnimation b v n m -> QAnimation b v n m
- animRect :: (InSpace V2 n t, Monoid' m, TrailLike t, Enveloped t, Transformable t, Monoid t) => QAnimation b V2 n m -> t
- animRect' :: (InSpace V2 n t, Monoid' m, TrailLike t, Enveloped t, Transformable t, Monoid t) => Rational -> QAnimation b V2 n m -> t
- class Color c where
- toAlphaColour :: c -> AlphaColour Double
- fromAlphaColour :: AlphaColour Double -> c
- data Dashing n = Dashing [n] n
- data FillOpacity
- data LineCap
- data LineJoin
- newtype LineMiterLimit = LineMiterLimit (Last Double)
- data LineWidth n
- data Opacity
- data SomeColor = Color c => SomeColor c
- data StrokeOpacity
- _Commit :: forall a p f. (Choice p, Applicative f) => p a (f a) -> p (Recommend a) (f (Recommend a))
- _FillOpacity :: Iso' FillOpacity Double
- _LineMiterLimit :: Iso' LineMiterLimit Double
- _LineWidth :: forall n p f. (Profunctor p, Functor f) => p n (f n) -> p (LineWidth n) (f (LineWidth n))
- _LineWidthM :: forall n p f. (Profunctor p, Functor f) => p (Measure n) (f (Measure n)) -> p (LineWidthM n) (f (LineWidthM n))
- _Opacity :: Iso' Opacity Double
- _Recommend :: forall a p f. (Choice p, Applicative f) => p a (f a) -> p (Recommend a) (f (Recommend a))
- _SomeColor :: Iso' SomeColor (AlphaColour Double)
- _StrokeOpacity :: Iso' StrokeOpacity Double
- _dashing :: forall n (v :: Type -> Type). Typeable n => Lens' (Style v n) (Maybe (Measured n (Dashing n)))
- _dashingU :: forall n (v :: Type -> Type). Typeable n => Lens' (Style v n) (Maybe (Dashing n))
- _fillOpacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n)
- _lineCap :: forall (v :: Type -> Type) n f. Functor f => (LineCap -> f LineCap) -> Style v n -> f (Style v n)
- _lineJoin :: forall (v :: Type -> Type) n f. Functor f => (LineJoin -> f LineJoin) -> Style v n -> f (Style v n)
- _lineMiterLimit :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n)
- _lineWidth :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n)
- _lineWidthU :: forall n (v :: Type -> Type). Typeable n => Lens' (Style v n) (Maybe n)
- _lw :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n)
- _opacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n)
- _recommend :: forall a b f. Functor f => (a -> f b) -> Recommend a -> f (Recommend b)
- _strokeOpacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n)
- colorToRGBA :: Color c => c -> (Double, Double, Double, Double)
- colorToSRGBA :: Color c => c -> (Double, Double, Double, Double)
- committed :: forall a b p f. (Profunctor p, Functor f) => p a (f b) -> p (Recommend a) (f (Recommend b))
- dashing :: (N a ~ n, HasStyle a, Typeable n) => [Measure n] -> Measure n -> a -> a
- dashingG :: (N a ~ n, HasStyle a, Typeable n, Num n) => [n] -> n -> a -> a
- dashingL :: (N a ~ n, HasStyle a, Typeable n, Num n) => [n] -> n -> a -> a
- dashingN :: (N a ~ n, HasStyle a, Typeable n, Num n) => [n] -> n -> a -> a
- dashingO :: (N a ~ n, HasStyle a, Typeable n) => [n] -> n -> a -> a
- fillOpacity :: HasStyle a => Double -> a -> a
- getDashing :: Dashing n -> Dashing n
- getFillOpacity :: FillOpacity -> Double
- getLineCap :: LineCap -> LineCap
- getLineJoin :: LineJoin -> LineJoin
- getLineMiterLimit :: LineMiterLimit -> Double
- getLineWidth :: LineWidth n -> n
- getOpacity :: Opacity -> Double
- getStrokeOpacity :: StrokeOpacity -> Double
- huge :: OrderedField n => Measure n
- isCommitted :: forall a f. Functor f => (Bool -> f Bool) -> Recommend a -> f (Recommend a)
- large :: OrderedField n => Measure n
- lineCap :: HasStyle a => LineCap -> a -> a
- lineJoin :: HasStyle a => LineJoin -> a -> a
- lineMiterLimit :: HasStyle a => Double -> a -> a
- lineMiterLimitA :: HasStyle a => LineMiterLimit -> a -> a
- lineWidth :: (N a ~ n, HasStyle a, Typeable n) => Measure n -> a -> a
- lineWidthM :: (N a ~ n, HasStyle a, Typeable n) => LineWidthM n -> a -> a
- lw :: (N a ~ n, HasStyle a, Typeable n) => Measure n -> a -> a
- lwG :: (N a ~ n, HasStyle a, Typeable n, Num n) => n -> a -> a
- lwL :: (N a ~ n, HasStyle a, Typeable n, Num n) => n -> a -> a
- lwN :: (N a ~ n, HasStyle a, Typeable n, Num n) => n -> a -> a
- lwO :: (N a ~ n, HasStyle a, Typeable n) => n -> a -> a
- medium :: OrderedField n => Measure n
- none :: OrderedField n => Measure n
- normal :: OrderedField n => Measure n
- opacity :: HasStyle a => Double -> a -> a
- small :: OrderedField n => Measure n
- someToAlpha :: SomeColor -> AlphaColour Double
- strokeOpacity :: HasStyle a => Double -> a -> a
- thick :: OrderedField n => Measure n
- tiny :: OrderedField n => Measure n
- ultraThick :: OrderedField n => Measure n
- ultraThin :: OrderedField n => Measure n
- veryLarge :: OrderedField n => Measure n
- verySmall :: OrderedField n => Measure n
- veryThick :: OrderedField n => Measure n
- veryThin :: OrderedField n => Measure n
- data BoundingBox (v :: Type -> Type) n
- boundingBox :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> BoundingBox v n
- boxCenter :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => BoundingBox v n -> Maybe (Point v n)
- boxExtents :: (Additive v, Num n) => BoundingBox v n -> v n
- boxFit :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a, Transformable a, Monoid a) => BoundingBox v n -> a -> a
- boxGrid :: forall (v :: Type -> Type) n. (Traversable v, Additive v, Num n, Enum n) => n -> BoundingBox v n -> [Point v n]
- boxTransform :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => BoundingBox v n -> BoundingBox v n -> Maybe (Transformation v n)
- centerPoint :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> Point v n
- contains' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> Point v n -> Bool
- emptyBox :: forall (v :: Type -> Type) n. BoundingBox v n
- fromCorners :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => Point v n -> Point v n -> BoundingBox v n
- fromPoint :: forall (v :: Type -> Type) n. Point v n -> BoundingBox v n
- fromPoints :: forall (v :: Type -> Type) n. (Additive v, Ord n) => [Point v n] -> BoundingBox v n
- getAllCorners :: forall (v :: Type -> Type) n. (Additive v, Traversable v) => BoundingBox v n -> [Point v n]
- getCorners :: forall (v :: Type -> Type) n. BoundingBox v n -> Maybe (Point v n, Point v n)
- inside' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> BoundingBox v n -> Bool
- isEmptyBox :: forall (v :: Type -> Type) n. BoundingBox v n -> Bool
- mCenterPoint :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> Maybe (Point v n)
- outside' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> BoundingBox v n -> Bool
- data CatMethod
- data CatOpts n
- appends :: (Juxtaposable a, Monoid' a) => a -> [(Vn a, a)] -> a
- atDirection :: forall (v :: Type -> Type) n a. (InSpace v n a, Metric v, Floating n, Juxtaposable a, Semigroup a) => Direction v n -> a -> a -> a
- atPoints :: forall (v :: Type -> Type) n a. (InSpace v n a, HasOrigin a, Monoid' a) => [Point v n] -> [a] -> a
- beneath :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m
- beside :: (Juxtaposable a, Semigroup a) => Vn a -> a -> a -> a
- cat' :: (InSpace v n a, Metric v, Floating n, Juxtaposable a, Monoid' a, HasOrigin a) => v n -> CatOpts n -> [a] -> a
- catMethod :: forall n f. Functor f => (CatMethod -> f CatMethod) -> CatOpts n -> f (CatOpts n)
- composeAligned :: forall m n (v :: Type -> Type) b. (Monoid' m, Floating n, Ord n, Metric v) => (QDiagram b v n m -> QDiagram b v n m) -> ([QDiagram b v n m] -> QDiagram b v n m) -> [QDiagram b v n m] -> QDiagram b v n m
- extrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m
- frame :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m
- intrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m
- position :: forall (v :: Type -> Type) n a. (InSpace v n a, HasOrigin a, Monoid' a) => [(Point v n, a)] -> a
- strut :: (Metric v, OrderedField n) => v n -> QDiagram b v n m
- withEnvelope :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Monoid' m, Enveloped a) => a -> QDiagram b v n m -> QDiagram b v n m
- withTrace :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Metric v, OrderedField n, Monoid' m, Traced a) => a -> QDiagram b v n m -> QDiagram b v n m
- data a :& b = a :& b
- class Coordinates c where
- type FinalCoord c
- type PrevDim c
- type Decomposition c
- (^&) :: PrevDim c -> FinalCoord c -> c
- pr :: PrevDim c -> FinalCoord c -> c
- coords :: c -> Decomposition c
- type family Decomposition c
- type family FinalCoord c
- type family PrevDim c
- cubicSpline :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t, Fractional (v n)) => Bool -> [Point v n] -> t
- type BSpline (v :: Type -> Type) n = [Point v n]
- bspline :: forall t (v :: Type -> Type) n. (TrailLike t, V t ~ v, N t ~ n) => BSpline v n -> t
- class Deformable a b where
- newtype Deformation (v :: Type -> Type) (u :: Type -> Type) n = Deformation (Point v n -> Point u n)
- asDeformation :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Deformation v v n
- data Direction (v :: Type -> Type) n
- _Dir :: forall v n p f. (Profunctor p, Functor f) => p (v n) (f (v n)) -> p (Direction v n) (f (Direction v n))
- angleBetweenDirs :: forall (v :: Type -> Type) n. (Metric v, Floating n, Ord n) => Direction v n -> Direction v n -> Angle n
- dirBetween :: forall (v :: Type -> Type) n. (Additive v, Num n) => Point v n -> Point v n -> Direction v n
- direction :: v n -> Direction v n
- fromDir :: (Metric v, Floating n) => Direction v n -> v n
- fromDirection :: (Metric v, Floating n) => Direction v n -> v n
- _loc :: forall a f. Functor f => (Point (V a) (N a) -> f (Point (V a) (N a))) -> Located a -> f (Located a)
- at :: a -> Point (V a) (N a) -> Located a
- located :: SameSpace a b => Lens (Located a) (Located b) a b
- mapLoc :: SameSpace a b => (a -> b) -> Located a -> Located b
- viewLoc :: Located a -> (Point (V a) (N a), a)
- namePoint :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => (QDiagram b v n m -> Point v n) -> nm -> QDiagram b v n m -> QDiagram b v n m
- named :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => nm -> QDiagram b v n m -> QDiagram b v n m
- type family Codomain p :: Type -> Type
- class DomainBounds p where
- domainLower :: p -> N p
- domainUpper :: p -> N p
- class (Parametric p, DomainBounds p) => EndValues p where
- class Parametric p => HasArcLength p where
- arcLengthBounded :: N p -> p -> Interval (N p)
- arcLength :: N p -> p -> N p
- stdArcLength :: p -> N p
- arcLengthToParam :: N p -> p -> N p -> N p
- stdArcLengthToParam :: p -> N p -> N p
- class Parametric p where
- class DomainBounds p => Sectionable p where
- splitAtParam :: p -> N p -> (p, p)
- section :: p -> N p -> N p -> p
- reverseDomain :: p -> p
- domainBounds :: DomainBounds p => p -> (N p, N p)
- stdTolerance :: Fractional a => a
- data AdjustMethod n
- = ByParam n
- | ByAbsolute n
- | ToAbsolute n
- data AdjustOpts n
- adjEps :: forall n f. Functor f => (n -> f n) -> AdjustOpts n -> f (AdjustOpts n)
- adjMethod :: forall n f. Functor f => (AdjustMethod n -> f (AdjustMethod n)) -> AdjustOpts n -> f (AdjustOpts n)
- adjSide :: forall n f. Functor f => (AdjustSide -> f AdjustSide) -> AdjustOpts n -> f (AdjustOpts n)
- class ToPath t where
- explodePath :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Path v n -> [[t]]
- fixPath :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[FixedSegment v n]]
- partitionPath :: forall (v :: Type -> Type) n. (Located (Trail v n) -> Bool) -> Path v n -> (Path v n, Path v n)
- pathCentroid :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> Point v n
- pathFromLocTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> Path v n
- pathFromTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Path v n
- pathFromTrailAt :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Point v n -> Path v n
- pathLocSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[Located (Segment Closed v n)]]
- pathOffsets :: (Metric v, OrderedField n) => Path v n -> [v n]
- pathTrails :: forall (v :: Type -> Type) n. Path v n -> [Located (Trail v n)]
- pathVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[Point v n]]
- pathVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Path v n -> [[Point v n]]
- reversePath :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> Path v n
- scalePath :: forall (v :: Type -> Type) n. (HasLinearMap v, Metric v, OrderedField n) => n -> Path v n -> Path v n
- centroid :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => [Point v n] -> Point v n
- class HasQuery t m | t -> m where
- clearValue :: forall b (v :: Type -> Type) n m. QDiagram b v n m -> QDiagram b v n Any
- inquire :: HasQuery t Any => t -> Point (V t) (N t) -> Bool
- resetValue :: forall m b (v :: Type -> Type) n. (Eq m, Monoid m) => QDiagram b v n m -> QDiagram b v n Any
- sample :: HasQuery t m => t -> Point (V t) (N t) -> m
- newtype ArcLength n = ArcLength (Sum (Interval n), n -> Sum (Interval n))
- data Closed
- data FixedSegment (v :: Type -> Type) n
- data Offset c (v :: Type -> Type) n where
- OffsetOpen :: forall (v :: Type -> Type) n. Offset Open v n
- OffsetClosed :: forall (v :: Type -> Type) n. v n -> Offset Closed v n
- data OffsetEnvelope (v :: Type -> Type) n = OffsetEnvelope {
- _oeOffset :: !(TotalOffset v n)
- _oeEnvelope :: Envelope v n
- data Open
- newtype SegCount = SegCount (Sum Int)
- type SegMeasure (v :: Type -> Type) n = SegCount ::: (ArcLength n ::: (OffsetEnvelope v n ::: ()))
- newtype TotalOffset (v :: Type -> Type) n = TotalOffset (v n)
- bezier3 :: v n -> v n -> v n -> Segment Closed v n
- bézier3 :: v n -> v n -> v n -> Segment Closed v n
- fixedSegIso :: forall n (v :: Type -> Type). (Num n, Additive v) => Iso' (FixedSegment v n) (Located (Segment Closed v n))
- fromFixedSeg :: forall n (v :: Type -> Type). (Num n, Additive v) => FixedSegment v n -> Located (Segment Closed v n)
- getArcLengthBounded :: (Num n, Ord n) => n -> ArcLength n -> Interval n
- getArcLengthCached :: ArcLength n -> Interval n
- getArcLengthFun :: ArcLength n -> n -> Interval n
- mapSegmentVectors :: (v n -> v' n') -> Segment c v n -> Segment c v' n'
- mkFixedSeg :: forall n (v :: Type -> Type). (Num n, Additive v) => Located (Segment Closed v n) -> FixedSegment v n
- oeEnvelope :: forall (v :: Type -> Type) n f. Functor f => (Envelope v n -> f (Envelope v n)) -> OffsetEnvelope v n -> f (OffsetEnvelope v n)
- oeOffset :: forall (v :: Type -> Type) n f. Functor f => (TotalOffset v n -> f (TotalOffset v n)) -> OffsetEnvelope v n -> f (OffsetEnvelope v n)
- openCubic :: v n -> v n -> Segment Open v n
- openLinear :: forall (v :: Type -> Type) n. Segment Open v n
- reverseSegment :: forall n (v :: Type -> Type). (Num n, Additive v) => Segment Closed v n -> Segment Closed v n
- segOffset :: Segment Closed v n -> v n
- straight :: v n -> Segment Closed v n
- absolute :: forall (v :: Type -> Type) n. (Additive v, Num n) => SizeSpec v n
- dims :: v n -> SizeSpec v n
- getSpec :: (Functor v, Num n, Ord n) => SizeSpec v n -> v (Maybe n)
- mkSizeSpec :: (Functor v, Num n) => v (Maybe n) -> SizeSpec v n
- requiredScale :: (Additive v, Foldable v, Fractional n, Ord n) => SizeSpec v n -> v n -> n
- requiredScaling :: (Additive v, Foldable v, Fractional n, Ord n) => SizeSpec v n -> v n -> Transformation v n
- sizeAdjustment :: (Additive v, Foldable v, OrderedField n) => SizeSpec v n -> BoundingBox v n -> (v n, Transformation v n)
- sized :: forall (v :: Type -> Type) n a. (InSpace v n a, HasLinearMap v, Transformable a, Enveloped a) => SizeSpec v n -> a -> a
- sizedAs :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasLinearMap v, Transformable a, Enveloped a, Enveloped b) => b -> a -> a
- specToSize :: (Foldable v, Functor v, Num n, Ord n) => n -> SizeSpec v n -> v n
- newtype Tangent t = Tangent t
- normalAtEnd :: (InSpace V2 n t, EndValues (Tangent t), Floating n) => t -> V2 n
- normalAtParam :: (InSpace V2 n t, Parametric (Tangent t), Floating n) => t -> n -> V2 n
- normalAtStart :: (InSpace V2 n t, EndValues (Tangent t), Floating n) => t -> V2 n
- tangentAtEnd :: EndValues (Tangent t) => t -> Vn t
- tangentAtParam :: Parametric (Tangent t) => t -> N t -> Vn t
- tangentAtStart :: EndValues (Tangent t) => t -> Vn t
- alignXMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignXMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignYMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignYMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a
- alignZMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignZMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- centerXYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- centerXZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- centerYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- centerZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- snugCenterXYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugCenterXZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugCenterYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugCenterZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugXMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugXMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugYMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugYMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugZ :: forall a (v :: Type -> Type) n. (V a ~ v, N a ~ n, Alignable a, Traced a, HasOrigin a, R3 v, Fractional n) => n -> a -> a
- snugZMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- snugZMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a
- newtype Ambient = Ambient (Last Double)
- newtype Diffuse = Diffuse (Last Double)
- newtype Highlight = Highlight (Last Specular)
- data Specular = Specular {}
- newtype SurfaceColor = SurfaceColor (Last (Colour Double))
- _Ambient :: Iso' Ambient Double
- _Diffuse :: Iso' Diffuse Double
- _Highlight :: Iso' Highlight Specular
- _SurfaceColor :: Iso' SurfaceColor (Colour Double)
- _ambient :: forall (v :: Type -> Type) n f. Functor f => (Maybe Double -> f (Maybe Double)) -> Style v n -> f (Style v n)
- _diffuse :: forall (v :: Type -> Type) n f. Functor f => (Maybe Double -> f (Maybe Double)) -> Style v n -> f (Style v n)
- _highlight :: forall (v :: Type -> Type) n f. Functor f => (Maybe Specular -> f (Maybe Specular)) -> Style v n -> f (Style v n)
- _sc :: forall (v :: Type -> Type) n f. Functor f => (Maybe (Colour Double) -> f (Maybe (Colour Double))) -> Style v n -> f (Style v n)
- ambient :: HasStyle d => Double -> d -> d
- diffuse :: HasStyle d => Double -> d -> d
- highlight :: HasStyle d => Specular -> d -> d
- highlightIntensity :: forall (v :: Type -> Type) n f. Applicative f => (Double -> f Double) -> Style v n -> f (Style v n)
- highlightSize :: forall (v :: Type -> Type) n f. Applicative f => (Double -> f Double) -> Style v n -> f (Style v n)
- sc :: HasStyle d => Colour Double -> d -> d
- specularIntensity :: Lens' Specular Double
- specularSize :: Lens' Specular Double
- data Camera (l :: Type -> Type) n
- data OrthoLens n = OrthoLens {
- _orthoWidth :: n
- _orthoHeight :: n
- data PerspectiveLens n = PerspectiveLens {}
- aspect :: (CameraLens l, Floating n) => l n -> n
- camAspect :: forall n (l :: Type -> Type). (Floating n, CameraLens l) => Camera l n -> n
- camForward :: forall (l :: Type -> Type) n. Camera l n -> Direction V3 n
- camLens :: Camera l n -> l n
- camRight :: forall n (l :: Type -> Type). Fractional n => Camera l n -> Direction V3 n
- camUp :: forall (l :: Type -> Type) n. Camera l n -> Direction V3 n
- facing_ZCamera :: (Floating n, Ord n, Typeable n, CameraLens l, Renderable (Camera l n) b) => l n -> QDiagram b V3 n Any
- horizontalFieldOfView :: forall n f. Functor f => (Angle n -> f (Angle n)) -> PerspectiveLens n -> f (PerspectiveLens n)
- mm50 :: Floating n => PerspectiveLens n
- mm50Camera :: (Typeable n, Floating n, Ord n, Renderable (Camera PerspectiveLens n) b) => QDiagram b V3 n Any
- mm50Narrow :: Floating n => PerspectiveLens n
- mm50Wide :: Floating n => PerspectiveLens n
- orthoHeight :: forall n f. Functor f => (n -> f n) -> OrthoLens n -> f (OrthoLens n)
- orthoWidth :: forall n f. Functor f => (n -> f n) -> OrthoLens n -> f (OrthoLens n)
- verticalFieldOfView :: forall n f. Functor f => (Angle n -> f (Angle n)) -> PerspectiveLens n -> f (PerspectiveLens n)
- facingZ :: forall (v :: Type -> Type) n. (R3 v, Functor v, Fractional n) => Deformation v v n
- parallelZ0 :: forall (v :: Type -> Type) n. (R3 v, Num n) => Deformation v v n
- perspectiveZ1 :: forall (v :: Type -> Type) n. (R3 v, Functor v, Fractional n) => Deformation v v n
- data ParallelLight n = ParallelLight (V3 n) (Colour Double)
- data PointLight n = PointLight (Point V3 n) (Colour Double)
- parallelLight :: (Typeable n, OrderedField n, Renderable (ParallelLight n) b) => Direction V3 n -> Colour Double -> QDiagram b V3 n Any
- pointLight :: (Typeable n, Num n, Ord n, Renderable (PointLight n) b) => Colour Double -> QDiagram b V3 n Any
- data Box n = Box (Transformation V3 n)
- data CSG n
- = CsgEllipsoid (Ellipsoid n)
- | CsgBox (Box n)
- | CsgFrustum (Frustum n)
- | CsgUnion [CSG n]
- | CsgIntersection [CSG n]
- | CsgDifference (CSG n) (CSG n)
- data Ellipsoid n = Ellipsoid (Transformation V3 n)
- data Frustum n = Frustum n n (Transformation V3 n)
- class Skinned t where
- skin :: (Renderable t b, N t ~ n, TypeableFloat n) => t -> QDiagram b V3 n Any
- cone :: Num n => Frustum n
- cube :: Num n => Box n
- cylinder :: Num n => Frustum n
- frustum :: Num n => n -> n -> Frustum n
- sphere :: Num n => Ellipsoid n
- aboutX :: Floating n => Angle n -> Transformation V3 n
- aboutY :: Floating n => Angle n -> Transformation V3 n
- aboutZ :: Floating n => Angle n -> Transformation V3 n
- pointAt :: (Floating n, Ord n) => Direction V3 n -> Direction V3 n -> Direction V3 n -> Transformation V3 n
- pointAt' :: (Floating n, Ord n) => V3 n -> V3 n -> V3 n -> Transformation V3 n
- reflectAcross :: (InSpace v n t, Metric v, Fractional n, Transformable t) => Point v n -> v n -> t -> t
- reflectZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Transformable t) => t -> t
- reflectionAcross :: (Metric v, Fractional n) => Point v n -> v n -> Transformation v n
- reflectionZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Num n) => Transformation v n
- rotateAbout :: (InSpace V3 n t, Floating n, Transformable t) => Point V3 n -> Direction V3 n -> Angle n -> t -> t
- rotationAbout :: Floating n => Point V3 n -> Direction V3 n -> Angle n -> Transformation V3 n
- scaleZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Fractional n, Transformable t) => n -> t -> t
- scalingZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Fractional n) => n -> Transformation v n
- translateZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Transformable t) => n -> t -> t
- translationZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Num n) => n -> Transformation v n
- type P3 = Point V3
- type T3 = Transformation V3
- mkP3 :: n -> n -> n -> P3 n
- mkR3 :: n -> n -> n -> V3 n
- p3 :: (n, n, n) -> P3 n
- p3Iso :: forall n p f. (Profunctor p, Functor f) => p (n, n, n) (f (n, n, n)) -> p (P3 n) (f (P3 n))
- r3 :: (n, n, n) -> V3 n
- r3CylindricalIso :: RealFloat n => Iso' (V3 n) (n, Angle n, n)
- r3Iso :: forall n p f. (Profunctor p, Functor f) => p (n, n, n) (f (n, n, n)) -> p (V3 n) (f (V3 n))
- r3SphericalIso :: RealFloat n => Iso' (V3 n) (n, Angle n, Angle n)
- unp3 :: P3 n -> (n, n, n)
- unr3 :: V3 n -> (n, n, n)
- unitZ :: (R3 v, Additive v, Num n) => v n
- unit_Z :: (R3 v, Additive v, Num n) => v n
- zDir :: forall (v :: Type -> Type) n. (R3 v, Additive v, Num n) => Direction v n
- boundaryFrom :: (OrderedField n, Metric v, Semigroup m) => Subdiagram b v n m -> v n -> Point v n
- boundaryFromMay :: (Metric v, OrderedField n, Semigroup m) => Subdiagram b v n m -> v n -> Maybe (Point v n)
- newtype GetSegment t = GetSegment t
- newtype GetSegmentCodomain (v :: Type -> Type) n = GetSegmentCodomain (Maybe (v n, Segment Closed v n, AnIso' n n))
- data Loop
- newtype SegTree (v :: Type -> Type) n = SegTree (FingerTree (SegMeasure v n) (Segment Closed v n))
- data Trail (v :: Type -> Type) n where
- _Line :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Trail' Line v n) (f (Trail' Line v n)) -> p (Trail v n) (f (Trail v n))
- _LocLine :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Located (Trail' Line v n)) (f (Located (Trail' Line v n))) -> p (Located (Trail v n)) (f (Located (Trail v n)))
- _LocLoop :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Located (Trail' Loop v n)) (f (Located (Trail' Loop v n))) -> p (Located (Trail v n)) (f (Located (Trail v n)))
- _Loop :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Trail' Loop v n) (f (Trail' Loop v n)) -> p (Trail v n) (f (Trail v n))
- closeLine :: forall (v :: Type -> Type) n. Trail' Line v n -> Trail' Loop v n
- closeTrail :: forall (v :: Type -> Type) n. Trail v n -> Trail v n
- cutLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Loop v n -> Trail' Line v n
- cutTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Trail v n
- emptyLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n
- emptyTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n
- fixTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [FixedSegment v n]
- getSegment :: t -> GetSegment t
- glueLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Trail' Loop v n
- glueTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Trail v n
- isLine :: forall (v :: Type -> Type) n. Trail v n -> Bool
- isLineEmpty :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Bool
- isLoop :: forall (v :: Type -> Type) n. Trail v n -> Bool
- isTrailEmpty :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Bool
- lineFromOffsets :: (Metric v, OrderedField n) => [v n] -> Trail' Line v n
- lineFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Trail' Line v n
- lineFromVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Point v n] -> Trail' Line v n
- lineOffset :: (Metric v, OrderedField n) => Trail' Line v n -> v n
- lineOffsets :: Trail' Line v n -> [v n]
- lineSegments :: forall (v :: Type -> Type) n. Trail' Line v n -> [Segment Closed v n]
- lineVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Line v n) -> [Point v n]
- lineVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail' Line v n) -> [Point v n]
- loopFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Segment Open v n -> Trail' Loop v n
- loopOffsets :: (Metric v, OrderedField n) => Trail' Loop v n -> [v n]
- loopSegments :: forall (v :: Type -> Type) n. Trail' Loop v n -> ([Segment Closed v n], Segment Open v n)
- loopVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Loop v n) -> [Point v n]
- loopVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail' Loop v n) -> [Point v n]
- numSegs :: forall c (v :: Type -> Type) n a. (Num c, Measured (SegMeasure v n) a) => a -> c
- offset :: (OrderedField n, Metric v, Measured (SegMeasure v n) t) => t -> v n
- onLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => (Trail' Line v n -> Trail' Line v n) -> Trail v n -> Trail v n
- onLineSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => ([Segment Closed v n] -> [Segment Closed v n]) -> Trail' Line v n -> Trail' Line v n
- onTrail :: forall (v :: Type -> Type) n l1 l2. (Trail' Line v n -> Trail' l1 v n) -> (Trail' Loop v n -> Trail' l2 v n) -> Trail v n -> Trail v n
- reverseLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Trail' Line v n
- reverseLocLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Line v n) -> Located (Trail' Line v n)
- reverseLocLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Loop v n) -> Located (Trail' Loop v n)
- reverseLocTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> Located (Trail v n)
- reverseLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Loop v n -> Trail' Loop v n
- reverseTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Trail v n
- trailFromOffsets :: (Metric v, OrderedField n) => [v n] -> Trail v n
- trailFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Trail v n
- trailFromVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Point v n] -> Trail v n
- trailLocSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [Located (Segment Closed v n)]
- trailMeasure :: forall (v :: Type -> Type) n m t a. (SegMeasure v n :>: m, Measured (SegMeasure v n) t) => a -> (m -> a) -> t -> a
- trailOffset :: (Metric v, OrderedField n) => Trail v n -> v n
- trailOffsets :: (Metric v, OrderedField n) => Trail v n -> [v n]
- trailSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> [Segment Closed v n]
- trailVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [Point v n]
- trailVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail v n) -> [Point v n]
- unfixTrail :: forall (v :: Type -> Type) n. (Metric v, Ord n, Floating n) => [FixedSegment v n] -> Located (Trail v n)
- withLine :: forall (v :: Type -> Type) n r. (Metric v, OrderedField n) => (Trail' Line v n -> r) -> Trail v n -> r
- withTrail :: forall (v :: Type -> Type) n r. (Trail' Line v n -> r) -> (Trail' Loop v n -> r) -> Trail v n -> r
- withTrail' :: forall (v :: Type -> Type) n r l. (Trail' Line v n -> r) -> (Trail' Loop v n -> r) -> Trail' l v n -> r
- wrapLine :: forall (v :: Type -> Type) n. Trail' Line v n -> Trail v n
- wrapLoop :: forall (v :: Type -> Type) n. Trail' Loop v n -> Trail v n
- wrapTrail :: forall l (v :: Type -> Type) n. Trail' l v n -> Trail v n
- class (Metric (V t), OrderedField (N t)) => TrailLike t where
- explodeTrail :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Located (Trail v n) -> [t]
- fromLocOffsets :: (V t ~ v, N t ~ n, V (v n) ~ v, N (v n) ~ n, TrailLike t) => Located [v n] -> t
- fromLocSegments :: TrailLike t => Located [Segment Closed (V t) (N t)] -> t
- fromOffsets :: TrailLike t => [Vn t] -> t
- fromSegments :: TrailLike t => [Segment Closed (V t) (N t)] -> t
- fromVertices :: TrailLike t => [Point (V t) (N t)] -> t
- movedFrom :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasOrigin a, HasOrigin b) => Point v n -> Iso a b a b
- movedTo :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasOrigin a, HasOrigin b) => Point v n -> Iso a b a b
- transformed :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => Transformation v n -> Iso a b a b
- translated :: (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => v n -> Iso a b a b
- underT :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => (a -> b) -> Transformation v n -> a -> b
- alignB :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignBL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignBR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignT :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignTL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignTR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a
- alignX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a
- alignY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a
- centerX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- centerXY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- centerY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a
- snugB :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a
- snugCenterX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a
- snugCenterXY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a
- snugCenterY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a
- snugL :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a
- snugR :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a
- snugT :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a
- snugX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n -> a -> a
- snugY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n -> a -> a
- annularWedge :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => n -> n -> Direction V2 n -> Angle n -> t
- arc :: (InSpace V2 n t, OrderedField n, TrailLike t) => Direction V2 n -> Angle n -> t
- arc' :: (InSpace V2 n t, OrderedField n, TrailLike t) => n -> Direction V2 n -> Angle n -> t
- arcBetween :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => Point V2 n -> Point V2 n -> n -> t
- arcCCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n -> Direction V2 n -> t
- arcCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n -> Direction V2 n -> t
- wedge :: (InSpace V2 n t, OrderedField n, TrailLike t) => n -> Direction V2 n -> Angle n -> t
- data ArrowOpts n = ArrowOpts {
- _arrowHead :: ArrowHT n
- _arrowTail :: ArrowHT n
- _arrowShaft :: Trail V2 n
- _headGap :: Measure n
- _tailGap :: Measure n
- _headStyle :: Style V2 n
- _headLength :: Measure n
- _tailStyle :: Style V2 n
- _tailLength :: Measure n
- _shaftStyle :: Style V2 n
- arrow' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> n -> QDiagram b V2 n Any
- arrowAt :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n -> V2 n -> QDiagram b V2 n Any
- arrowAt' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> Point V2 n -> V2 n -> QDiagram b V2 n Any
- arrowBetween :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n -> Point V2 n -> QDiagram b V2 n Any
- arrowBetween' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> Point V2 n -> Point V2 n -> QDiagram b V2 n Any
- arrowHead :: forall n f. Functor f => (ArrowHT n -> f (ArrowHT n)) -> ArrowOpts n -> f (ArrowOpts n)
- arrowShaft :: forall n f. Functor f => (Trail V2 n -> f (Trail V2 n)) -> ArrowOpts n -> f (ArrowOpts n)
- arrowTail :: forall n f. Functor f => (ArrowHT n -> f (ArrowHT n)) -> ArrowOpts n -> f (ArrowOpts n)
- arrowV :: (TypeableFloat n, Renderable (Path V2 n) b) => V2 n -> QDiagram b V2 n Any
- arrowV' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> V2 n -> QDiagram b V2 n Any
- connect :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- connect' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- connectOutside :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- connectOutside' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- connectPerim :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> Angle n -> Angle n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- connectPerim' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> Angle n -> Angle n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- gap :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n)
- gaps :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n)
- headGap :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n)
- headLength :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n)
- headStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n)
- headTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n)
- lengths :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n)
- shaftStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n)
- shaftTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n)
- straightShaft :: OrderedField n => Trail V2 n
- tailGap :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n)
- tailLength :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n)
- tailStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n)
- tailTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n)
- type ArrowHT n = n -> n -> (Path V2 n, Path V2 n)
- arrowheadDart :: RealFloat n => Angle n -> ArrowHT n
- arrowheadHalfDart :: RealFloat n => Angle n -> ArrowHT n
- arrowheadSpike :: RealFloat n => Angle n -> ArrowHT n
- arrowheadThorn :: RealFloat n => Angle n -> ArrowHT n
- arrowheadTriangle :: RealFloat n => Angle n -> ArrowHT n
- arrowtailBlock :: RealFloat n => Angle n -> ArrowHT n
- arrowtailQuill :: OrderedField n => Angle n -> ArrowHT n
- block :: RealFloat n => ArrowHT n
- dart :: RealFloat n => ArrowHT n
- dart' :: RealFloat n => ArrowHT n
- halfDart :: RealFloat n => ArrowHT n
- halfDart' :: RealFloat n => ArrowHT n
- lineHead :: RealFloat n => ArrowHT n
- lineTail :: RealFloat n => ArrowHT n
- noHead :: ArrowHT n
- noTail :: ArrowHT n
- quill :: (Floating n, Ord n) => ArrowHT n
- spike :: RealFloat n => ArrowHT n
- spike' :: RealFloat n => ArrowHT n
- thorn :: RealFloat n => ArrowHT n
- thorn' :: RealFloat n => ArrowHT n
- tri :: RealFloat n => ArrowHT n
- tri' :: RealFloat n => ArrowHT n
- data SpreadMethod
- data GradientStop d = GradientStop {
- _stopColor :: SomeColor
- _stopFraction :: d
- data Texture n
- data LGradient n = LGradient {
- _lGradStops :: [GradientStop n]
- _lGradStart :: Point V2 n
- _lGradEnd :: Point V2 n
- _lGradTrans :: Transformation V2 n
- _lGradSpreadMethod :: SpreadMethod
- data RGradient n = RGradient {
- _rGradStops :: [GradientStop n]
- _rGradCenter0 :: Point V2 n
- _rGradRadius0 :: n
- _rGradCenter1 :: Point V2 n
- _rGradRadius1 :: n
- _rGradTrans :: Transformation V2 n
- _rGradSpreadMethod :: SpreadMethod
- _AC :: forall n p f. (Choice p, Applicative f) => p (AlphaColour Double) (f (AlphaColour Double)) -> p (Texture n) (f (Texture n))
- _FillTexture :: forall n p f. (Profunctor p, Functor f) => p (Recommend (Texture n)) (f (Recommend (Texture n))) -> p (FillTexture n) (f (FillTexture n))
- _LG :: forall n p f. (Choice p, Applicative f) => p (LGradient n) (f (LGradient n)) -> p (Texture n) (f (Texture n))
- _LineTexture :: forall n n' p f. (Profunctor p, Functor f) => p (Texture n) (f (Texture n')) -> p (LineTexture n) (f (LineTexture n'))
- _RG :: forall n p f. (Choice p, Applicative f) => p (RGradient n) (f (RGradient n)) -> p (Texture n) (f (Texture n))
- _SC :: forall n p f. (Choice p, Applicative f) => p SomeColor (f SomeColor) -> p (Texture n) (f (Texture n))
- _fillTexture :: (Typeable n, Floating n) => Lens' (Style V2 n) (Texture n)
- _lineTexture :: (Floating n, Typeable n) => Lens' (Style V2 n) (Texture n)
- defaultLG :: Fractional n => Texture n
- defaultRG :: Fractional n => Texture n
- fc :: (InSpace V2 n a, Floating n, Typeable n, HasStyle a) => Colour Double -> a -> a
- fcA :: (InSpace V2 n a, Floating n, Typeable n, HasStyle a) => AlphaColour Double -> a -> a
- fillColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c -> a -> a
- fillTexture :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Texture n -> a -> a
- getFillTexture :: FillTexture n -> Texture n
- getLineTexture :: LineTexture n -> Texture n
- lGradEnd :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> LGradient n -> f (LGradient n)
- lGradSpreadMethod :: forall n f. Functor f => (SpreadMethod -> f SpreadMethod) -> LGradient n -> f (LGradient n)
- lGradStart :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> LGradient n -> f (LGradient n)
- lGradStops :: forall n f. Functor f => ([GradientStop n] -> f [GradientStop n]) -> LGradient n -> f (LGradient n)
- lGradTrans :: forall n f. Functor f => (Transformation V2 n -> f (Transformation V2 n)) -> LGradient n -> f (LGradient n)
- lc :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Colour Double -> a -> a
- lcA :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => AlphaColour Double -> a -> a
- lineColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c -> a -> a
- lineTexture :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Texture n -> a -> a
- lineTextureA :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => LineTexture n -> a -> a
- mkLinearGradient :: Num n => [GradientStop n] -> Point V2 n -> Point V2 n -> SpreadMethod -> Texture n
- mkRadialGradient :: Num n => [GradientStop n] -> Point V2 n -> n -> Point V2 n -> n -> SpreadMethod -> Texture n
- mkStops :: [(Colour Double, d, Double)] -> [GradientStop d]
- rGradCenter0 :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> RGradient n -> f (RGradient n)
- rGradCenter1 :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> RGradient n -> f (RGradient n)
- rGradRadius0 :: forall n f. Functor f => (n -> f n) -> RGradient n -> f (RGradient n)
- rGradRadius1 :: forall n f. Functor f => (n -> f n) -> RGradient n -> f (RGradient n)
- rGradSpreadMethod :: forall n f. Functor f => (SpreadMethod -> f SpreadMethod) -> RGradient n -> f (RGradient n)
- rGradStops :: forall n f. Functor f => ([GradientStop n] -> f [GradientStop n]) -> RGradient n -> f (RGradient n)
- rGradTrans :: forall n f. Functor f => (Transformation V2 n -> f (Transformation V2 n)) -> RGradient n -> f (RGradient n)
- recommendFillColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c -> a -> a
- solid :: Color a => a -> Texture n
- stopColor :: forall n f. Functor f => (SomeColor -> f SomeColor) -> GradientStop n -> f (GradientStop n)
- stopFraction :: forall n f. Functor f => (n -> f n) -> GradientStop n -> f (GradientStop n)
- (===) :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a -> a -> a
- bg :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' q) => Colour Double -> QDiagram b V2 n q -> QDiagram b V2 n q
- bgFrame :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' q) => n -> Colour Double -> QDiagram b V2 n q -> QDiagram b V2 n q
- boundingRect :: (InSpace V2 n a, SameSpace a t, Enveloped t, Transformable t, TrailLike t, Monoid t, Enveloped a) => a -> t
- crop :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n -> V2 n -> QDiagram b V2 n m -> QDiagram b V2 n m
- extrudeBottom :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m
- extrudeLeft :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m
- extrudeRight :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m
- extrudeTop :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m
- hcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n -> [a] -> a
- padX :: forall (v :: Type -> Type) n m b. (Metric v, R2 v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m
- padY :: forall (v :: Type -> Type) m n b. (Metric v, R2 v, Monoid' m, OrderedField n) => n -> QDiagram b v n m -> QDiagram b v n m
- rectEnvelope :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n -> V2 n -> QDiagram b V2 n m -> QDiagram b V2 n m
- strutX :: forall (v :: Type -> Type) n b m. (Metric v, R1 v, OrderedField n) => n -> QDiagram b v n m
- strutY :: forall (v :: Type -> Type) n b m. (Metric v, R2 v, OrderedField n) => n -> QDiagram b v n m
- vcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n -> [a] -> a
- vsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n -> [a] -> a
- facingX :: forall (v :: Type -> Type) n. (R1 v, Functor v, Fractional n) => Deformation v v n
- facingY :: forall (v :: Type -> Type) n. (R2 v, Functor v, Fractional n) => Deformation v v n
- parallelX0 :: forall (v :: Type -> Type) n. (R1 v, Num n) => Deformation v v n
- parallelY0 :: forall (v :: Type -> Type) n. (R2 v, Num n) => Deformation v v n
- perspectiveX1 :: forall (v :: Type -> Type) n. (R1 v, Functor v, Fractional n) => Deformation v v n
- perspectiveY1 :: forall (v :: Type -> Type) n. (R2 v, Functor v, Floating n) => Deformation v v n
- circle :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n -> t
- ellipse :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n -> t
- ellipseXY :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n -> n -> t
- unitCircle :: (TrailLike t, V t ~ V2, N t ~ n) => t
- data External
- image :: (TypeableFloat n, Typeable a, Renderable (DImage n a) b) => DImage n a -> QDiagram b V2 n Any
- loadImageEmb :: Num n => FilePath -> IO (Either String (DImage n Embedded))
- loadImageExt :: Num n => FilePath -> IO (Either String (DImage n External))
- raster :: Num n => (Int -> Int -> AlphaColour Double) -> Int -> Int -> DImage n Embedded
- rasterDia :: (TypeableFloat n, Renderable (DImage n Embedded) b) => (Int -> Int -> AlphaColour Double) -> Int -> Int -> QDiagram b V2 n Any
- uncheckedImageRef :: Num n => FilePath -> Int -> Int -> DImage n External
- data EnvelopeOpts n = EnvelopeOpts {}
- data OriginOpts n = OriginOpts {}
- data TraceOpts n = TraceOpts {}
- eColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> EnvelopeOpts n -> f (EnvelopeOpts n)
- eLineWidth :: forall n1 n2 f. Functor f => (Measure n1 -> f (Measure n2)) -> EnvelopeOpts n1 -> f (EnvelopeOpts n2)
- ePoints :: forall n f. Functor f => (Int -> f Int) -> EnvelopeOpts n -> f (EnvelopeOpts n)
- oColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> OriginOpts n -> f (OriginOpts n)
- oMinSize :: forall n f. Functor f => (n -> f n) -> OriginOpts n -> f (OriginOpts n)
- oScale :: forall n f. Functor f => (n -> f n) -> OriginOpts n -> f (OriginOpts n)
- showEnvelope :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => QDiagram b V2 n Any -> QDiagram b V2 n Any
- showEnvelope' :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => EnvelopeOpts n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- showLabels :: (TypeableFloat n, Renderable (Text n) b, Semigroup m) => QDiagram b V2 n m -> QDiagram b V2 n Any
- showOrigin :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' m) => QDiagram b V2 n m -> QDiagram b V2 n m
- showOrigin' :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' m) => OriginOpts n -> QDiagram b V2 n m -> QDiagram b V2 n m
- showTrace :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => QDiagram b V2 n Any -> QDiagram b V2 n Any
- showTrace' :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => TraceOpts n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- tColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> TraceOpts n -> f (TraceOpts n)
- tMinSize :: forall n f. Functor f => (n -> f n) -> TraceOpts n -> f (TraceOpts n)
- tPoints :: forall n f. Functor f => (Int -> f Int) -> TraceOpts n -> f (TraceOpts n)
- tScale :: forall n f. Functor f => (n -> f n) -> TraceOpts n -> f (TraceOpts n)
- data FillRule
- data StrokeOpts a = StrokeOpts {
- _vertexNames :: [[a]]
- _queryFillRule :: FillRule
- _Clip :: forall n n' p f. (Profunctor p, Functor f) => p [Path V2 n] (f [Path V2 n']) -> p (Clip n) (f (Clip n'))
- _clip :: (Typeable n, OrderedField n) => Lens' (Style V2 n) [Path V2 n]
- _fillRule :: forall n f. Functor f => (FillRule -> f FillRule) -> Style V2 n -> f (Style V2 n)
- clipBy :: (HasStyle a, V a ~ V2, N a ~ n, TypeableFloat n) => Path V2 n -> a -> a
- clipTo :: TypeableFloat n => Path V2 n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- clipped :: TypeableFloat n => Path V2 n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
- fillRule :: HasStyle a => FillRule -> a -> a
- intersectPoints :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => t -> s -> [P2 n]
- intersectPoints' :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => n -> t -> s -> [P2 n]
- intersectPointsP :: OrderedField n => Path V2 n -> Path V2 n -> [P2 n]
- intersectPointsP' :: OrderedField n => n -> Path V2 n -> Path V2 n -> [P2 n]
- intersectPointsT :: OrderedField n => Located (Trail V2 n) -> Located (Trail V2 n) -> [P2 n]
- intersectPointsT' :: OrderedField n => n -> Located (Trail V2 n) -> Located (Trail V2 n) -> [P2 n]
- queryFillRule :: forall a f. Functor f => (FillRule -> f FillRule) -> StrokeOpts a -> f (StrokeOpts a)
- stroke :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b) => t -> QDiagram b V2 n Any
- stroke' :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> t -> QDiagram b V2 n Any
- strokeLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Line V2 n -> QDiagram b V2 n Any
- strokeLocLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Line V2 n) -> QDiagram b V2 n Any
- strokeLocLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Loop V2 n) -> QDiagram b V2 n Any
- strokeLocT :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) -> QDiagram b V2 n Any
- strokeLocTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) -> QDiagram b V2 n Any
- strokeLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Loop V2 n -> QDiagram b V2 n Any
- strokeP :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n -> QDiagram b V2 n Any
- strokeP' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Path V2 n -> QDiagram b V2 n Any
- strokePath :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n -> QDiagram b V2 n Any
- strokePath' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Path V2 n -> QDiagram b V2 n Any
- strokeT :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n -> QDiagram b V2 n Any
- strokeT' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Trail V2 n -> QDiagram b V2 n Any
- strokeTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n -> QDiagram b V2 n Any
- strokeTrail' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Trail V2 n -> QDiagram b V2 n Any
- vertexNames :: forall a a' f. Functor f => ([[a]] -> f [[a']]) -> StrokeOpts a -> f (StrokeOpts a')
- data PolyOrientation n
- data PolyType n
- data PolygonOpts n = PolygonOpts {
- _polyType :: PolyType n
- _polyOrient :: PolyOrientation n
- _polyCenter :: Point V2 n
- data StarOpts
- polyCenter :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> PolygonOpts n -> f (PolygonOpts n)
- polyOrient :: forall n f. Functor f => (PolyOrientation n -> f (PolyOrientation n)) -> PolygonOpts n -> f (PolygonOpts n)
- polyTrail :: OrderedField n => PolygonOpts n -> Located (Trail V2 n)
- polyType :: forall n f. Functor f => (PolyType n -> f (PolyType n)) -> PolygonOpts n -> f (PolygonOpts n)
- polygon :: (InSpace V2 n t, TrailLike t) => PolygonOpts n -> t
- star :: OrderedField n => StarOpts -> [Point V2 n] -> Path V2 n
- data RoundedRectOpts d = RoundedRectOpts {}
- decagon :: (InSpace V2 n t, TrailLike t) => n -> t
- dodecagon :: (InSpace V2 n t, TrailLike t) => n -> t
- eqTriangle :: (InSpace V2 n t, TrailLike t) => n -> t
- hendecagon :: (InSpace V2 n t, TrailLike t) => n -> t
- heptagon :: (InSpace V2 n t, TrailLike t) => n -> t
- hexagon :: (InSpace V2 n t, TrailLike t) => n -> t
- hrule :: (InSpace V2 n t, TrailLike t) => n -> t
- nonagon :: (InSpace V2 n t, TrailLike t) => n -> t
- octagon :: (InSpace V2 n t, TrailLike t) => n -> t
- pentagon :: (InSpace V2 n t, TrailLike t) => n -> t
- radiusBL :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d)
- radiusBR :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d)
- radiusTL :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d)
- radiusTR :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d)
- rect :: (InSpace V2 n t, TrailLike t) => n -> n -> t
- regPoly :: (InSpace V2 n t, TrailLike t) => Int -> n -> t
- roundedRect :: (InSpace V2 n t, TrailLike t, RealFloat n) => n -> n -> n -> t
- roundedRect' :: (InSpace V2 n t, TrailLike t, RealFloat n) => n -> n -> RoundedRectOpts n -> t
- septagon :: (InSpace V2 n t, TrailLike t) => n -> t
- square :: (InSpace V2 n t, TrailLike t) => n -> t
- triangle :: (InSpace V2 n t, TrailLike t) => n -> t
- unitSquare :: (InSpace V2 n t, TrailLike t) => t
- vrule :: (InSpace V2 n t, TrailLike t) => n -> t
- dims2D :: n -> n -> SizeSpec V2 n
- extentX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Enveloped a) => a -> Maybe (n, n)
- extentY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Enveloped a) => a -> Maybe (n, n)
- height :: (InSpace V2 n a, Enveloped a) => a -> n
- mkHeight :: Num n => n -> SizeSpec V2 n
- mkSizeSpec2D :: Num n => Maybe n -> Maybe n -> SizeSpec V2 n
- width :: (InSpace V2 n a, Enveloped a) => a -> n
- _font :: forall (v :: Type -> Type) n f. Functor f => (Maybe String -> f (Maybe String)) -> Style v n -> f (Style v n)
- _fontSize :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n)
- _fontSizeR :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measured n (Recommend n))
- alignedText :: (TypeableFloat n, Renderable (Text n) b) => n -> n -> String -> QDiagram b V2 n Any
- baselineText :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any
- bold :: HasStyle a => a -> a
- bolder :: HasStyle a => a -> a
- font :: HasStyle a => String -> a -> a
- fontSize :: (N a ~ n, Typeable n, HasStyle a) => Measure n -> a -> a
- fontSizeG :: (N a ~ n, Typeable n, Num n, HasStyle a) => n -> a -> a
- fontSizeL :: (N a ~ n, Typeable n, Num n, HasStyle a) => n -> a -> a
- fontSizeN :: (N a ~ n, Typeable n, Num n, HasStyle a) => n -> a -> a
- fontSizeO :: (N a ~ n, Typeable n, HasStyle a) => n -> a -> a
- heavy :: HasStyle a => a -> a
- italic :: HasStyle a => a -> a
- light :: HasStyle a => a -> a
- lighter :: HasStyle a => a -> a
- mediumWeight :: HasStyle a => a -> a
- oblique :: HasStyle a => a -> a
- semiBold :: HasStyle a => a -> a
- thinWeight :: HasStyle a => a -> a
- topLeftText :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any
- ultraBold :: HasStyle a => a -> a
- ultraLight :: HasStyle a => a -> a
- reflectAbout :: (InSpace V2 n t, OrderedField n, Transformable t) => P2 n -> Direction V2 n -> t -> t
- reflectX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Transformable t) => t -> t
- reflectXY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Transformable t) => t -> t
- reflectY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Transformable t) => t -> t
- reflectionAbout :: OrderedField n => P2 n -> Direction V2 n -> T2 n
- reflectionX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Num n) => Transformation v n
- reflectionXY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => Transformation v n
- reflectionY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => Transformation v n
- rotateAround :: (InSpace V2 n t, Transformable t, Floating n) => P2 n -> Angle n -> t -> t
- rotateBy :: (InSpace V2 n t, Transformable t, Floating n) => n -> t -> t
- rotateTo :: (InSpace V2 n t, OrderedField n, Transformable t) => Direction V2 n -> t -> t
- rotated :: (InSpace V2 n a, Floating n, SameSpace a b, Transformable a, Transformable b) => Angle n -> Iso a b a b
- rotationAround :: Floating n => P2 n -> Angle n -> T2 n
- rotationTo :: OrderedField n => Direction V2 n -> T2 n
- scaleRotateTo :: (InSpace V2 n t, Transformable t, Floating n) => V2 n -> t -> t
- scaleToX :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t
- scaleToY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t
- scaleUToX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Enveloped t, Transformable t) => n -> t -> t
- scaleUToY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t
- scaleX :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Fractional n, Transformable t) => n -> t -> t
- scaleY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Fractional n, Transformable t) => n -> t -> t
- scalingRotationTo :: Floating n => V2 n -> T2 n
- scalingX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Fractional n) => n -> Transformation v n
- scalingY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Fractional n) => n -> Transformation v n
- shearX :: (InSpace V2 n t, Transformable t) => n -> t -> t
- shearY :: (InSpace V2 n t, Transformable t) => n -> t -> t
- shearingX :: Num n => n -> T2 n
- shearingY :: Num n => n -> T2 n
- translateX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Transformable t) => n -> t -> t
- translateY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Transformable t) => n -> t -> t
- translationX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Num n) => n -> Transformation v n
- translationY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => n -> Transformation v n
- class HasR (t :: Type -> Type) where
- type P2 = Point V2
- type T2 = Transformation V2
- mkP2 :: n -> n -> P2 n
- mkR2 :: n -> n -> V2 n
- p2 :: (n, n) -> P2 n
- r2 :: (n, n) -> V2 n
- r2PolarIso :: RealFloat n => Iso' (V2 n) (n, Angle n)
- unp2 :: P2 n -> (n, n)
- unr2 :: V2 n -> (n, n)
- angleDir :: Floating n => Angle n -> Direction V2 n
- angleV :: Floating n => Angle n -> V2 n
- leftTurn :: (Num n, Ord n) => V2 n -> V2 n -> Bool
- signedAngleBetween :: RealFloat n => V2 n -> V2 n -> Angle n
- signedAngleBetweenDirs :: RealFloat n => Direction V2 n -> Direction V2 n -> Angle n
- unitX :: (R1 v, Additive v, Num n) => v n
- unitY :: (R2 v, Additive v, Num n) => v n
- unit_X :: (R1 v, Additive v, Num n) => v n
- unit_Y :: (R2 v, Additive v, Num n) => v n
- xDir :: forall (v :: Type -> Type) n. (R1 v, Additive v, Num n) => Direction v n
- yDir :: forall (v :: Type -> Type) n. (R2 v, Additive v, Num n) => Direction v n
- (#) :: a -> (a -> b) -> b
- (##) :: AReview t b -> b -> t
- applyAll :: [a -> a] -> a -> a
- findHsFile :: FilePath -> IO (Maybe FilePath)
- findSandbox :: [FilePath] -> IO (Maybe FilePath)
- foldB :: (a -> a -> a) -> a -> [a] -> a
- globalPackage :: IO FilePath
- tau :: Floating a => a
- (->>) :: Semigroup a => Active a -> Active a -> Active a
- activeEnd :: Active a -> a
- activeEra :: Active a -> Maybe (Era Rational)
- activeStart :: Active a -> a
- after :: Active a -> Active a -> Active a
- atTime :: Time Rational -> Active a -> Active a
- backwards :: Active a -> Active a
- clampAfter :: Active a -> Active a
- clampBefore :: Active a -> Active a
- discrete :: [a] -> Active a
- duration :: Num n => Era n -> Duration n
- during :: Active a -> Active a -> Active a
- end :: Era n -> Time n
- fromDuration :: Duration n -> n
- fromTime :: Time n -> n
- isConstant :: Active a -> Bool
- isDynamic :: Active a -> Bool
- mkActive :: Time Rational -> Time Rational -> (Time Rational -> a) -> Active a
- mkDynamic :: Time Rational -> Time Rational -> (Time Rational -> a) -> Dynamic a
- mkEra :: Time n -> Time n -> Era n
- modActive :: (a -> b) -> (Dynamic a -> Dynamic b) -> Active a -> Active b
- movie :: [Active a] -> Active a
- onActive :: (a -> b) -> (Dynamic a -> b) -> Active a -> b
- onDynamic :: (Time Rational -> Time Rational -> (Time Rational -> a) -> b) -> Dynamic a -> b
- runActive :: Active a -> Time Rational -> a
- setEra :: Era Rational -> Active a -> Active a
- shiftDynamic :: Duration Rational -> Dynamic a -> Dynamic a
- simulate :: Rational -> Active a -> [a]
- snapshot :: Time Rational -> Active a -> Active a
- start :: Era n -> Time n
- stretch :: Rational -> Active a -> Active a
- stretchTo :: Duration Rational -> Active a -> Active a
- toDuration :: n -> Duration n
- toTime :: n -> Time n
- trim :: Monoid a => Active a -> Active a
- trimAfter :: Monoid a => Active a -> Active a
- trimBefore :: Monoid a => Active a -> Active a
- ui :: Fractional a => Active a
- (|>>) :: Active a -> Active a -> Active a
- alphaChannel :: AlphaColour a -> a
- alphaColourConvert :: (Fractional b, Real a) => AlphaColour a -> AlphaColour b
- black :: Num a => Colour a
- blend :: (Num a, AffineSpace f) => a -> f a -> f a -> f a
- colourConvert :: (Fractional b, Real a) => Colour a -> Colour b
- dissolve :: Num a => a -> AlphaColour a -> AlphaColour a
- opaque :: Num a => Colour a -> AlphaColour a
- transparent :: Num a => AlphaColour a
- withOpacity :: Num a => Colour a -> a -> AlphaColour a
- aliceblue :: (Ord a, Floating a) => Colour a
- antiquewhite :: (Ord a, Floating a) => Colour a
- aqua :: (Ord a, Floating a) => Colour a
- aquamarine :: (Ord a, Floating a) => Colour a
- azure :: (Ord a, Floating a) => Colour a
- beige :: (Ord a, Floating a) => Colour a
- bisque :: (Ord a, Floating a) => Colour a
- blanchedalmond :: (Ord a, Floating a) => Colour a
- blue :: (Ord a, Floating a) => Colour a
- blueviolet :: (Ord a, Floating a) => Colour a
- brown :: (Ord a, Floating a) => Colour a
- burlywood :: (Ord a, Floating a) => Colour a
- cadetblue :: (Ord a, Floating a) => Colour a
- chartreuse :: (Ord a, Floating a) => Colour a
- chocolate :: (Ord a, Floating a) => Colour a
- coral :: (Ord a, Floating a) => Colour a
- cornflowerblue :: (Ord a, Floating a) => Colour a
- cornsilk :: (Ord a, Floating a) => Colour a
- crimson :: (Ord a, Floating a) => Colour a
- cyan :: (Ord a, Floating a) => Colour a
- darkblue :: (Ord a, Floating a) => Colour a
- darkcyan :: (Ord a, Floating a) => Colour a
- darkgoldenrod :: (Ord a, Floating a) => Colour a
- darkgray :: (Ord a, Floating a) => Colour a
- darkgreen :: (Ord a, Floating a) => Colour a
- darkgrey :: (Ord a, Floating a) => Colour a
- darkkhaki :: (Ord a, Floating a) => Colour a
- darkmagenta :: (Ord a, Floating a) => Colour a
- darkolivegreen :: (Ord a, Floating a) => Colour a
- darkorange :: (Ord a, Floating a) => Colour a
- darkorchid :: (Ord a, Floating a) => Colour a
- darkred :: (Ord a, Floating a) => Colour a
- darksalmon :: (Ord a, Floating a) => Colour a
- darkseagreen :: (Ord a, Floating a) => Colour a
- darkslateblue :: (Ord a, Floating a) => Colour a
- darkslategray :: (Ord a, Floating a) => Colour a
- darkslategrey :: (Ord a, Floating a) => Colour a
- darkturquoise :: (Ord a, Floating a) => Colour a
- darkviolet :: (Ord a, Floating a) => Colour a
- deeppink :: (Ord a, Floating a) => Colour a
- deepskyblue :: (Ord a, Floating a) => Colour a
- dimgray :: (Ord a, Floating a) => Colour a
- dimgrey :: (Ord a, Floating a) => Colour a
- dodgerblue :: (Ord a, Floating a) => Colour a
- firebrick :: (Ord a, Floating a) => Colour a
- floralwhite :: (Ord a, Floating a) => Colour a
- forestgreen :: (Ord a, Floating a) => Colour a
- fuchsia :: (Ord a, Floating a) => Colour a
- gainsboro :: (Ord a, Floating a) => Colour a
- ghostwhite :: (Ord a, Floating a) => Colour a
- gold :: (Ord a, Floating a) => Colour a
- goldenrod :: (Ord a, Floating a) => Colour a
- gray :: (Ord a, Floating a) => Colour a
- green :: (Ord a, Floating a) => Colour a
- greenyellow :: (Ord a, Floating a) => Colour a
- grey :: (Ord a, Floating a) => Colour a
- honeydew :: (Ord a, Floating a) => Colour a
- hotpink :: (Ord a, Floating a) => Colour a
- indianred :: (Ord a, Floating a) => Colour a
- indigo :: (Ord a, Floating a) => Colour a
- ivory :: (Ord a, Floating a) => Colour a
- khaki :: (Ord a, Floating a) => Colour a
- lavender :: (Ord a, Floating a) => Colour a
- lavenderblush :: (Ord a, Floating a) => Colour a
- lawngreen :: (Ord a, Floating a) => Colour a
- lemonchiffon :: (Ord a, Floating a) => Colour a
- lightblue :: (Ord a, Floating a) => Colour a
- lightcoral :: (Ord a, Floating a) => Colour a
- lightcyan :: (Ord a, Floating a) => Colour a
- lightgoldenrodyellow :: (Ord a, Floating a) => Colour a
- lightgray :: (Ord a, Floating a) => Colour a
- lightgreen :: (Ord a, Floating a) => Colour a
- lightgrey :: (Ord a, Floating a) => Colour a
- lightpink :: (Ord a, Floating a) => Colour a
- lightsalmon :: (Ord a, Floating a) => Colour a
- lightseagreen :: (Ord a, Floating a) => Colour a
- lightskyblue :: (Ord a, Floating a) => Colour a
- lightslategray :: (Ord a, Floating a) => Colour a
- lightslategrey :: (Ord a, Floating a) => Colour a
- lightsteelblue :: (Ord a, Floating a) => Colour a
- lightyellow :: (Ord a, Floating a) => Colour a
- lime :: (Ord a, Floating a) => Colour a
- limegreen :: (Ord a, Floating a) => Colour a
- linen :: (Ord a, Floating a) => Colour a
- magenta :: (Ord a, Floating a) => Colour a
- maroon :: (Ord a, Floating a) => Colour a
- mediumaquamarine :: (Ord a, Floating a) => Colour a
- mediumblue :: (Ord a, Floating a) => Colour a
- mediumorchid :: (Ord a, Floating a) => Colour a
- mediumpurple :: (Ord a, Floating a) => Colour a
- mediumseagreen :: (Ord a, Floating a) => Colour a
- mediumslateblue :: (Ord a, Floating a) => Colour a
- mediumspringgreen :: (Ord a, Floating a) => Colour a
- mediumturquoise :: (Ord a, Floating a) => Colour a
- mediumvioletred :: (Ord a, Floating a) => Colour a
- midnightblue :: (Ord a, Floating a) => Colour a
- mintcream :: (Ord a, Floating a) => Colour a
- mistyrose :: (Ord a, Floating a) => Colour a
- moccasin :: (Ord a, Floating a) => Colour a
- navajowhite :: (Ord a, Floating a) => Colour a
- navy :: (Ord a, Floating a) => Colour a
- oldlace :: (Ord a, Floating a) => Colour a
- olive :: (Ord a, Floating a) => Colour a
- olivedrab :: (Ord a, Floating a) => Colour a
- orange :: (Ord a, Floating a) => Colour a
- orangered :: (Ord a, Floating a) => Colour a
- orchid :: (Ord a, Floating a) => Colour a
- palegoldenrod :: (Ord a, Floating a) => Colour a
- palegreen :: (Ord a, Floating a) => Colour a
- paleturquoise :: (Ord a, Floating a) => Colour a
- palevioletred :: (Ord a, Floating a) => Colour a
- papayawhip :: (Ord a, Floating a) => Colour a
- peachpuff :: (Ord a, Floating a) => Colour a
- peru :: (Ord a, Floating a) => Colour a
- pink :: (Ord a, Floating a) => Colour a
- plum :: (Ord a, Floating a) => Colour a
- powderblue :: (Ord a, Floating a) => Colour a
- purple :: (Ord a, Floating a) => Colour a
- readColourName :: (MonadFail m, Monad m, Ord a, Floating a) => String -> m (Colour a)
- red :: (Ord a, Floating a) => Colour a
- rosybrown :: (Ord a, Floating a) => Colour a
- royalblue :: (Ord a, Floating a) => Colour a
- saddlebrown :: (Ord a, Floating a) => Colour a
- salmon :: (Ord a, Floating a) => Colour a
- sandybrown :: (Ord a, Floating a) => Colour a
- seagreen :: (Ord a, Floating a) => Colour a
- seashell :: (Ord a, Floating a) => Colour a
- sienna :: (Ord a, Floating a) => Colour a
- silver :: (Ord a, Floating a) => Colour a
- skyblue :: (Ord a, Floating a) => Colour a
- slateblue :: (Ord a, Floating a) => Colour a
- slategray :: (Ord a, Floating a) => Colour a
- slategrey :: (Ord a, Floating a) => Colour a
- snow :: (Ord a, Floating a) => Colour a
- springgreen :: (Ord a, Floating a) => Colour a
- steelblue :: (Ord a, Floating a) => Colour a
- teal :: (Ord a, Floating a) => Colour a
- thistle :: (Ord a, Floating a) => Colour a
- tomato :: (Ord a, Floating a) => Colour a
- turquoise :: (Ord a, Floating a) => Colour a
- violet :: (Ord a, Floating a) => Colour a
- wheat :: (Ord a, Floating a) => Colour a
- white :: (Ord a, Floating a) => Colour a
- whitesmoke :: (Ord a, Floating a) => Colour a
- yellow :: (Ord a, Floating a) => Colour a
- yellowgreen :: (Ord a, Floating a) => Colour a
- sRGB :: (Ord b, Floating b) => b -> b -> b -> Colour b
- sRGB24 :: (Ord b, Floating b) => Word8 -> Word8 -> Word8 -> Colour b
- sRGB24read :: (Ord b, Floating b) => String -> Colour b
- sRGB24reads :: (Ord b, Floating b) => ReadS (Colour b)
- sRGB24show :: (RealFrac b, Floating b) => Colour b -> String
- sRGB24shows :: (RealFrac b, Floating b) => Colour b -> ShowS
- sRGBBounded :: (Ord b, Floating b, Integral a, Bounded a) => a -> a -> a -> Colour b
- sRGBSpace :: (Ord a, Floating a) => RGBSpace a
- toSRGB :: (Ord b, Floating b) => Colour b -> RGB b
- toSRGB24 :: (RealFrac b, Floating b) => Colour b -> RGB Word8
- toSRGBBounded :: (RealFrac b, Floating b, Integral a, Bounded a) => Colour b -> RGB a
- renderDiaT :: forall b (v :: Type -> Type) n m. (Backend b v n, HasLinearMap v, Metric v, Typeable n, OrderedField n, Monoid' m) => b -> Options b v n -> QDiagram b v n m -> (Transformation v n, Result b v n)
- appEnvelope :: Envelope v n -> Maybe (v n -> n)
- diameter :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> n
- envelopeP :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> Point v n
- envelopePMay :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> Maybe (Point v n)
- envelopeV :: Enveloped a => Vn a -> a -> Vn a
- envelopeVMay :: Enveloped a => Vn a -> a -> Maybe (Vn a)
- mkEnvelope :: (v n -> n) -> Envelope v n
- onEnvelope :: ((v n -> n) -> v n -> n) -> Envelope v n -> Envelope v n
- radius :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> n
- moveOriginBy :: (V t ~ v, N t ~ n, HasOrigin t) => v n -> t -> t
- moveTo :: forall (v :: Type -> Type) n t. (InSpace v n t, HasOrigin t) => Point v n -> t -> t
- place :: forall (v :: Type -> Type) n t. (InSpace v n t, HasOrigin t) => t -> Point v n -> t
- juxtaposeDefault :: (Enveloped a, HasOrigin a) => Vn a -> a -> a -> a
- atLeast :: Ord n => Measure n -> Measure n -> Measure n
- fromMeasured :: Num n => n -> n -> Measured n a -> a
- global :: Num n => n -> Measure n
- normalized :: Num n => n -> Measure n
- output :: n -> Measure n
- scaleLocal :: Num n => n -> Measured n a -> Measured n a
- (.>) :: (IsName a1, IsName a2) => a1 -> a2 -> Name
- eachName :: (Typeable a, Ord a, Show a) => Traversal' Name a
- (*.) :: forall (v :: Type -> Type) n. (Functor v, Num n) => n -> Point v n -> Point v n
- applyAttr :: (AttributeClass a, HasStyle d) => a -> d -> d
- applyMAttr :: (AttributeClass a, N d ~ n, HasStyle d) => Measured n a -> d -> d
- applyTAttr :: (AttributeClass a, Transformable a, V a ~ V d, N a ~ N d, HasStyle d) => a -> d -> d
- atAttr :: forall a (v :: Type -> Type) n. AttributeClass a => Lens' (Style v n) (Maybe a)
- atMAttr :: forall a n (v :: Type -> Type). (AttributeClass a, Typeable n) => Lens' (Style v n) (Maybe (Measured n a))
- atTAttr :: forall a (v :: Type -> Type) n. (V a ~ v, N a ~ n, AttributeClass a, Transformable a) => Lens' (Style v n) (Maybe a)
- getSortedList :: SortedList a -> [a]
- maxRayTraceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n)
- maxRayTraceV :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (V a n)
- maxTraceP :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n)
- maxTraceV :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (V a n)
- mkSortedList :: Ord a => [a] -> SortedList a
- mkTrace :: (Point v n -> v n -> SortedList n) -> Trace v n
- rayTraceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n)
- rayTraceV :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (V a n)
- traceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n)
- traceV :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (V a n)
- (<->) :: (u -> v) -> (v -> u) -> u :-: v
- avgScale :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Floating n) => Transformation v n -> n
- determinant :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Num n) => Transformation v n -> n
- dimension :: (Additive (V a), Traversable (V a)) => a -> Int
- dropTransl :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Transformation v n
- eye :: (HasBasis v, Num n) => v (v n)
- fromLinear :: (Additive v, Num n) => (v n :-: v n) -> (v n :-: v n) -> Transformation v n
- inv :: forall (v :: Type -> Type) n. (Functor v, Num n) => Transformation v n -> Transformation v n
- isReflection :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Num n, Ord n) => Transformation v n -> Bool
- lapp :: (u :-: v) -> u -> v
- linv :: (u :-: v) -> v :-: u
- papply :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Point v n -> Point v n
- scaling :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => n -> Transformation v n
- transl :: Transformation v n -> v n
- translation :: v n -> Transformation v n
- transp :: Transformation v n -> v n :-: v n
- atop :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Semigroup m) => QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m
- envelope :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => Lens' (QDiagram b v n m) (Envelope v n)
- fromNames :: forall a b (v :: Type -> Type) n m. IsName a => [(a, Subdiagram b v n m)] -> SubMap b v n m
- getSub :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Subdiagram b v n m -> QDiagram b v n m
- groupOpacity :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Double -> QDiagram b v n m -> QDiagram b v n m
- href :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => String -> QDiagram b v n m -> QDiagram b v n m
- localize :: forall b (v :: Type -> Type) n m. (Metric v, OrderedField n, Semigroup m) => QDiagram b v n m -> QDiagram b v n m
- lookupSub :: forall nm b (v :: Type -> Type) n m. IsName nm => nm -> SubMap b v n m -> Maybe [Subdiagram b v n m]
- mkQD :: forall b (v :: Type -> Type) n m. Prim b v n -> Envelope v n -> Trace v n -> SubMap b v n m -> Query v n m -> QDiagram b v n m
- mkSubdiagram :: forall b (v :: Type -> Type) n m. QDiagram b v n m -> Subdiagram b v n m
- nameSub :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => (QDiagram b v n m -> Subdiagram b v n m) -> nm -> QDiagram b v n m -> QDiagram b v n m
- names :: forall (v :: Type -> Type) m n b. (Metric v, Semigroup m, OrderedField n) => QDiagram b v n m -> [(Name, [Point v n])]
- opacityGroup :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Double -> QDiagram b v n m -> QDiagram b v n m
- pointDiagram :: forall (v :: Type -> Type) n b m. (Metric v, Fractional n) => Point v n -> QDiagram b v n m
- query :: forall m b (v :: Type -> Type) n. Monoid m => QDiagram b v n m -> Query v n m
- rawSub :: forall b (v :: Type -> Type) n m. Subdiagram b v n m -> QDiagram b v n m
- rememberAs :: forall a b (v :: Type -> Type) n m. IsName a => a -> QDiagram b v n m -> SubMap b v n m -> SubMap b v n m
- setEnvelope :: forall b (v :: Type -> Type) n m. (OrderedField n, Metric v, Monoid' m) => Envelope v n -> QDiagram b v n m -> QDiagram b v n m
- setTrace :: forall b (v :: Type -> Type) n m. (OrderedField n, Metric v, Semigroup m) => Trace v n -> QDiagram b v n m -> QDiagram b v n m
- subMap :: forall (v :: Type -> Type) m n b. (Metric v, Semigroup m, OrderedField n) => Lens' (QDiagram b v n m) (SubMap b v n m)
- subPoint :: forall (v :: Type -> Type) n b m. (Metric v, OrderedField n) => Point v n -> Subdiagram b v n m
- withName :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> (Subdiagram b v n m -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m
- withNameAll :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> ([Subdiagram b v n m] -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m
- withNames :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => [nm] -> ([Subdiagram b v n m] -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m
- iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b]
- ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a)
- ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b
- ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b
- iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m ()
- ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f ()
- imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m ()
- inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool
- itoList :: FoldableWithIndex i f => f a -> [(i, a)]
- itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f ()
- ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b)
- iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b)
- imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b)
- imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b)
- iat :: At m => Index m -> IndexedLens' (Index m) m (Maybe (IxValue m))
- icontains :: Contains m => Index m -> IndexedLens' (Index m) m Bool
- iix :: Ixed m => Index m -> IndexedTraversal' (Index m) m (IxValue m)
- ixAt :: At m => Index m -> Traversal' m (IxValue m)
- sans :: At m => Index m -> m -> m
- (<<<|=) :: (MonadState s m, Cons b b a a) => LensLike ((,) b) s s b b -> a -> m b
- (<<<|~) :: Cons b b a a => LensLike' ((,) b) s b -> a -> s -> (b, s)
- (<<|=) :: (MonadState s m, Cons b b a a) => LensLike ((,) b) s s b b -> a -> m b
- (<<|>=) :: (MonadState s m, Snoc b b p p) => LensLike ((,) b) s s b b -> p -> m b
- (<<|>~) :: Snoc b b p p => LensLike' ((,) b) s b -> p -> s -> (b, s)
- (<<|~) :: Cons b b a a => LensLike ((,) b) s t b b -> a -> s -> (b, t)
- (<|=) :: (MonadState s m, Cons b b a a) => ASetter s s b b -> a -> m ()
- (<|>=) :: (MonadState s m, Snoc b b p p) => LensLike ((,) b) s s b b -> p -> m b
- (<|>~) :: Snoc b b p p => LensLike ((,) b) s t b b -> p -> s -> (b, t)
- (<|~) :: Cons b b a a => ASetter s t b b -> a -> s -> t
- _head :: Cons s s a a => Traversal' s a
- _init :: Snoc s s a a => Traversal' s s
- _last :: Snoc s s a a => Traversal' s a
- _tail :: Cons s s a a => Traversal' s s
- (|>=) :: (MonadState s m, Snoc b b a a) => ASetter s s b b -> a -> m ()
- (|>~) :: Snoc b b a a => ASetter s t b b -> a -> s -> t
- cloneEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Equality s t a b
- equality :: forall {k1} {k2} (s :: k1) (a :: k1) (b :: k2) (t :: k2). (s :~: a) -> (b :~: t) -> Equality s t a b
- equality' :: forall {k2} (a :: k2) (b :: k2). (a :~: b) -> Equality' a b
- fromEq :: forall {k2} {k1} (s :: k2) (t :: k1) (a :: k2) (b :: k1). AnEquality s t a b -> Equality b a t s
- fromLeibniz :: forall {k1} {k2} (a :: k1) (b :: k2) (s :: k1) (t :: k2). (Identical a b a b -> Identical a b s t) -> Equality s t a b
- fromLeibniz' :: forall {k2} (s :: k2) (a :: k2). ((s :~: s) -> s :~: a) -> Equality' s a
- mapEq :: forall k1 k2 (s :: k1) (t :: k2) (a :: k1) (b :: k2) f. AnEquality s t a b -> f s -> f a
- overEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p a b -> p s t
- runEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Identical s t a b
- simple :: forall {k2} (a :: k2) k3 p (f :: k2 -> k3). p a (f a) -> p a (f a)
- simply :: forall {k} {k1} p (f :: k -> k1) (s :: k) (a :: k) r. (Optic' p f s a -> r) -> Optic' p f s a -> r
- substEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) r. AnEquality s t a b -> ((s ~ a, t ~ b) => r) -> r
- underEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p t s -> p b a
- withEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) r. AnEquality s t a b -> ((s :~: a) -> (b :~: t) -> r) -> r
- (^..) :: s -> Getting (Endo [a]) s a -> [a]
- (^?) :: s -> Getting (First a) s a -> Maybe a
- (^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a
- (^@..) :: s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)]
- (^@?) :: s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a)
- (^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a)
- allOf :: Getting All s a -> (a -> Bool) -> s -> Bool
- altOf :: Applicative f => Getting (Alt f a) s a -> s -> f a
- andOf :: Getting All s Bool -> s -> Bool
- anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a
- concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r]
- concatOf :: Getting [r] s [r] -> s -> [r]
- cycled :: Apply f => LensLike f s t a b -> LensLike f s t a b
- droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i
- elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i]
- elemOf :: Eq a => Getting Any s a -> a -> s -> Bool
- filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a
- filteredBy :: (Indexable i p, Applicative f) => Getting (First i) a i -> p a (f a) -> a -> f a
- findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i
- findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i]
- findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a)
- findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a
- first1Of :: Getting (First a) s a -> s -> a
- firstOf :: Getting (Leftmost a) s a -> s -> Maybe a
- foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a
- foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
- foldMapOf :: Getting r s a -> (a -> r) -> s -> r
- foldOf :: Getting a s a -> s -> a
- folded :: forall (f :: Type -> Type) a. Foldable f => IndexedFold Int (f a) a
- folded64 :: forall (f :: Type -> Type) a. Foldable f => IndexedFold Int64 (f a) a
- folding :: Foldable f => (s -> f a) -> Fold s a
- foldl1Of :: HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldl1Of' :: HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a
- foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r
- foldlOf :: Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldr1Of :: HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a
- foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a
- foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r
- foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r
- foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r
- foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b
- for1Of_ :: Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f ()
- forMOf_ :: Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m ()
- forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f ()
- has :: Getting Any s a -> s -> Bool
- hasn't :: Getting All s a -> s -> Bool
- iallOf :: IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool
- ianyOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r]
- idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- ifiltered :: (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a
- ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a)
- ifindOf :: IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a
- ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m
- ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b
- ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r
- ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r
- ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r
- ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r
- ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b
- iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m ()
- iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f ()
- imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m ()
- inoneOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool
- ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a))
- ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a))
- ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r)
- itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s)) :: Type -> Type) s a -> Optical' p q f s a
- iterated :: Apply f => (a -> a) -> LensLike' f a a
- itoListOf :: IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)]
- itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f ()
- last1Of :: Getting (Last a) s a -> s -> a
- lastOf :: Getting (Rightmost a) s a -> s -> Maybe a
- lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int
- lined :: forall (f :: Type -> Type). Applicative f => IndexedLensLike' Int f String String
- lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v
- mapMOf_ :: Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m ()
- maximum1Of :: Ord a => Getting (Max a) s a -> s -> a
- maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- minimum1Of :: Ord a => Getting (Min a) s a -> s -> a
- minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a
- notElemOf :: Eq a => Getting All s a -> a -> s -> Bool
- notNullOf :: Getting Any s a -> s -> Bool
- nullOf :: Getting All s a -> s -> Bool
- orOf :: Getting Any s Bool -> s -> Bool
- pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a)
- preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a)
- preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a)
- previews :: MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- repeated :: Apply f => LensLike' f a a
- replicated :: Int -> Fold a a
- sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f ()
- sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f ()
- sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m ()
- sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a
- toListOf :: Getting (Endo [a]) s a -> s -> [a]
- toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a
- traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f ()
- traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f ()
- unfolded :: (b -> Maybe (a, b)) -> Fold b a
- worded :: forall (f :: Type -> Type). Applicative f => IndexedLensLike' Int f String String
- (^.) :: s -> Getting a s a -> a
- (^@.) :: s -> IndexedGetting i (i, a) s a -> (i, a)
- getting :: (Profunctor p, Profunctor q, Functor f, Contravariant f) => Optical p q f s t a b -> Optical' p q f s a
- ilike :: (Indexable i p, Contravariant f, Functor f) => i -> a -> Over' p f s a
- ilistening :: MonadWriter w m => IndexedGetting i (i, u) w u -> m a -> m (a, (i, u))
- ilistenings :: MonadWriter w m => IndexedGetting i v w u -> (i -> u -> v) -> m a -> m (a, v)
- ito :: (Indexable i p, Contravariant f) => (s -> (i, a)) -> Over' p f s a
- iuse :: MonadState s m => IndexedGetting i (i, a) s a -> m (i, a)
- iuses :: MonadState s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- iview :: MonadReader s m => IndexedGetting i (i, a) s a -> m (i, a)
- iviews :: MonadReader s m => IndexedGetting i r s a -> (i -> a -> r) -> m r
- like :: (Profunctor p, Contravariant f, Functor f) => a -> Optic' p f s a
- listening :: MonadWriter w m => Getting u w u -> m a -> m (a, u)
- listenings :: MonadWriter w m => Getting v w u -> (u -> v) -> m a -> m (a, v)
- use :: MonadState s m => Getting a s a -> m a
- uses :: MonadState s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- view :: MonadReader s m => Getting a s a -> m a
- views :: MonadReader s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r
- (<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r
- icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r
- ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r
- ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r
- ifolded :: forall i (f :: Type -> Type) a. FoldableWithIndex i f => IndexedFold i (f a) a
- imapped :: forall i (f :: Type -> Type) a b. FunctorWithIndex i f => IndexedSetter i (f a) (f b) a b
- itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b)
- itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t
- itraversed :: forall i (t :: Type -> Type) a b. TraversableWithIndex i t => IndexedTraversal i (t a) (t b) a b
- reindexed :: Indexable j p => (i -> j) -> (Indexed i a b -> r) -> p a b -> r
- selfIndex :: Indexable a p => p a fb -> a -> fb
- asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s)
- indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t
- indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t
- withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t)
- makeClassyPrisms :: Name -> DecsQ
- makePrisms :: Name -> DecsQ
- retagged :: (Profunctor p, Bifunctor p) => p a b -> p s b
- pattern Reversed :: Reversing t => t -> t
- pattern Swapped :: Swap p => p b a -> p a b
- anon :: a -> (a -> Bool) -> Iso' (Maybe a) a
- au :: Functor f => AnIso s t a b -> ((b -> t) -> f s) -> f a
- auf :: (Functor f, Functor g) => AnIso s t a b -> (f t -> g s) -> f b -> g a
- bimapping :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b s' t' a' b'. (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b')
- cloneIso :: AnIso s t a b -> Iso s t a b
- coerced :: forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
- contramapping :: forall (f :: Type -> Type) s t a b. Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t)
- curried :: forall a b c d e f1 p f2. (Profunctor p, Functor f2) => p (a -> b -> c) (f2 (d -> e -> f1)) -> p ((a, b) -> c) (f2 ((d, e) -> f1))
- dimapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b s' t' a' b'. (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b')
- enum :: Enum a => Iso' Int a
- firsting :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y)
- flipped :: forall a b c a' b' c' p f. (Profunctor p, Functor f) => p (b -> a -> c) (f (b' -> a' -> c')) -> p (a -> b -> c) (f (a' -> b' -> c'))
- imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c)
- involuted :: (a -> a) -> Iso' a a
- iso :: (s -> a) -> (b -> t) -> Iso s t a b
- lmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y)
- magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c)
- mapping :: forall (f :: Type -> Type) (g :: Type -> Type) s t a b. (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b)
- non :: Eq a => a -> Iso' (Maybe a) a
- non' :: APrism' a () -> Iso' (Maybe a) a
- reversed :: Reversing a => Iso' a a
- rmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b)
- seconding :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b)
- swapped :: forall (p :: Type -> Type -> Type) a b c d. Swap p => Iso (p a b) (p c d) (p b a) (p d c)
- uncurried :: forall a b c d e f1 p f2. (Profunctor p, Functor f2) => p ((a, b) -> c) (f2 ((d, e) -> f1)) -> p (a -> b -> c) (f2 (d -> e -> f1))
- under :: AnIso s t a b -> (t -> s) -> b -> a
- withIso :: AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
- xplat :: forall {k2} s g (t :: k2) a (b :: k2). Optic (Costar ((->) s)) g s t a b -> ((s -> a) -> g b) -> g t
- xplatf :: forall {k} {k2} f g (s :: k) (t :: k2) (a :: k) (b :: k2). Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t
- (#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r
- (#%%~) :: Functor f => ALens s t a b -> (a -> f b) -> s -> f t
- (#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m ()
- (#%~) :: ALens s t a b -> (a -> b) -> s -> t
- (#=) :: MonadState s m => ALens s s a b -> b -> m ()
- (#~) :: ALens s t a b -> b -> s -> t
- (%%=) :: forall {k} s m p r (a :: k) b. MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r
- (%%@=) :: MonadState s m => Over (Indexed i) ((,) r) s s a b -> (i -> a -> (r, b)) -> m r
- (%%@~) :: forall {k1} i f s (t :: k1) a (b :: k1). Over (Indexed i) f s t a b -> (i -> a -> f b) -> s -> f t
- (%%~) :: forall {k} f s (t :: k) a (b :: k). LensLike f s t a b -> (a -> f b) -> s -> f t
- (&~) :: s -> State s a -> s
- (<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b
- (<#%~) :: ALens s t a b -> (a -> b) -> s -> (b, t)
- (<#=) :: MonadState s m => ALens s s a b -> b -> m b
- (<#~) :: ALens s t a b -> b -> s -> (b, t)
- (<%=) :: MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b
- (<%@=) :: MonadState s m => Over (Indexed i) ((,) b) s s a b -> (i -> a -> b) -> m b
- (<%@~) :: Over (Indexed i) ((,) b) s t a b -> (i -> a -> b) -> s -> (b, t)
- (<%~) :: LensLike ((,) b) s t a b -> (a -> b) -> s -> (b, t)
- (<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<&&~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<**~) :: Floating a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<*~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<+~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<-~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<//~) :: Fractional a => LensLike ((,) a) s t a a -> a -> s -> (a, t)
- (<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a
- (<<%@=) :: MonadState s m => Over (Indexed i) ((,) a) s s a b -> (i -> a -> b) -> m a
- (<<%@~) :: Over (Indexed i) ((,) a) s t a b -> (i -> a -> b) -> s -> (a, t)
- (<<%~) :: LensLike ((,) a) s t a b -> (a -> b) -> s -> (a, t)
- (<<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<&&~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<<**~) :: Floating a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<*~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<+~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<-~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a
- (<<.~) :: LensLike ((,) a) s t a b -> b -> s -> (a, t)
- (<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<<//~) :: Fractional a => LensLike' ((,) a) s a -> a -> s -> (a, s)
- (<<<>:=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r
- (<<<>:~) :: Semigroup m => LensLike' ((,) m) s m -> m -> s -> (m, s)
- (<<<>=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r
- (<<<>~) :: Semigroup r => LensLike' ((,) r) s r -> r -> s -> (r, s)
- (<<>:=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r
- (<<>:~) :: Semigroup m => LensLike ((,) m) s t m m -> m -> s -> (m, t)
- (<<>=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r
- (<<>~) :: Semigroup m => LensLike ((,) m) s t m m -> m -> s -> (m, t)
- (<<?=) :: MonadState s m => LensLike ((,) a) s s a (Maybe b) -> b -> m a
- (<<?~) :: LensLike ((,) a) s t a (Maybe b) -> b -> s -> (a, t)
- (<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<^^~) :: (Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<^~) :: (Num a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s)
- (<<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<||~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s)
- (<<~) :: MonadState s m => ALens s s a b -> m b -> m b
- (<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<^^~) :: (Fractional a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<^~) :: (Num a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t)
- (<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<||~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t)
- (??) :: Functor f => f (a -> b) -> a -> f b
- (^#) :: s -> ALens s t a b -> a
- alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b')
- choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b
- chosen :: forall a b p f. (Conjoined p, Functor f) => p a (f b) -> p (Either a a) (f (Either b b))
- cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a b
- cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b
- cloneLens :: ALens s t a b -> Lens s t a b
- devoid :: forall {k} p f (a :: k) b. Over p f Void Void a b
- fusing :: Functor f => LensLike (Yoneda f) s t a b -> LensLike f s t a b
- head1 :: forall (t :: Type -> Type) a. Traversable1 t => Lens' (t a) a
- ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b
- iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b
- last1 :: forall (t :: Type -> Type) a. Traversable1 t => Lens' (t a) a
- locus :: forall (p :: Type -> Type -> Type -> Type) a c s b. IndexedComonadStore p => Lens (p a c s) (p b c s) a b
- overA :: Arrow ar => LensLike (Context a b) s t a b -> ar a b -> ar s t
- storing :: ALens s t a b -> b -> s -> t
- united :: forall a f. Functor f => (() -> f ()) -> a -> f a
- withLens :: ALens s t a b -> ((s -> a) -> (s -> b -> t) -> r) -> r
- ilevels :: forall (f :: Type -> Type) i s t a b j. Applicative f => Traversing (Indexed i) f s t a b -> IndexedLensLike Int f s t (Level i a) (Level j b)
- composOpFold :: Plated a => b -> (b -> b -> b) -> (a -> b) -> a -> b
- contexts :: Plated a => a -> [Context a a a]
- contextsOf :: ATraversal' a a -> a -> [Context a a a]
- contextsOn :: Plated a => ATraversal s t a a -> s -> [Context a a t]
- contextsOnOf :: ATraversal s t a a -> ATraversal' a a -> s -> [Context a a t]
- cosmos :: Plated a => Fold a a
- cosmosOf :: (Applicative f, Contravariant f) => LensLike' f a a -> LensLike' f a a
- cosmosOn :: (Applicative f, Contravariant f, Plated a) => LensLike' f s a -> LensLike' f s a
- cosmosOnOf :: (Applicative f, Contravariant f) => LensLike' f s a -> LensLike' f a a -> LensLike' f s a
- deep :: (Conjoined p, Applicative f, Plated s) => Traversing p f s s a b -> Over p f s s a b
- gplate :: (Generic a, GPlated a (Rep a)) => Traversal' a a
- gplate1 :: forall {k} (f :: k -> Type) (a :: k). (Generic1 f, GPlated1 f (Rep1 f)) => Traversal' (f a) (f a)
- holes :: Plated a => a -> [Pretext (->) a a a]
- holesOn :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- holesOnOf :: Conjoined p => LensLike (Bazaar p r r) s t a b -> Over p (Bazaar p r r) a b r r -> s -> [Pretext p r r t]
- para :: Plated a => (a -> [r] -> r) -> a -> r
- paraOf :: Getting (Endo [a]) a a -> (a -> [r] -> r) -> a -> r
- parts :: Plated a => Lens' a [a]
- rewrite :: Plated a => (a -> Maybe a) -> a -> a
- rewriteM :: (Monad m, Plated a) => (a -> m (Maybe a)) -> a -> m a
- rewriteMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> a -> m b
- rewriteMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m (Maybe a)) -> s -> m t
- rewriteMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> s -> m t
- rewriteOf :: ASetter a b a b -> (b -> Maybe a) -> a -> b
- rewriteOn :: Plated a => ASetter s t a a -> (a -> Maybe a) -> s -> t
- rewriteOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> Maybe a) -> s -> t
- transformM :: (Monad m, Plated a) => (a -> m a) -> a -> m a
- transformMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m b) -> a -> m b
- transformMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m a) -> s -> m t
- transformMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m b) -> s -> m t
- transformOf :: ASetter a b a b -> (b -> b) -> a -> b
- transformOn :: Plated a => ASetter s t a a -> (a -> a) -> s -> t
- transformOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> b) -> s -> t
- universe :: Plated a => a -> [a]
- universeOf :: Getting (Endo [a]) a a -> a -> [a]
- universeOn :: Plated a => Getting (Endo [a]) s a -> s -> [a]
- universeOnOf :: Getting (Endo [a]) s a -> Getting (Endo [a]) a a -> s -> [a]
- _Just :: forall a b p f. (Choice p, Applicative f) => p a (f b) -> p (Maybe a) (f (Maybe b))
- _Left :: forall a c b p f. (Choice p, Applicative f) => p a (f b) -> p (Either a c) (f (Either b c))
- _Nothing :: forall a p f. (Choice p, Applicative f) => p () (f ()) -> p (Maybe a) (f (Maybe a))
- _Right :: forall c a b p f. (Choice p, Applicative f) => p a (f b) -> p (Either c a) (f (Either c b))
- _Show :: (Read a, Show a) => Prism' String a
- _Void :: forall s a p f. (Choice p, Applicative f) => p a (f Void) -> p s (f s)
- aside :: APrism s t a b -> Prism (e, s) (e, t) (e, a) (e, b)
- below :: forall (f :: Type -> Type) s a. Traversable f => APrism' s a -> Prism' (f s) (f a)
- clonePrism :: APrism s t a b -> Prism s t a b
- isn't :: APrism s t a b -> s -> Bool
- matching :: APrism s t a b -> s -> Either t a
- matching' :: LensLike (Either a) s t a b -> s -> Either t a
- nearly :: a -> (a -> Bool) -> Prism' a ()
- only :: Eq a => a -> Prism' a ()
- prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
- prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b
- withPrism :: APrism s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r
- without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d)
- re :: AReview t b -> Getter b t
- reuse :: MonadState b m => AReview t b -> m t
- reuses :: MonadState b m => AReview t b -> (t -> r) -> m r
- review :: MonadReader b m => AReview t b -> m t
- reviewing :: (Bifunctor p, Functor f) => Optic (Tagged :: Type -> Type -> Type) Identity s t a b -> Optic' p f t b
- reviews :: MonadReader b m => AReview t b -> (t -> r) -> m r
- un :: (Profunctor p, Bifunctor p, Functor f) => Getting a s a -> Optic' p f a s
- unto :: (Profunctor p, Bifunctor p, Functor f) => (b -> t) -> Optic p f s t a b
- (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- (%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- (%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- (%~) :: ASetter s t a b -> (a -> b) -> s -> t
- (&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (&&~) :: ASetter s t Bool Bool -> Bool -> s -> t
- (**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m ()
- (**~) :: Floating a => ASetter s t a a -> a -> s -> t
- (*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (*~) :: Num a => ASetter s t a a -> a -> s -> t
- (+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (+~) :: Num a => ASetter s t a a -> a -> s -> t
- (-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m ()
- (-~) :: Num a => ASetter s t a a -> a -> s -> t
- (.=) :: MonadState s m => ASetter s s a b -> b -> m ()
- (.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m ()
- (.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- (.~) :: ASetter s t a b -> b -> s -> t
- (//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m ()
- (//~) :: Fractional a => ASetter s t a a -> a -> s -> t
- (<.=) :: MonadState s m => ASetter s s a b -> b -> m b
- (<.~) :: ASetter s t a b -> b -> s -> (b, t)
- (<>:=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m ()
- (<>:~) :: Semigroup b => ASetter s t b b -> b -> s -> t
- (<>=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m ()
- (<>~) :: Semigroup a => ASetter s t a a -> a -> s -> t
- (<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b
- (<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t)
- (<~) :: MonadState s m => ASetter s s a b -> m b -> m ()
- (?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m ()
- (?~) :: ASetter s t a (Maybe b) -> b -> s -> t
- (^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()
- (^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m ()
- (^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t
- (^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t
- assign :: MonadState s m => ASetter s s a b -> b -> m ()
- assignA :: Arrow p => ASetter s t a b -> p s b -> p s t
- censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a
- cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b
- cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b
- cloneSetter :: ASetter s t a b -> Setter s t a b
- contramapped :: forall (f :: Type -> Type) b a. Contravariant f => Setter (f b) (f a) a b
- icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a
- ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r
- imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()
- iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t
- ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a
- iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t
- isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b
- lifted :: forall (m :: Type -> Type) a b. Monad m => Setter (m a) (m b) a b
- locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r
- mapOf :: ASetter s t a b -> (a -> b) -> s -> t
- mapped :: forall (f :: Type -> Type) a b. Functor f => Setter (f a) (f b) a b
- modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
- over :: ASetter s t a b -> (a -> b) -> s -> t
- passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a
- scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m ()
- set :: ASetter s t a b -> b -> s -> t
- set' :: ASetter' s a -> a -> s -> s
- sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b
- setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b
- (||=) :: MonadState s m => ASetter' s Bool -> Bool -> m ()
- (||~) :: ASetter s t Bool Bool -> Bool -> s -> t
- abbreviatedFields :: LensRules
- abbreviatedNamer :: FieldNamer
- camelCaseFields :: LensRules
- camelCaseNamer :: FieldNamer
- classIdFields :: LensRules
- classIdNamer :: FieldNamer
- classUnderscoreNoPrefixFields :: LensRules
- classUnderscoreNoPrefixNamer :: FieldNamer
- classyRules :: LensRules
- classyRules_ :: LensRules
- createClass :: Lens' LensRules Bool
- declareClassy :: DecsQ -> DecsQ
- declareClassyFor :: [(String, (String, String))] -> [(String, String)] -> DecsQ -> DecsQ
- declareFields :: DecsQ -> DecsQ
- declareLenses :: DecsQ -> DecsQ
- declareLensesFor :: [(String, String)] -> DecsQ -> DecsQ
- declareLensesWith :: LensRules -> DecsQ -> DecsQ
- declarePrisms :: DecsQ -> DecsQ
- declareWrapped :: DecsQ -> DecsQ
- defaultFieldRules :: LensRules
- generateLazyPatterns :: Lens' LensRules Bool
- generateRecordSyntax :: Lens' LensRules Bool
- generateSignatures :: Lens' LensRules Bool
- generateUpdateableOptics :: Lens' LensRules Bool
- lensClass :: Lens' LensRules ClassyNamer
- lensField :: Lens' LensRules FieldNamer
- lensRules :: LensRules
- lensRulesFor :: [(String, String)] -> LensRules
- lookingupNamer :: [(String, String)] -> FieldNamer
- makeClassy :: Name -> DecsQ
- makeClassyFor :: String -> String -> [(String, String)] -> Name -> DecsQ
- makeClassy_ :: Name -> DecsQ
- makeFields :: Name -> DecsQ
- makeFieldsId :: Name -> DecsQ
- makeFieldsNoPrefix :: Name -> DecsQ
- makeLenses :: Name -> DecsQ
- makeLensesFor :: [(String, String)] -> Name -> DecsQ
- makeLensesWith :: LensRules -> Name -> DecsQ
- makeWrapped :: Name -> DecsQ
- mappingNamer :: (String -> [String]) -> FieldNamer
- simpleLenses :: Lens' LensRules Bool
- underscoreFields :: LensRules
- underscoreNamer :: FieldNamer
- underscoreNoPrefixNamer :: FieldNamer
- both :: forall (r :: Type -> Type -> Type) a b. Bitraversable r => Traversal (r a a) (r b b) a b
- both1 :: forall (r :: Type -> Type -> Type) a b. Bitraversable1 r => Traversal1 (r a a) (r b b) a b
- cloneIndexPreservingTraversal :: ATraversal s t a b -> IndexPreservingTraversal s t a b
- cloneIndexPreservingTraversal1 :: ATraversal1 s t a b -> IndexPreservingTraversal1 s t a b
- cloneIndexedTraversal :: AnIndexedTraversal i s t a b -> IndexedTraversal i s t a b
- cloneIndexedTraversal1 :: AnIndexedTraversal1 i s t a b -> IndexedTraversal1 i s t a b
- cloneTraversal :: ATraversal s t a b -> Traversal s t a b
- cloneTraversal1 :: ATraversal1 s t a b -> Traversal1 s t a b
- confusing :: Applicative f => LensLike (Curried (Yoneda f) (Yoneda f)) s t a b -> LensLike f s t a b
- deepOf :: (Conjoined p, Applicative f) => LensLike f s t s t -> Traversing p f s t a b -> Over p f s t a b
- dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a
- element :: forall (t :: Type -> Type) a. Traversable t => Int -> IndexedTraversal' Int (t a) a
- elementOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a
- elements :: forall (t :: Type -> Type) a. Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a
- elementsOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a
- failing :: (Conjoined p, Applicative f) => Traversing p f s t a b -> Over p f s t a b -> Over p f s t a b
- failover :: Alternative m => LensLike ((,) Any) s t a b -> (a -> b) -> s -> m t
- forMOf :: LensLike (WrappedMonad m) s t a b -> s -> (a -> m b) -> m t
- forOf :: LensLike f s t a b -> s -> (a -> f b) -> f t
- holes1Of :: Conjoined p => Over p (Bazaar1 p a a) s t a a -> s -> NonEmpty (Pretext p a a t)
- holesOf :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t]
- ifailover :: Alternative m => Over (Indexed i) ((,) Any) s t a b -> (i -> a -> b) -> s -> m t
- iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t
- iforOf :: (Indexed i a (f b) -> s -> f t) -> s -> (i -> a -> f b) -> f t
- ignored :: Applicative f => pafb -> s -> f s
- iloci :: forall i a c s b p f. (Indexable i p, Applicative f) => p a (f b) -> Bazaar (Indexed i) a c s -> f (Bazaar (Indexed i) b c s)
- imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t
- ipartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a]
- ipartsOf' :: forall i p f s t a. (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a]
- itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t
- iunsafePartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b]
- iunsafePartsOf' :: forall i s t a b. Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b]
- loci :: forall a c s b f. Applicative f => (a -> f b) -> Bazaar (->) a c s -> f (Bazaar (->) b c s)
- mapAccumLOf :: LensLike (State acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- mapAccumROf :: LensLike (Backwards (State acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
- mapMOf :: LensLike (WrappedMonad m) s t a b -> (a -> m b) -> s -> m t
- partsOf :: Functor f => Traversing (->) f s t a a -> LensLike f s t [a] [a]
- partsOf' :: ATraversal s t a a -> Lens s t [a] [a]
- scanl1Of :: LensLike (State (Maybe a)) s t a a -> (a -> a -> a) -> s -> t
- scanr1Of :: LensLike (Backwards (State (Maybe a))) s t a a -> (a -> a -> a) -> s -> t
- sequenceAOf :: LensLike f s t (f b) b -> s -> f t
- sequenceByOf :: Traversal s t (f b) b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> s -> f t
- sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t
- taking :: (Conjoined p, Applicative f) => Int -> Traversing p f s t a a -> Over p f s t a a
- transposeOf :: LensLike ZipList s t [a] a -> s -> [t]
- traversal :: ((a -> f b) -> s -> f t) -> LensLike f s t a b
- traverseByOf :: Traversal s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> s -> f t
- traverseOf :: LensLike f s t a b -> (a -> f b) -> s -> f t
- traversed :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int (f a) (f b) a b
- traversed1 :: forall (f :: Type -> Type) a b. Traversable1 f => IndexedTraversal1 Int (f a) (f b) a b
- traversed64 :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int64 (f a) (f b) a b
- unsafePartsOf :: Functor f => Traversing (->) f s t a b -> LensLike f s t [a] [b]
- unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b]
- unsafeSingular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a b -> Over p f s t a b
- _1' :: Field1 s t a b => Lens s t a b
- _10' :: Field10 s t a b => Lens s t a b
- _11' :: Field11 s t a b => Lens s t a b
- _12' :: Field12 s t a b => Lens s t a b
- _13' :: Field13 s t a b => Lens s t a b
- _14' :: Field14 s t a b => Lens s t a b
- _15' :: Field15 s t a b => Lens s t a b
- _16' :: Field16 s t a b => Lens s t a b
- _17' :: Field17 s t a b => Lens s t a b
- _18' :: Field18 s t a b => Lens s t a b
- _19' :: Field19 s t a b => Lens s t a b
- _2' :: Field2 s t a b => Lens s t a b
- _3' :: Field3 s t a b => Lens s t a b
- _4' :: Field4 s t a b => Lens s t a b
- _5' :: Field5 s t a b => Lens s t a b
- _6' :: Field6 s t a b => Lens s t a b
- _7' :: Field7 s t a b => Lens s t a b
- _8' :: Field8 s t a b => Lens s t a b
- _9' :: Field9 s t a b => Lens s t a b
- class Wrapped s where
- type family Unwrapped s
- pattern Unwrapped :: Rewrapped t t => t -> Unwrapped t
- pattern Wrapped :: Rewrapped s s => Unwrapped s -> s
- _GWrapped' :: forall s (d :: Meta) (c :: Meta) (s' :: Meta) a. (Generic s, D1 d (C1 c (S1 s' (Rec0 a))) ~ Rep s, Unwrapped s ~ GUnwrapped (Rep s)) => Iso' s (Unwrapped s)
- _Unwrapped :: Rewrapping s t => Iso (Unwrapped t) (Unwrapped s) t s
- _Unwrapped' :: Wrapped s => Iso' (Unwrapped s) s
- _Unwrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso (Unwrapped t) (Unwrapped s) t s
- _Unwrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' (Unwrapped s) s
- _Wrapped :: Rewrapping s t => Iso s t (Unwrapped s) (Unwrapped t)
- _Wrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso s t (Unwrapped s) (Unwrapped t)
- _Wrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' s (Unwrapped s)
- ala :: (Functor f, Rewrapping s t) => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> f s) -> f (Unwrapped s)
- alaf :: (Functor f, Functor g, Rewrapping s t) => (Unwrapped s -> s) -> (f t -> g s) -> f (Unwrapped t) -> g (Unwrapped s)
- op :: Wrapped s => (Unwrapped s -> s) -> s -> Unwrapped s
- _Point :: forall f1 a g b p f2. (Profunctor p, Functor f2) => p (f1 a) (f2 (g b)) -> p (Point f1 a) (f2 (Point g b))
- distanceA :: (Floating a, Foldable (Diff p), Affine p) => p a -> p a -> a
- lensP :: forall f1 a g b f2. Functor f2 => (f1 a -> f2 (g b)) -> Point f1 a -> f2 (Point g b)
- origin :: forall (f :: Type -> Type) a. (Additive f, Num a) => Point f a
- qdA :: (Affine p, Foldable (Diff p), Num a) => p a -> p a -> a
- relative :: forall (f :: Type -> Type) a. (Additive f, Num a) => Point f a -> Iso' (Point f a) (f a)
- unP :: Point f a -> f a
- normalize :: (Floating a, Metric f, Epsilon a) => f a -> f a
- project :: (Metric v, Fractional a) => v a -> v a -> v a
- perp :: Num a => V2 a -> V2 a
- (*^) :: (Functor f, Num a) => a -> f a -> f a
- (^*) :: (Functor f, Num a) => f a -> a -> f a
- (^/) :: (Functor f, Fractional a) => f a -> a -> f a
- basis :: (Additive t, Traversable t, Num a) => [t a]
- basisFor :: (Traversable t, Num a) => t b -> [t a]
- negated :: (Functor f, Num a) => f a -> f a
- scaled :: (Traversable t, Num a) => t a -> t (t a)
- sumV :: (Foldable f, Additive v, Num a) => f (v a) -> v a
- foldBy :: Foldable t => (a -> a -> a) -> a -> t a -> a
- foldMapBy :: Foldable t => (r -> r -> r) -> r -> (a -> r) -> t a -> r
- sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a)
- traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b)
- data Active a
- data Duration n
- data Era n
- data Time n
- data AlphaColour a
- data Colour a
- class ColourOps (f :: Type -> Type) where
- data RGB a = RGB {
- channelRed :: !a
- channelGreen :: !a
- channelBlue :: !a
- newtype Envelope (v :: Type -> Type) n = Envelope (Maybe (v n -> Max n))
- class (Metric (V a), OrderedField (N a)) => Enveloped a where
- getEnvelope :: a -> Envelope (V a) (N a)
- class HasOrigin t where
- moveOriginTo :: Point (V t) (N t) -> t -> t
- class Juxtaposable a where
- type Measure n = Measured n n
- data Measured n a
- data AName
- class (Typeable a, Ord a, Show a) => IsName a where
- class Qualifiable q where
- newtype Query (v :: Type -> Type) n m = Query {}
- class (Typeable a, Semigroup a) => AttributeClass a
- class HasStyle a where
- applyStyle :: Style (V a) (N a) -> a -> a
- data SortedList a
- newtype Trace (v :: Type -> Type) n = Trace {
- appTrace :: Point v n -> v n -> SortedList n
- class (Additive (V a), Ord (N a)) => Traced a where
- data u :-: v
- type HasBasis (v :: Type -> Type) = (Additive v, Representable v, Rep v ~ E v)
- type HasLinearMap (v :: Type -> Type) = (HasBasis v, Traversable v)
- newtype TransInv t = TransInv t
- data NullBackend
- newtype SubMap b (v :: Type -> Type) n m = SubMap (Map Name [Subdiagram b v n m])
- data Subdiagram b (v :: Type -> Type) n m = Subdiagram (QDiagram b v n m) (DownAnnots v n)
- type InSpace (v :: Type -> Type) n a = (V a ~ v, N a ~ n, Additive v, Num n)
- type SameSpace a b = (V a ~ V b, N a ~ N b)
- type Vn a = V a (N a)
- class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where
- class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where
- imap :: (i -> a -> b) -> f a -> f b
- class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where
- itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b)
- class Ixed m => At m
- class Contains m
- type family Index s
- type family IxValue m
- class Ixed m where
- ix :: Index m -> Traversal' m (IxValue m)
- class Cons s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Snoc s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Each s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class AsEmpty a where
- type AnEquality (s :: k) (t :: k1) (a :: k) (b :: k2) = Identical a (Proxy b) a (Proxy b) -> Identical a (Proxy b) s (Proxy t)
- type AnEquality' (s :: k) (a :: k) = AnEquality s s a a
- data Identical (a :: k) (b :: k1) (s :: k) (t :: k1) where
- type Accessing (p :: Type -> Type -> Type) m s a = p a (Const m a) -> s -> Const m s
- type Getting r s a = (a -> Const r a) -> s -> Const r s
- type IndexedGetting i m s a = Indexed i a (Const m a) -> s -> Const m s
- newtype Bazaar (p :: Type -> Type -> Type) a b t = Bazaar {
- runBazaar :: forall (f :: Type -> Type). Applicative f => p a (f b) -> f t
- type Bazaar' (p :: Type -> Type -> Type) a = Bazaar p a a
- newtype Bazaar1 (p :: Type -> Type -> Type) a b t = Bazaar1 {
- runBazaar1 :: forall (f :: Type -> Type). Apply f => p a (f b) -> f t
- type Bazaar1' (p :: Type -> Type -> Type) a = Bazaar1 p a a
- data Context a b t = Context (b -> t) a
- type Context' a = Context a a
- type ClassyNamer = Name -> Maybe (Name, Name)
- data DefName
- type FieldNamer = Name -> [Name] -> Name -> [DefName]
- data LensRules
- data Leftmost a
- data Rightmost a
- data Sequenced a (m :: Type -> Type)
- data Traversed a (f :: Type -> Type)
- class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p, Closed p) => Conjoined (p :: Type -> Type -> Type) where
- class Conjoined p => Indexable i (p :: Type -> Type -> Type)
- newtype Indexed i a b = Indexed {
- runIndexed :: i -> a -> b
- class Reversing t where
- reversing :: t -> t
- data Level i a
- data Magma i t b a
- class (Profunctor p, Bifunctor p) => Reviewable (p :: Type -> Type -> Type)
- class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type)
- type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t)
- type AnIso' s a = AnIso s s a a
- type ALens s t a b = LensLike (Pretext (->) a b) s t a b
- type ALens' s a = ALens s s a a
- type AnIndexedLens i s t a b = Optical (Indexed i) (->) (Pretext (Indexed i) a b) s t a b
- type AnIndexedLens' i s a = AnIndexedLens i s s a a
- class GPlated a (g :: k -> Type)
- class GPlated1 (f :: k -> Type) (g :: k -> Type)
- class Plated a where
- plate :: Traversal' a a
- type APrism s t a b = Market a b a (Identity b) -> Market a b s (Identity t)
- type APrism' s a = APrism s s a a
- class Prefixed t where
- class Suffixed t where
- newtype ReifiedFold s a = Fold {}
- type Fold s a = forall (f :: Type -> Type). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s
- newtype ReifiedGetter s a = Getter {}
- type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s
- newtype ReifiedIndexedFold i s a = IndexedFold {
- runIndexedFold :: IndexedFold i s a
- type IndexedFold i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s
- newtype ReifiedIndexedGetter i s a = IndexedGetter {
- runIndexedGetter :: IndexedGetter i s a
- type IndexedGetter i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s
- newtype ReifiedIndexedLens i s t a b = IndexedLens {
- runIndexedLens :: IndexedLens i s t a b
- type IndexedLens i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Functor f) => p a (f b) -> s -> f t
- type ReifiedIndexedLens' i s a = ReifiedIndexedLens i s s a a
- newtype ReifiedIndexedSetter i s t a b = IndexedSetter {
- runIndexedSetter :: IndexedSetter i s t a b
- type IndexedSetter i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Settable f) => p a (f b) -> s -> f t
- type ReifiedIndexedSetter' i s a = ReifiedIndexedSetter i s s a a
- newtype ReifiedIndexedTraversal i s t a b = IndexedTraversal {
- runIndexedTraversal :: IndexedTraversal i s t a b
- type IndexedTraversal i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Applicative f) => p a (f b) -> s -> f t
- type ReifiedIndexedTraversal' i s a = ReifiedIndexedTraversal i s s a a
- newtype ReifiedIso s t a b = Iso {}
- type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t)
- type ReifiedIso' s a = ReifiedIso s s a a
- newtype ReifiedLens s t a b = Lens {}
- type Lens s t a b = forall (f :: Type -> Type). Functor f => (a -> f b) -> s -> f t
- type ReifiedLens' s a = ReifiedLens s s a a
- newtype ReifiedPrism s t a b = Prism {}
- type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t)
- type ReifiedPrism' s a = ReifiedPrism s s a a
- newtype ReifiedSetter s t a b = Setter {}
- type Setter s t a b = forall (f :: Type -> Type). Settable f => (a -> f b) -> s -> f t
- type ReifiedSetter' s a = ReifiedSetter s s a a
- newtype ReifiedTraversal s t a b = Traversal {
- runTraversal :: Traversal s t a b
- type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t
- type ReifiedTraversal' s a = ReifiedTraversal s s a a
- type ASetter s t a b = (a -> Identity b) -> s -> Identity t
- type ASetter' s a = ASetter s s a a
- type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t
- type AnIndexedSetter' i s a = AnIndexedSetter i s s a a
- type Setting (p :: Type -> Type -> Type) s t a b = p a (Identity b) -> s -> Identity t
- type Setting' (p :: Type -> Type -> Type) s a = Setting p s s a a
- type ATraversal s t a b = LensLike (Bazaar (->) a b) s t a b
- type ATraversal' s a = ATraversal s s a a
- type ATraversal1 s t a b = LensLike (Bazaar1 (->) a b) s t a b
- type ATraversal1' s a = ATraversal1 s s a a
- type AnIndexedTraversal i s t a b = Over (Indexed i) (Bazaar (Indexed i) a b) s t a b
- type AnIndexedTraversal' i s a = AnIndexedTraversal i s s a a
- type AnIndexedTraversal1 i s t a b = Over (Indexed i) (Bazaar1 (Indexed i) a b) s t a b
- type AnIndexedTraversal1' i s a = AnIndexedTraversal1 i s s a a
- class Ord k => TraverseMax k (m :: Type -> Type) | m -> k where
- traverseMax :: IndexedTraversal' k (m v) v
- class Ord k => TraverseMin k (m :: Type -> Type) | m -> k where
- traverseMin :: IndexedTraversal' k (m v) v
- type Traversing (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT p f a b) s t a b
- type Traversing' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing p f s s a a
- type Traversing1 (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT1 p f a b) s t a b
- type Traversing1' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing1 p f s s a a
- class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
- type AReview t b = Optic' (Tagged :: Type -> Type -> Type) Identity t b
- type As (a :: k2) = Equality' a a
- type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3). p a (f b) -> p s (f t)
- type Equality' (s :: k2) (a :: k2) = Equality s s a a
- type Fold1 s a = forall (f :: Type -> Type). (Contravariant f, Apply f) => (a -> f a) -> s -> f s
- type IndexPreservingFold s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s)
- type IndexPreservingFold1 s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s)
- type IndexPreservingGetter s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s)
- type IndexPreservingLens s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Functor f) => p a (f b) -> p s (f t)
- type IndexPreservingLens' s a = IndexPreservingLens s s a a
- type IndexPreservingSetter s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Settable f) => p a (f b) -> p s (f t)
- type IndexPreservingSetter' s a = IndexPreservingSetter s s a a
- type IndexPreservingTraversal s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Applicative f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal' s a = IndexPreservingTraversal s s a a
- type IndexPreservingTraversal1 s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Apply f) => p a (f b) -> p s (f t)
- type IndexPreservingTraversal1' s a = IndexPreservingTraversal1 s s a a
- type IndexedFold1 i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s
- type IndexedLens' i s a = IndexedLens i s s a a
- type IndexedLensLike i (f :: k -> Type) s (t :: k) a (b :: k) = forall (p :: Type -> Type -> Type). Indexable i p => p a (f b) -> s -> f t
- type IndexedLensLike' i (f :: Type -> Type) s a = IndexedLensLike i f s s a a
- type IndexedSetter' i s a = IndexedSetter i s s a a
- type IndexedTraversal' i s a = IndexedTraversal i s s a a
- type IndexedTraversal1 i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Apply f) => p a (f b) -> s -> f t
- type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a
- type Iso' s a = Iso s s a a
- type Lens' s a = Lens s s a a
- type LensLike (f :: k -> Type) s (t :: k) a (b :: k) = (a -> f b) -> s -> f t
- type LensLike' (f :: Type -> Type) s a = LensLike f s s a a
- type Optic (p :: k -> k1 -> Type) (f :: k2 -> k1) (s :: k) (t :: k2) (a :: k) (b :: k2) = p a (f b) -> p s (f t)
- type Optic' (p :: k -> k1 -> Type) (f :: k -> k1) (s :: k) (a :: k) = Optic p f s s a a
- type Optical (p :: k -> k1 -> Type) (q :: k2 -> k1 -> Type) (f :: k3 -> k1) (s :: k2) (t :: k3) (a :: k) (b :: k3) = p a (f b) -> q s (f t)
- type Optical' (p :: k -> k1 -> Type) (q :: k -> k1 -> Type) (f :: k -> k1) (s :: k) (a :: k) = Optical p q f s s a a
- type Over (p :: k -> Type -> Type) (f :: k1 -> Type) s (t :: k1) (a :: k) (b :: k1) = p a (f b) -> s -> f t
- type Over' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Over p f s s a a
- type Prism' s a = Prism s s a a
- type Review t b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Bifunctor p, Settable f) => Optic' p f t b
- type Setter' s a = Setter s s a a
- type Simple (f :: k1 -> k1 -> k2 -> k2 -> k) (s :: k1) (a :: k2) = f s s a a
- type Traversal' s a = Traversal s s a a
- type Traversal1 s t a b = forall (f :: Type -> Type). Apply f => (a -> f b) -> s -> f t
- type Traversal1' s a = Traversal1 s s a a
- class Wrapped s => Rewrapped s t
- class (Rewrapped s t, Rewrapped t s) => Rewrapping s t
- type family Magnified (m :: Type -> Type) :: Type -> Type -> Type
- class (Magnified m ~ Magnified n, MonadReader b m, MonadReader a n) => Magnify (m :: Type -> Type) (n :: Type -> Type) b a | m -> b, n -> a, m a -> n, n b -> m where
- class (MonadState s m, MonadState t n) => Zoom (m :: Type -> Type) (n :: Type -> Type) s t | m -> s, n -> t, m t -> n, n s -> m where
- type family Zoomed (m :: Type -> Type) :: Type -> Type -> Type
- class Additive (Diff p) => Affine (p :: Type -> Type) where
- type family Diff (p :: Type -> Type) :: Type -> Type
- class R1 t => R2 (t :: Type -> Type) where
- class R2 t => R3 (t :: Type -> Type) where
- data V3 a = V3 !a !a !a
- class Profunctor p => Choice (p :: Type -> Type -> Type) where
- class Profunctor (p :: Type -> Type -> Type) where
- class (Foldable1 t, Traversable t) => Traversable1 (t :: Type -> Type) where
- traverse1 :: Apply f => (a -> f b) -> t a -> f (t b)
- data family MVector s a
- data family Vector a
- type B = SVG
- data SVG = SVG
- data family Options b (v :: Type -> Type) n
- data family Options b (v :: Type -> Type) n
- type SVGFloat n = (Show n, TypeableFloat n)
- generateDoctype :: forall n f. Functor f => (Bool -> f Bool) -> Options SVG V2 n -> f (Options SVG V2 n)
- idPrefix :: forall n f. Functor f => (Text -> f Text) -> Options SVG V2 n -> f (Options SVG V2 n)
- loadImageSVG :: SVGFloat n => FilePath -> IO (QDiagram SVG V2 n Any)
- renderPretty :: SVGFloat n => FilePath -> SizeSpec V2 n -> QDiagram SVG V2 n Any -> IO ()
- renderPretty' :: SVGFloat n => FilePath -> Options SVG V2 n -> QDiagram SVG V2 n Any -> IO ()
- renderSVG :: SVGFloat n => FilePath -> SizeSpec V2 n -> QDiagram SVG V2 n Any -> IO ()
- renderSVG' :: SVGFloat n => FilePath -> Options SVG V2 n -> QDiagram SVG V2 n Any -> IO ()
- sizeSpec :: forall n f. Functor f => (SizeSpec V2 n -> f (SizeSpec V2 n)) -> Options SVG V2 n -> f (Options SVG V2 n)
- svgAttr :: SVGFloat n => String -> String -> QDiagram SVG V2 n Any -> QDiagram SVG V2 n Any
- svgAttributes :: forall n f. Functor f => ([Attribute] -> f [Attribute]) -> Options SVG V2 n -> f (Options SVG V2 n)
- svgClass :: SVGFloat n => String -> QDiagram SVG V2 n Any -> QDiagram SVG V2 n Any
- svgDefinitions :: forall n f. Functor f => (Maybe Element -> f (Maybe Element)) -> Options SVG V2 n -> f (Options SVG V2 n)
- svgId :: SVGFloat n => String -> QDiagram SVG V2 n Any -> QDiagram SVG V2 n Any
- svgTitle :: SVGFloat n => String -> QDiagram SVG V2 n Any -> QDiagram SVG V2 n Any
Documentation
putDiagram :: SVGFloat n => Options SVG V2 n -> QDiagram SVG V2 n Any -> IO () Source #
Write out SVG for the given diagram to standard output.
>>>
putDiagram defaultOptions $ circle 1
<?xml version="1.0" encoding="UTF-8"?> ...
It can be passed in a fully specified SVGOptions
,
but it is usually enough to give the default set of options in defaultOptions
.
defaultOptions :: SVGFloat n => Options SVG V2 n Source #
Default options for rendering a diagram into SVG.
This is a record value, so specific options can be overridden using record syntax. For example, the width of the rendered image can be overridden:
>>>
let options = defaultOptions & sizeSpec .~ mkWidth 128
>>>
view sizeSpec options
SizeSpec (V2 128.0 0.0)
text :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any #
data Segment c (v :: Type -> Type) n #
Instances
(~~) :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Point v n -> Point v n -> t #
Boolean monoid under disjunction (||)
.
Any x <> Any y = Any (x || y)
Examples
>>>
Any True <> mempty <> Any False
Any {getAny = True}
>>>
mconcat (map (\x -> Any (even x)) [2,4,6,7,8])
Any {getAny = True}
>>>
Any False <> mempty
Any {getAny = False}
Instances
Data Any | Since: base-4.8.0.0 | ||||||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |||||||||
Monoid Any | Since: base-2.1 | ||||||||
Semigroup Any | Since: base-4.9.0.0 | ||||||||
Bounded Any | Since: base-2.1 | ||||||||
Generic Any | |||||||||
Defined in Data.Semigroup.Internal Associated Types
| |||||||||
Read Any | Since: base-2.1 | ||||||||
Show Any | Since: base-2.1 | ||||||||
Binary Any | Since: binary-0.8.4.0 | ||||||||
Default Any | |||||||||
Defined in Data.Default.Class | |||||||||
NFData Any | Since: deepseq-1.4.0.0 | ||||||||
Defined in Control.DeepSeq | |||||||||
Eq Any | Since: base-2.1 | ||||||||
Ord Any | Since: base-2.1 | ||||||||
AsEmpty Any | |||||||||
Defined in Control.Lens.Empty | |||||||||
Wrapped Any | |||||||||
Unbox Any | |||||||||
Defined in Data.Vector.Unboxed.Base | |||||||||
t ~ Any => Rewrapped Any t | |||||||||
Defined in Control.Lens.Wrapped | |||||||||
Vector Vector Any | |||||||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Any -> ST s (Vector Any) basicUnsafeThaw :: Vector Any -> ST s (Mutable Vector s Any) basicLength :: Vector Any -> Int basicUnsafeSlice :: Int -> Int -> Vector Any -> Vector Any basicUnsafeIndexM :: Vector Any -> Int -> Box Any basicUnsafeCopy :: Mutable Vector s Any -> Vector Any -> ST s () | |||||||||
MVector MVector Any | |||||||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Any -> Int basicUnsafeSlice :: Int -> Int -> MVector s Any -> MVector s Any basicOverlaps :: MVector s Any -> MVector s Any -> Bool basicUnsafeNew :: Int -> ST s (MVector s Any) basicInitialize :: MVector s Any -> ST s () basicUnsafeReplicate :: Int -> Any -> ST s (MVector s Any) basicUnsafeRead :: MVector s Any -> Int -> ST s Any basicUnsafeWrite :: MVector s Any -> Int -> Any -> ST s () basicClear :: MVector s Any -> ST s () basicSet :: MVector s Any -> Any -> ST s () basicUnsafeCopy :: MVector s Any -> MVector s Any -> ST s () basicUnsafeMove :: MVector s Any -> MVector s Any -> ST s () basicUnsafeGrow :: MVector s Any -> Int -> ST s (MVector s Any) | |||||||||
ToResult [QDiagram b v n Any] | |||||||||
Defined in Diagrams.Backend.CmdLine Associated Types
| |||||||||
ToResult [(String, QDiagram b v n Any)] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
(Num n, Ord n) => HasQuery (Box n) Any | |||||||||
(Floating n, Ord n) => HasQuery (CSG n) Any | |||||||||
(Num n, Ord n) => HasQuery (Ellipsoid n) Any | |||||||||
OrderedField n => HasQuery (Frustum n) Any | |||||||||
(Additive v, Foldable v, Ord n) => HasQuery (BoundingBox v n) Any | |||||||||
Defined in Diagrams.BoundingBox Methods getQuery :: BoundingBox v n -> Query (V (BoundingBox v n)) (N (BoundingBox v n)) Any # | |||||||||
RealFloat n => HasQuery (DImage n a) Any | |||||||||
ToResult (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine Associated Types
| |||||||||
ToResult (QDiagram b v n Any) | |||||||||
Defined in Diagrams.Backend.CmdLine Associated Types
| |||||||||
type Rep Any | Since: base-4.7.0.0 | ||||||||
Defined in Data.Semigroup.Internal | |||||||||
type Unwrapped Any | |||||||||
Defined in Control.Lens.Wrapped | |||||||||
newtype Vector Any | |||||||||
newtype MVector s Any | |||||||||
type Args [QDiagram b v n Any] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type Args [(String, QDiagram b v n Any)] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type MainOpts [(String, QDiagram SVG V2 n Any)] | |||||||||
type ResultOf [QDiagram b v n Any] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type ResultOf [(String, QDiagram b v n Any)] | |||||||||
type Args (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine type Args (Animation b v n) = () | |||||||||
type ResultOf (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type Args (QDiagram b v n Any) | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type MainOpts (QDiagram SVG V2 n Any) | |||||||||
Defined in Diagrams.Backend.SVG.CmdLine | |||||||||
type ResultOf (QDiagram b v n Any) | |||||||||
Defined in Diagrams.Backend.CmdLine |
class (forall a. Functor (p a)) => Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor
, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left
value or the Right
value,
or both at the same time.
Formally, the class Bifunctor
represents a bifunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor
by either defining bimap
or by
defining both first
and second
. A partially applied Bifunctor
must be a Functor
and the second
method must agree with fmap
.
From this it follows that:
second
id
=id
If you supply bimap
, you should ensure that:
bimap
id
id
≡id
If you supply first
and second
, ensure:
first
id
≡id
second
id
≡id
If you supply both, you should also ensure:
bimap
f g ≡first
f.
second
g
These ensure by parametricity:
bimap
(f.
g) (h.
i) ≡bimap
f h.
bimap
g ifirst
(f.
g) ≡first
f.
first
gsecond
(f.
g) ≡second
f.
second
g
Since 4.18.0.0 Functor
is a superclass of 'Bifunctor.
Since: base-4.8.0.0
Methods
Instances
Bifunctor Either | Since: base-4.8.0.0 |
Bifunctor Arg | Since: base-4.9.0.0 |
Bifunctor Either | |
Bifunctor These | |
Bifunctor Pair | |
Bifunctor These | |
Bifunctor (,) | Class laws for tuples hold only up to laziness. Both
Since: base-4.8.0.0 |
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
Functor f => Bifunctor (CofreeF f) | |
Functor f => Bifunctor (FreeF f) | |
Functor f => Bifunctor (AlongsideLeft f) | |
Functor f => Bifunctor (AlongsideRight f) | |
Bifunctor (Tagged :: Type -> Type -> Type) | |
Bifunctor (Constant :: Type -> Type -> Type) | |
Bifunctor ((,,) x1) | Since: base-4.8.0.0 |
Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Bifunctor ((,,,) x1 x2) | Since: base-4.8.0.0 |
Functor f => Bifunctor (Clown f :: Type -> Type -> Type) | |
Bifunctor p => Bifunctor (Flip p) | |
Functor g => Bifunctor (Joker g :: Type -> Type -> Type) | |
Bifunctor p => Bifunctor (WrappedBifunctor p) | |
Bifunctor ((,,,,) x1 x2 x3) | Since: base-4.8.0.0 |
(Bifunctor f, Bifunctor g) => Bifunctor (Product f g) | |
(Bifunctor p, Bifunctor q) => Bifunctor (Sum p q) | |
Bifunctor ((,,,,,) x1 x2 x3 x4) | Since: base-4.8.0.0 |
(Functor f, Bifunctor p) => Bifunctor (Tannen f p) | |
Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) | Since: base-4.8.0.0 |
(Bifunctor p, Functor f, Functor g) => Bifunctor (Biff p f g) | |
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an
Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
Monoid under addition.
Sum a <> Sum b = Sum (a + b)
Examples
>>>
Sum 1 <> Sum 2 <> mempty
Sum {getSum = 3}
>>>
mconcat [ Sum n | n <- [3 .. 9]]
Sum {getSum = 42}
Instances
Representable Sum | |||||
Defined in Data.Functor.Rep Associated Types
| |||||
MonadFix Sum | Since: base-4.8.0.0 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip Sum | Since: base-4.8.0.0 | ||||
Foldable Sum | Since: base-4.8.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |||||
Foldable1 Sum | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Sum m -> m # foldMap1 :: Semigroup m => (a -> m) -> Sum a -> m # foldMap1' :: Semigroup m => (a -> m) -> Sum a -> m # toNonEmpty :: Sum a -> NonEmpty a # maximum :: Ord a => Sum a -> a # minimum :: Ord a => Sum a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Sum a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Sum a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Sum a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Sum a -> b # | |||||
Traversable Sum | Since: base-4.8.0.0 | ||||
Applicative Sum | Since: base-4.8.0.0 | ||||
Functor Sum | Since: base-4.8.0.0 | ||||
Monad Sum | Since: base-4.8.0.0 | ||||
NFData1 Sum | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Apply Sum | |||||
Bind Sum | |||||
Traversable1 Sum | |||||
Generic1 Sum | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Unbox a => Vector Vector (Sum a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Sum a) -> ST s (Vector (Sum a)) basicUnsafeThaw :: Vector (Sum a) -> ST s (Mutable Vector s (Sum a)) basicLength :: Vector (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Sum a) -> Vector (Sum a) basicUnsafeIndexM :: Vector (Sum a) -> Int -> Box (Sum a) basicUnsafeCopy :: Mutable Vector s (Sum a) -> Vector (Sum a) -> ST s () | |||||
Unbox a => MVector MVector (Sum a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Sum a) -> MVector s (Sum a) basicOverlaps :: MVector s (Sum a) -> MVector s (Sum a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Sum a)) basicInitialize :: MVector s (Sum a) -> ST s () basicUnsafeReplicate :: Int -> Sum a -> ST s (MVector s (Sum a)) basicUnsafeRead :: MVector s (Sum a) -> Int -> ST s (Sum a) basicUnsafeWrite :: MVector s (Sum a) -> Int -> Sum a -> ST s () basicClear :: MVector s (Sum a) -> ST s () basicSet :: MVector s (Sum a) -> Sum a -> ST s () basicUnsafeCopy :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () basicUnsafeMove :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () basicUnsafeGrow :: MVector s (Sum a) -> Int -> ST s (MVector s (Sum a)) | |||||
Data a => Data (Sum a) | Since: base-4.8.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |||||
Num a => Monoid (Sum a) | Since: base-2.1 | ||||
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 | ||||
Bounded a => Bounded (Sum a) | Since: base-2.1 | ||||
Generic (Sum a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Num a => Num (Sum a) | Since: base-4.7.0.0 | ||||
Read a => Read (Sum a) | Since: base-2.1 | ||||
Show a => Show (Sum a) | Since: base-2.1 | ||||
Binary a => Binary (Sum a) | Since: binary-0.8.4.0 | ||||
Num a => Default (Sum a) | |||||
Defined in Data.Default.Class | |||||
NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Sum a) | Since: base-2.1 | ||||
Ord a => Ord (Sum a) | Since: base-2.1 | ||||
(Eq a, Num a) => AsEmpty (Sum a) | |||||
Defined in Control.Lens.Empty | |||||
Wrapped (Sum a) | |||||
Unbox a => Unbox (Sum a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ Sum b => Rewrapped (Sum a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep Sum | |||||
Defined in Data.Functor.Rep type Rep Sum = () | |||||
type Rep1 Sum | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
newtype MVector s (Sum a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Sum a) | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
type Unwrapped (Sum a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (Sum a) | |||||
Defined in Data.Vector.Unboxed.Base |
Monoid under multiplication.
Product x <> Product y == Product (x * y)
Examples
>>>
Product 3 <> Product 4 <> mempty
Product {getProduct = 12}
>>>
mconcat [ Product n | n <- [2 .. 10]]
Product {getProduct = 3628800}
Constructors
Product | |
Fields
|
Instances
Representable Product | |||||
Defined in Data.Functor.Rep Associated Types
| |||||
MonadFix Product | Since: base-4.8.0.0 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip Product | Since: base-4.8.0.0 | ||||
Foldable Product | Since: base-4.8.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |||||
Foldable1 Product | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Product m -> m # foldMap1 :: Semigroup m => (a -> m) -> Product a -> m # foldMap1' :: Semigroup m => (a -> m) -> Product a -> m # toNonEmpty :: Product a -> NonEmpty a # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Product a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Product a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Product a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Product a -> b # | |||||
Traversable Product | Since: base-4.8.0.0 | ||||
Applicative Product | Since: base-4.8.0.0 | ||||
Functor Product | Since: base-4.8.0.0 | ||||
Monad Product | Since: base-4.8.0.0 | ||||
NFData1 Product | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Apply Product | |||||
Bind Product | |||||
Traversable1 Product | |||||
Generic1 Product | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Unbox a => Vector Vector (Product a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Product a) -> ST s (Vector (Product a)) basicUnsafeThaw :: Vector (Product a) -> ST s (Mutable Vector s (Product a)) basicLength :: Vector (Product a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Product a) -> Vector (Product a) basicUnsafeIndexM :: Vector (Product a) -> Int -> Box (Product a) basicUnsafeCopy :: Mutable Vector s (Product a) -> Vector (Product a) -> ST s () | |||||
Unbox a => MVector MVector (Product a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Product a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Product a) -> MVector s (Product a) basicOverlaps :: MVector s (Product a) -> MVector s (Product a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Product a)) basicInitialize :: MVector s (Product a) -> ST s () basicUnsafeReplicate :: Int -> Product a -> ST s (MVector s (Product a)) basicUnsafeRead :: MVector s (Product a) -> Int -> ST s (Product a) basicUnsafeWrite :: MVector s (Product a) -> Int -> Product a -> ST s () basicClear :: MVector s (Product a) -> ST s () basicSet :: MVector s (Product a) -> Product a -> ST s () basicUnsafeCopy :: MVector s (Product a) -> MVector s (Product a) -> ST s () basicUnsafeMove :: MVector s (Product a) -> MVector s (Product a) -> ST s () basicUnsafeGrow :: MVector s (Product a) -> Int -> ST s (MVector s (Product a)) | |||||
Data a => Data (Product a) | Since: base-4.8.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |||||
Num a => Monoid (Product a) | Since: base-2.1 | ||||
Num a => Semigroup (Product a) | Since: base-4.9.0.0 | ||||
Bounded a => Bounded (Product a) | Since: base-2.1 | ||||
Generic (Product a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Num a => Num (Product a) | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
Read a => Read (Product a) | Since: base-2.1 | ||||
Show a => Show (Product a) | Since: base-2.1 | ||||
Binary a => Binary (Product a) | Since: binary-0.8.4.0 | ||||
Num a => Default (Product a) | |||||
Defined in Data.Default.Class | |||||
NFData a => NFData (Product a) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Product a) | Since: base-2.1 | ||||
Ord a => Ord (Product a) | Since: base-2.1 | ||||
(Eq a, Num a) => AsEmpty (Product a) | |||||
Defined in Control.Lens.Empty | |||||
Wrapped (Product a) | |||||
Unbox a => Unbox (Product a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ Product b => Rewrapped (Product a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep Product | |||||
Defined in Data.Functor.Rep type Rep Product = () | |||||
type Rep1 Product | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
newtype MVector s (Product a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Product a) | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
type Unwrapped (Product a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (Product a) | |||||
Defined in Data.Vector.Unboxed.Base |
stimesIdempotent :: Integral b => b -> a -> a #
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a #
Instances
type N SVG | |
Defined in Diagrams.Backend.SVG | |
type N (Active a) | |
Defined in Diagrams.Animation.Active | |
type N (Set a) | |
Defined in Diagrams.Core.V | |
type N (TransInv t) | |
Defined in Diagrams.Core.Transform | |
type N (Angle n) | |
Defined in Diagrams.Angle | |
type N (Located a) | |
Defined in Diagrams.Located | |
type N (Tangent t) | |
Defined in Diagrams.Tangent | |
type N (OrthoLens n) | |
Defined in Diagrams.ThreeD.Camera | |
type N (PerspectiveLens n) | |
Defined in Diagrams.ThreeD.Camera | |
type N (ParallelLight n) | |
Defined in Diagrams.ThreeD.Light | |
type N (PointLight n) | |
Defined in Diagrams.ThreeD.Light | |
type N (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
type N (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
type N (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
type N (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
type N (GetSegment t) | |
Defined in Diagrams.Trail | |
type N (ScaleInv t) | |
Defined in Diagrams.Transform.ScaleInv | |
type N (FillTexture n) | |
Defined in Diagrams.TwoD.Attributes type N (FillTexture n) = n | |
type N (LGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type N (LineTexture n) | |
Defined in Diagrams.TwoD.Attributes type N (LineTexture n) = n | |
type N (RGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type N (Texture n) | |
Defined in Diagrams.TwoD.Attributes | |
type N (Clip n) | |
Defined in Diagrams.TwoD.Path type N (Clip n) = n | |
type N (BernsteinPoly n) | |
Defined in Diagrams.TwoD.Segment.Bernstein type N (BernsteinPoly n) = n | |
type N (Text n) | |
Defined in Diagrams.TwoD.Text type N (Text n) = n | |
type N (V2 n) | |
Defined in Diagrams.TwoD.Types | |
type N (V3 n) | |
Defined in Diagrams.ThreeD.Types | |
type N (Deletable m) | |
Defined in Diagrams.Core.V | |
type N (Split m) | |
Defined in Diagrams.Core.V | |
type N (Maybe a) | |
Defined in Diagrams.Core.V | |
type N [a] | |
Defined in Diagrams.Core.V | |
type N (Map k a) | |
Defined in Diagrams.Core.V | |
type N (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
type N (Measured n a) | |
Defined in Diagrams.Core.Measure | |
type N (Attribute v n) | |
Defined in Diagrams.Core.Style | |
type N (Style v n) | |
Defined in Diagrams.Core.Style | |
type N (Trace v n) | |
Defined in Diagrams.Core.Trace | |
type N (Transformation v n) | |
Defined in Diagrams.Core.Transform | |
type N (BoundingBox v n) | |
Defined in Diagrams.BoundingBox | |
type N (NonEmptyBoundingBox v n) | |
Defined in Diagrams.BoundingBox type N (NonEmptyBoundingBox v n) = n | |
type N (Direction v n) | |
Defined in Diagrams.Direction | |
type N (Path v n) | |
Defined in Diagrams.Path | |
type N (FixedSegment v n) | |
Defined in Diagrams.Segment | |
type N (SizeSpec v n) | |
Defined in Diagrams.Size | |
type N (Camera l n) | |
Defined in Diagrams.ThreeD.Camera | |
type N (SegTree v n) | |
Defined in Diagrams.Trail | |
type N (Trail v n) | |
Defined in Diagrams.Trail | |
type N (DImage n a) | |
Defined in Diagrams.TwoD.Image | |
type N (FingerTree m a) | |
Defined in Diagrams.Trail | |
type N (Point v n) | |
Defined in Diagrams.Core.Points | |
type N (m :+: n) | |
Defined in Diagrams.Core.V | |
type N (a, b) | |
Defined in Diagrams.Core.V | |
type N (a -> b) | |
Defined in Diagrams.Core.V | |
type N (Query v n m) | |
Defined in Diagrams.Core.Query | |
type N (Prim b v n) | |
Defined in Diagrams.Core.Types | |
type N (Offset c v n) | |
Defined in Diagrams.Segment | |
type N (Segment c v n) | |
Defined in Diagrams.Segment | |
type N (Trail' l v n) | |
Defined in Diagrams.Trail | |
type N (a, b, c) | |
Defined in Diagrams.Core.V | |
type N (QDiagram b v n m) | |
Defined in Diagrams.Core.Types | |
type N (SubMap b v n m) | |
Defined in Diagrams.Core.Types | |
type N (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types |
Beware that Data.Semigroup.
Last
is different from
Data.Monoid.
Last
. The former simply returns the last value,
so x <> Data.Semigroup.Last Nothing = Data.Semigroup.Last Nothing
.
The latter returns the last non-Nothing
,
thus x <> Data.Monoid.Last Nothing = x
.
Examples
>>>
Last 0 <> Last 10
Last {getLast = 10}
>>>
sconcat $ Last 1 :| [ Last n | n <- [2..]]
Last {getLast = * hangs forever *
Instances
MonadFix Last | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
Foldable Last | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |||||
Foldable1 Last | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Last m -> m # foldMap1 :: Semigroup m => (a -> m) -> Last a -> m # foldMap1' :: Semigroup m => (a -> m) -> Last a -> m # toNonEmpty :: Last a -> NonEmpty a # maximum :: Ord a => Last a -> a # minimum :: Ord a => Last a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Last a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Last a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Last a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Last a -> b # | |||||
Traversable Last | Since: base-4.9.0.0 | ||||
Applicative Last | Since: base-4.9.0.0 | ||||
Functor Last | Since: base-4.9.0.0 | ||||
Monad Last | Since: base-4.9.0.0 | ||||
NFData1 Last | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Apply Last | |||||
Bind Last | |||||
Traversable1 Last | |||||
Generic1 Last | |||||
Defined in Data.Semigroup Associated Types
| |||||
Unbox a => Vector Vector (Last a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Last a) -> ST s (Vector (Last a)) basicUnsafeThaw :: Vector (Last a) -> ST s (Mutable Vector s (Last a)) basicLength :: Vector (Last a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Last a) -> Vector (Last a) basicUnsafeIndexM :: Vector (Last a) -> Int -> Box (Last a) basicUnsafeCopy :: Mutable Vector s (Last a) -> Vector (Last a) -> ST s () | |||||
Unbox a => MVector MVector (Last a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Last a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Last a) -> MVector s (Last a) basicOverlaps :: MVector s (Last a) -> MVector s (Last a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Last a)) basicInitialize :: MVector s (Last a) -> ST s () basicUnsafeReplicate :: Int -> Last a -> ST s (MVector s (Last a)) basicUnsafeRead :: MVector s (Last a) -> Int -> ST s (Last a) basicUnsafeWrite :: MVector s (Last a) -> Int -> Last a -> ST s () basicClear :: MVector s (Last a) -> ST s () basicSet :: MVector s (Last a) -> Last a -> ST s () basicUnsafeCopy :: MVector s (Last a) -> MVector s (Last a) -> ST s () basicUnsafeMove :: MVector s (Last a) -> MVector s (Last a) -> ST s () basicUnsafeGrow :: MVector s (Last a) -> Int -> ST s (MVector s (Last a)) | |||||
Data a => Data (Last a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |||||
Semigroup (Last a) | Since: base-4.9.0.0 | ||||
Bounded a => Bounded (Last a) | Since: base-4.9.0.0 | ||||
Enum a => Enum (Last a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
Generic (Last a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Read a => Read (Last a) | Since: base-4.9.0.0 | ||||
Show a => Show (Last a) | Since: base-4.9.0.0 | ||||
Binary a => Binary (Last a) | Since: binary-0.8.4.0 | ||||
NFData a => NFData (Last a) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Last a) | Since: base-4.9.0.0 | ||||
Ord a => Ord (Last a) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (Last a) | |||||
Defined in Data.Hashable.Class | |||||
Wrapped (Last a) | |||||
Unbox a => Unbox (Last a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ Last b => Rewrapped (Last a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep1 Last | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
newtype MVector s (Last a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Last a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
type Unwrapped (Last a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (Last a) | |||||
Defined in Data.Vector.Unboxed.Base |
Beware that Data.Semigroup.
First
is different from
Data.Monoid.
First
. The former simply returns the first value,
so Data.Semigroup.First Nothing <> x = Data.Semigroup.First Nothing
.
The latter returns the first non-Nothing
,
thus Data.Monoid.First Nothing <> x = x
.
Examples
>>>
First 0 <> First 10
First 0
>>>
sconcat $ First 1 :| [ First n | n <- [2 ..] ]
First 1
Instances
MonadFix First | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
Foldable First | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |||||
Foldable1 First | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => First m -> m # foldMap1 :: Semigroup m => (a -> m) -> First a -> m # foldMap1' :: Semigroup m => (a -> m) -> First a -> m # toNonEmpty :: First a -> NonEmpty a # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> First a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> First a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> First a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> First a -> b # | |||||
Traversable First | Since: base-4.9.0.0 | ||||
Applicative First | Since: base-4.9.0.0 | ||||
Functor First | Since: base-4.9.0.0 | ||||
Monad First | Since: base-4.9.0.0 | ||||
NFData1 First | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Apply First | |||||
Bind First | |||||
Traversable1 First | |||||
Generic1 First | |||||
Defined in Data.Semigroup Associated Types
| |||||
Unbox a => Vector Vector (First a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (First a) -> ST s (Vector (First a)) basicUnsafeThaw :: Vector (First a) -> ST s (Mutable Vector s (First a)) basicLength :: Vector (First a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (First a) -> Vector (First a) basicUnsafeIndexM :: Vector (First a) -> Int -> Box (First a) basicUnsafeCopy :: Mutable Vector s (First a) -> Vector (First a) -> ST s () | |||||
Unbox a => MVector MVector (First a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (First a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (First a) -> MVector s (First a) basicOverlaps :: MVector s (First a) -> MVector s (First a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (First a)) basicInitialize :: MVector s (First a) -> ST s () basicUnsafeReplicate :: Int -> First a -> ST s (MVector s (First a)) basicUnsafeRead :: MVector s (First a) -> Int -> ST s (First a) basicUnsafeWrite :: MVector s (First a) -> Int -> First a -> ST s () basicClear :: MVector s (First a) -> ST s () basicSet :: MVector s (First a) -> First a -> ST s () basicUnsafeCopy :: MVector s (First a) -> MVector s (First a) -> ST s () basicUnsafeMove :: MVector s (First a) -> MVector s (First a) -> ST s () basicUnsafeGrow :: MVector s (First a) -> Int -> ST s (MVector s (First a)) | |||||
Data a => Data (First a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |||||
Semigroup (First a) | Since: base-4.9.0.0 | ||||
Bounded a => Bounded (First a) | Since: base-4.9.0.0 | ||||
Enum a => Enum (First a) | Since: base-4.9.0.0 | ||||
Generic (First a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Read a => Read (First a) | Since: base-4.9.0.0 | ||||
Show a => Show (First a) | Since: base-4.9.0.0 | ||||
Binary a => Binary (First a) | Since: binary-0.8.4.0 | ||||
NFData a => NFData (First a) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (First a) | Since: base-4.9.0.0 | ||||
Ord a => Ord (First a) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (First a) | |||||
Defined in Data.Hashable.Class | |||||
Wrapped (First a) | |||||
Unbox a => Unbox (First a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ First b => Rewrapped (First a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep1 First | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
newtype MVector s (First a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (First a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
type Unwrapped (First a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (First a) | |||||
Defined in Data.Vector.Unboxed.Base |
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative
(or,
therefore, Monad
) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_
.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>
traverse Just [1,2,3,4]
Just [1,2,3,4]
>>>
traverse id [Right 1, Right 2, Right 3, Right 4]
Right [1,2,3,4]
In the next examples, we show that Nothing
and Left
values short
circuit the created structure.
>>>
traverse (const Nothing) [1,2,3,4]
Nothing
>>>
traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]
Nothing
>>>
traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]
Left 0
Instances
Traversable ZipList | Since: base-4.9.0.0 |
Traversable Complex | Since: base-4.9.0.0 |
Traversable Identity | Since: base-4.9.0.0 |
Traversable First | Since: base-4.8.0.0 |
Traversable Last | Since: base-4.8.0.0 |
Traversable Down | Since: base-4.12.0.0 |
Traversable First | Since: base-4.9.0.0 |
Traversable Last | Since: base-4.9.0.0 |
Traversable Max | Since: base-4.9.0.0 |
Traversable Min | Since: base-4.9.0.0 |
Traversable Dual | Since: base-4.8.0.0 |
Traversable Product | Since: base-4.8.0.0 |
Traversable Sum | Since: base-4.8.0.0 |
Traversable NonEmpty | Since: base-4.9.0.0 |
Traversable Par1 | Since: base-4.9.0.0 |
Traversable IntMap | Traverses in order of increasing key. |
Traversable Digit | |
Traversable Elem | |
Traversable FingerTree | |
Defined in Data.Sequence.Internal Methods traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) # sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) # mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) # sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) # | |
Traversable Node | |
Traversable Seq | |
Traversable ViewL | |
Traversable ViewR | |
Traversable Tree | |
Traversable Attr | |
Defined in Text.DocLayout.Attributed | |
Traversable Attributed | |
Defined in Text.DocLayout.Attributed | |
Traversable Context | |
Defined in Text.DocTemplates.Internal | |
Traversable Resolved | |
Defined in Text.DocTemplates.Internal | |
Traversable Template | |
Defined in Text.DocTemplates.Internal | |
Traversable Val | |
Defined in Text.DocTemplates.Internal | |
Traversable Item | |
Defined in Hakyll.Core.Item | |
Traversable Interval | |
Defined in Numeric.Interval.Kaucher | |
Traversable Plucker | |
Defined in Linear.Plucker | |
Traversable Quaternion | |
Defined in Linear.Quaternion | |
Traversable V0 | |
Traversable V1 | |
Traversable V2 | |
Traversable V3 | |
Traversable V4 | |
Traversable Recommend | |
Defined in Data.Monoid.Recommend | |
Traversable Many | |
Defined in Text.Pandoc.Builder | |
Traversable Array | |
Defined in Data.Primitive.Array | |
Traversable SmallArray | |
Defined in Data.Primitive.SmallArray | |
Traversable Maybe | |
Defined in Data.Strict.Maybe | |
Traversable TyVarBndr | |
Defined in Language.Haskell.TH.Syntax | |
Traversable Vector | |
Defined in Data.Vector | |
Traversable Vector | |
Defined in Data.Vector.Strict | |
Traversable Maybe | Since: base-2.1 |
Traversable Solo | Since: base-4.15 |
Traversable [] | Since: base-2.1 |
Defined in Data.Traversable | |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Traversable (Arg a) | Since: base-4.9.0.0 |
Ix i => Traversable (Array i) | Since: base-2.1 |
Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (Map k) | Traverses in order of increasing key. |
Traversable f => Traversable (Cofree f) | |
Defined in Control.Comonad.Cofree | |
Traversable f => Traversable (Free f) | |
Defined in Control.Monad.Free | |
Traversable f => Traversable (Yoneda f) | |
Defined in Data.Functor.Yoneda | |
Traversable (Level i) | |
Traversable f => Traversable (Point f) | |
Traversable (Either e) | |
Defined in Data.Strict.Either | |
Traversable (These a) | |
Defined in Data.Strict.These | |
Traversable (Pair e) | |
Defined in Data.Strict.Tuple | |
Traversable (These a) | |
Defined in Data.These | |
Traversable f => Traversable (Lift f) | |
Traversable f => Traversable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe | |
Traversable (HashMap k) | |
Defined in Data.HashMap.Internal | |
Traversable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
Traversable f => Traversable (Ap f) | Since: base-4.12.0.0 |
Traversable f => Traversable (Alt f) | Since: base-4.12.0.0 |
Traversable f => Traversable (Rec1 f) | Since: base-4.9.0.0 |
Bitraversable p => Traversable (Fix p) | |
Defined in Data.Bifunctor.Fix | |
Bitraversable p => Traversable (Join p) | |
Defined in Data.Bifunctor.Join | |
Traversable f => Traversable (CofreeF f a) | |
Defined in Control.Comonad.Trans.Cofree Methods traverse :: Applicative f0 => (a0 -> f0 b) -> CofreeF f a a0 -> f0 (CofreeF f a b) # sequenceA :: Applicative f0 => CofreeF f a (f0 a0) -> f0 (CofreeF f a a0) # mapM :: Monad m => (a0 -> m b) -> CofreeF f a a0 -> m (CofreeF f a b) # sequence :: Monad m => CofreeF f a (m a0) -> m (CofreeF f a a0) # | |
(Traversable f, Traversable w) => Traversable (CofreeT f w) | |
Defined in Control.Comonad.Trans.Cofree | |
Traversable f => Traversable (FreeF f a) | |
Defined in Control.Monad.Trans.Free | |
(Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
Traversable f => Traversable (AlongsideLeft f b) | |
Defined in Control.Lens.Internal.Getter Methods traverse :: Applicative f0 => (a -> f0 b0) -> AlongsideLeft f b a -> f0 (AlongsideLeft f b b0) # sequenceA :: Applicative f0 => AlongsideLeft f b (f0 a) -> f0 (AlongsideLeft f b a) # mapM :: Monad m => (a -> m b0) -> AlongsideLeft f b a -> m (AlongsideLeft f b b0) # sequence :: Monad m => AlongsideLeft f b (m a) -> m (AlongsideLeft f b a) # | |
Traversable f => Traversable (AlongsideRight f a) | |
Defined in Control.Lens.Internal.Getter Methods traverse :: Applicative f0 => (a0 -> f0 b) -> AlongsideRight f a a0 -> f0 (AlongsideRight f a b) # sequenceA :: Applicative f0 => AlongsideRight f a (f0 a0) -> f0 (AlongsideRight f a a0) # mapM :: Monad m => (a0 -> m b) -> AlongsideRight f a a0 -> m (AlongsideRight f a b) # sequence :: Monad m => AlongsideRight f a (m a0) -> m (AlongsideRight f a a0) # | |
Traversable (V n) | |
Traversable (Tagged s) | |
Defined in Data.Tagged | |
Traversable f => Traversable (Backwards f) | Derived instance. |
Defined in Control.Applicative.Backwards | |
Traversable f => Traversable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except | |
Traversable f => Traversable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity | |
Traversable f => Traversable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
Traversable f => Traversable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict | |
Traversable (Constant a :: Type -> Type) | |
Defined in Data.Functor.Constant | |
Traversable f => Traversable (Reverse f) | Traverse from right to left. |
Defined in Data.Functor.Reverse | |
(Traversable f, Traversable g) => Traversable (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
(Traversable f, Traversable g) => Traversable (Sum f g) | Since: base-4.9.0.0 |
(Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
(Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
Traversable (Magma i t b) | |
Defined in Control.Lens.Internal.Magma | |
Traversable (Forget r a :: Type -> Type) | |
Defined in Data.Profunctor.Types | |
(Traversable f, Traversable g) => Traversable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 |
Traversable (Clown f a :: Type -> Type) | |
Defined in Data.Bifunctor.Clown | |
Bitraversable p => Traversable (Flip p a) | |
Defined in Data.Bifunctor.Flip | |
Traversable g => Traversable (Joker g a) | |
Defined in Data.Bifunctor.Joker | |
Bitraversable p => Traversable (WrappedBifunctor p a) | |
Defined in Data.Bifunctor.Wrapped Methods traverse :: Applicative f => (a0 -> f b) -> WrappedBifunctor p a a0 -> f (WrappedBifunctor p a b) # sequenceA :: Applicative f => WrappedBifunctor p a (f a0) -> f (WrappedBifunctor p a a0) # mapM :: Monad m => (a0 -> m b) -> WrappedBifunctor p a a0 -> m (WrappedBifunctor p a b) # sequence :: Monad m => WrappedBifunctor p a (m a0) -> m (WrappedBifunctor p a a0) # | |
(Traversable (f a), Traversable (g a)) => Traversable (Product f g a) | |
Defined in Data.Bifunctor.Product Methods traverse :: Applicative f0 => (a0 -> f0 b) -> Product f g a a0 -> f0 (Product f g a b) # sequenceA :: Applicative f0 => Product f g a (f0 a0) -> f0 (Product f g a a0) # mapM :: Monad m => (a0 -> m b) -> Product f g a a0 -> m (Product f g a b) # sequence :: Monad m => Product f g a (m a0) -> m (Product f g a a0) # | |
(Traversable (f a), Traversable (g a)) => Traversable (Sum f g a) | |
Defined in Data.Bifunctor.Sum | |
(Traversable f, Bitraversable p) => Traversable (Tannen f p a) | |
Defined in Data.Bifunctor.Tannen Methods traverse :: Applicative f0 => (a0 -> f0 b) -> Tannen f p a a0 -> f0 (Tannen f p a b) # sequenceA :: Applicative f0 => Tannen f p a (f0 a0) -> f0 (Tannen f p a a0) # mapM :: Monad m => (a0 -> m b) -> Tannen f p a a0 -> m (Tannen f p a b) # sequence :: Monad m => Tannen f p a (m a0) -> m (Tannen f p a a0) # | |
(Bitraversable p, Traversable g) => Traversable (Biff p f g a) | |
Defined in Data.Bifunctor.Biff Methods traverse :: Applicative f0 => (a0 -> f0 b) -> Biff p f g a a0 -> f0 (Biff p f g a b) # sequenceA :: Applicative f0 => Biff p f g a (f0 a0) -> f0 (Biff p f g a a0) # mapM :: Monad m => (a0 -> m b) -> Biff p f g a a0 -> m (Biff p f g a b) # sequence :: Monad m => Biff p f g a (m a0) -> m (Biff p f g a a0) # |
trace :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Lens' (QDiagram b v n m) (Trace v n) #
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
You can alternatively define sconcat
instead of (<>
), in which case the
laws are:
Since: base-4.9.0.0
Methods
(<>) :: a -> a -> a infixr 6 #
An associative operation.
Examples
>>>
[1,2,3] <> [4,5,6]
[1,2,3,4,5,6]
>>>
Just [1, 2, 3] <> Just [4, 5, 6]
Just [1,2,3,4,5,6]
>>>
putStr "Hello, " <> putStrLn "World!"
Hello, World!
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
Examples
For the following examples, we will assume that we have:
>>>
import Data.List.NonEmpty (NonEmpty (..))
>>>
sconcat $ "Hello" :| [" ", "Haskell", "!"]
"Hello Haskell!"
>>>
sconcat $ Just [1, 2, 3] :| [Nothing, Just [4, 5, 6]]
Just [1,2,3,4,5,6]
>>>
sconcat $ Left 1 :| [Right 2, Left 3, Right 4]
Right 2
stimes :: Integral b => b -> a -> a #
Repeat a value n
times.
The default definition will raise an exception for a multiplier that is <= 0
.
This may be overridden with an implementation that is total. For monoids
it is preferred to use stimesMonoid
.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by
picking stimes =
or stimesIdempotent
stimes =
respectively.stimesIdempotentMonoid
Examples
>>>
stimes 4 [1]
[1,1,1,1]
>>>
stimes 5 (putStr "hi!")
hi!hi!hi!hi!hi!
>>>
stimes 3 (Right ":)")
Right ":)"
Instances
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- Identity
pure
id
<*>
v = v- Composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- Homomorphism
pure
f<*>
pure
x =pure
(f x)- Interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Example
Used in combination with (
, <$>
)(
can be used to build a record.<*>
)
>>>
data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>
produceFoo :: Applicative f => f Foo
>>>
produceBar :: Applicative f => f Bar
>>>
produceBaz :: Applicative f => f Baz
>>>
mkState :: Applicative f => f MyState
>>>
mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*>
and fmap
.
Example
>>>
liftA2 (,) (Just 3) (Just 5)
Just (3,5)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe
,
you can chain Maybe computations, with a possible "early return"
in case of Nothing
.
>>>
Just 2 *> Just 3
Just 3
>>>
Nothing *> Just 3
Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>
import Data.Char
>>>
import Text.ParserCombinators.ReadP
>>>
let p = string "my name is " *> munch1 isAlpha <* eof
>>>
readP_to_S p "my name is Simon"
[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
Applicative Active | |
Applicative Duration | |
Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN = ZipList (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Complex | Since: base-4.9.0.0 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative First | Since: base-4.8.0.0 |
Applicative Last | Since: base-4.8.0.0 |
Applicative Down | Since: base-4.11.0.0 |
Applicative First | Since: base-4.9.0.0 |
Applicative Last | Since: base-4.9.0.0 |
Applicative Max | Since: base-4.9.0.0 |
Applicative Min | Since: base-4.9.0.0 |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative STM | Since: base-4.8.0.0 |
Applicative NoIO | Since: base-4.8.0.0 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative P | Since: base-4.5.0.0 |
Applicative ReadP | Since: base-4.6.0.0 |
Applicative ReadPrec | Since: base-4.6.0.0 |
Applicative MarkupM | |
Applicative Put | |
Applicative StyleM | |
Applicative RGB | |
Applicative Seq | Since: containers-0.5.4 |
Applicative Tree | |
Applicative Angle | |
Applicative IO | Since: base-2.1 |
Applicative Compiler | |
Applicative Rules | |
Applicative Interval | |
Applicative Plucker | |
Applicative Quaternion | |
Defined in Linear.Quaternion | |
Applicative V0 | |
Applicative V1 | |
Applicative V2 | |
Applicative V3 | |
Applicative V4 | |
Applicative PandocPure | |
Defined in Text.Pandoc.Class.PandocPure | |
Applicative Array | |
Applicative SmallArray | |
Defined in Data.Primitive.SmallArray | |
Applicative Q | |
Applicative Vector | |
Applicative Vector | |
Applicative Stream | |
Applicative Maybe | Since: base-2.1 |
Applicative Solo | Since: base-4.15 |
Applicative [] | Since: base-2.1 |
Representable f => Applicative (Co f) | |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Either e) | Since: base-3.0 |
Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Applicative (ST s) | Since: base-4.4.0.0 |
Applicative (Measured n) | |
Defined in Diagrams.Core.Measure | |
Alternative f => Applicative (Cofree f) | |
Functor f => Applicative (Free f) | |
Applicative f => Applicative (Yoneda f) | |
Applicative f => Applicative (Indexing f) | |
Defined in Control.Lens.Internal.Indexed | |
Applicative f => Applicative (Indexing64 f) | |
Defined in Control.Lens.Internal.Indexed | |
Applicative (ReifiedFold s) | |
Defined in Control.Lens.Reified Methods pure :: a -> ReifiedFold s a # (<*>) :: ReifiedFold s (a -> b) -> ReifiedFold s a -> ReifiedFold s b # liftA2 :: (a -> b -> c) -> ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s c # (*>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b # (<*) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s a # | |
Applicative (ReifiedGetter s) | |
Defined in Control.Lens.Reified Methods pure :: a -> ReifiedGetter s a # (<*>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b # liftA2 :: (a -> b -> c) -> ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s c # (*>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b # (<*) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a # | |
Applicative f => Applicative (Point f) | |
Applicative m => Applicative (WithDefaultPartials m) | |
Defined in Text.Pandoc.Templates Methods pure :: a -> WithDefaultPartials m a # (<*>) :: WithDefaultPartials m (a -> b) -> WithDefaultPartials m a -> WithDefaultPartials m b # liftA2 :: (a -> b -> c) -> WithDefaultPartials m a -> WithDefaultPartials m b -> WithDefaultPartials m c # (*>) :: WithDefaultPartials m a -> WithDefaultPartials m b -> WithDefaultPartials m b # (<*) :: WithDefaultPartials m a -> WithDefaultPartials m b -> WithDefaultPartials m a # | |
Applicative m => Applicative (WithPartials m) | |
Defined in Text.Pandoc.Templates Methods pure :: a -> WithPartials m a # (<*>) :: WithPartials m (a -> b) -> WithPartials m a -> WithPartials m b # liftA2 :: (a -> b -> c) -> WithPartials m a -> WithPartials m b -> WithPartials m c # (*>) :: WithPartials m a -> WithPartials m b -> WithPartials m b # (<*) :: WithPartials m a -> WithPartials m b -> WithPartials m a # | |
Apply f => Applicative (MaybeApply f) | |
Defined in Data.Functor.Bind.Class | |
Applicative f => Applicative (WrappedApplicative f) | |
Defined in Data.Functor.Bind.Class Methods pure :: a -> WrappedApplicative f a # (<*>) :: WrappedApplicative f (a -> b) -> WrappedApplicative f a -> WrappedApplicative f b # liftA2 :: (a -> b -> c) -> WrappedApplicative f a -> WrappedApplicative f b -> WrappedApplicative f c # (*>) :: WrappedApplicative f a -> WrappedApplicative f b -> WrappedApplicative f b # (<*) :: WrappedApplicative f a -> WrappedApplicative f b -> WrappedApplicative f a # | |
Semigroup a => Applicative (These a) | |
Applicative (IParser t) | |
Semigroup a => Applicative (These a) | |
Applicative f => Applicative (Lift f) | A combination is |
(Functor m, Monad m) => Applicative (MaybeT m) | |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
Applicative f => Applicative (Ap f) | Since: base-4.12.0.0 |
Applicative f => Applicative (Alt f) | Since: base-4.8.0.0 |
(Generic1 f, Applicative (Rep1 f)) => Applicative (Generically1 f) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods pure :: a -> Generically1 f a # (<*>) :: Generically1 f (a -> b) -> Generically1 f a -> Generically1 f b # liftA2 :: (a -> b -> c) -> Generically1 f a -> Generically1 f b -> Generically1 f c # (*>) :: Generically1 f a -> Generically1 f b -> Generically1 f b # (<*) :: Generically1 f a -> Generically1 f b -> Generically1 f a # | |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
Biapplicative p => Applicative (Fix p) | |
Biapplicative p => Applicative (Join p) | |
(Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
Applicative (Query v n) | |
(Alternative f, Applicative w) => Applicative (CofreeT f w) | |
Defined in Control.Comonad.Trans.Cofree | |
(Functor f, Monad m) => Applicative (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
Applicative f => Applicative (Indexing f) | |
(Applicative f, Applicative g) => Applicative (Day f g) | |
(Functor g, g ~ h) => Applicative (Curried g h) | |
Defined in Data.Functor.Day.Curried | |
Applicative (Indexed i a) | |
Defined in Control.Lens.Internal.Indexed | |
Applicative (Flows i b) | |
Defined in Control.Lens.Internal.Level | |
Applicative (Mafic a b) | |
Defined in Control.Lens.Internal.Magma | |
Monoid m => Applicative (Holes t m) | |
Dim n => Applicative (V n) | |
(Applicative (Rep p), Representable p) => Applicative (Prep p) | |
(Profunctor p, Arrow p) => Applicative (Tambara p a) | |
Defined in Data.Profunctor.Strong | |
Applicative (Tagged s) | |
Applicative f => Applicative (Backwards f) | Apply |
Defined in Control.Applicative.Backwards | |
(Monoid w, Functor m, Monad m) => Applicative (AccumT w m) | |
Defined in Control.Monad.Trans.Accum | |
(Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
(Functor m, Monad m) => Applicative (SelectT r m) | |
Defined in Control.Monad.Trans.Select | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
(Functor m, Monad m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.CPS | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
Monoid a => Applicative (Constant a :: Type -> Type) | |
Defined in Data.Functor.Constant | |
Applicative f => Applicative (Reverse f) | Derived instance. |
(Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
(Applicative f, Applicative g) => Applicative (Product f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product | |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
(Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Applicative (Bazaar p a b) | |
Defined in Control.Lens.Internal.Bazaar Methods pure :: a0 -> Bazaar p a b a0 # (<*>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0 # liftA2 :: (a0 -> b0 -> c) -> Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b c # (*>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0 # (<*) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0 # | |
Applicative (Molten i a b) | |
Defined in Control.Lens.Internal.Magma Methods pure :: a0 -> Molten i a b a0 # (<*>) :: Molten i a b (a0 -> b0) -> Molten i a b a0 -> Molten i a b b0 # liftA2 :: (a0 -> b0 -> c) -> Molten i a b a0 -> Molten i a b b0 -> Molten i a b c # (*>) :: Molten i a b a0 -> Molten i a b b0 -> Molten i a b b0 # (<*) :: Molten i a b a0 -> Molten i a b b0 -> Molten i a b a0 # | |
Applicative (Costar f a) | |
Defined in Data.Profunctor.Types | |
Applicative f => Applicative (Star f a) | |
Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
(Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
Applicative ((->) r) | Since: base-2.1 |
(Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
Applicative (BazaarT p g a b) | |
Defined in Control.Lens.Internal.Bazaar Methods pure :: a0 -> BazaarT p g a b a0 # (<*>) :: BazaarT p g a b (a0 -> b0) -> BazaarT p g a b a0 -> BazaarT p g a b b0 # liftA2 :: (a0 -> b0 -> c) -> BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b c # (*>) :: BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b b0 # (<*) :: BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b a0 # | |
Applicative (TakingWhile p f a b) | |
Defined in Control.Lens.Internal.Magma Methods pure :: a0 -> TakingWhile p f a b a0 # (<*>) :: TakingWhile p f a b (a0 -> b0) -> TakingWhile p f a b a0 -> TakingWhile p f a b b0 # liftA2 :: (a0 -> b0 -> c) -> TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b c # (*>) :: TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b b0 # (<*) :: TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b a0 # | |
Reifies s (ReifiedApplicative f) => Applicative (ReflectedApplicative f s) | |
Defined in Data.Reflection Methods pure :: a -> ReflectedApplicative f s a # (<*>) :: ReflectedApplicative f s (a -> b) -> ReflectedApplicative f s a -> ReflectedApplicative f s b # liftA2 :: (a -> b -> c) -> ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s c # (*>) :: ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s b # (<*) :: ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s a # | |
(Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.CPS | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict |
liftA :: Applicative f => (a -> b) -> f a -> f b #
Lift a function to actions.
Equivalent to Functor's fmap
but implemented using only Applicative
's methods:
liftA
f a = pure
f <*>
a
As such this function may be used to implement a Functor
instance from an Applicative
one.
Examples
Using the Applicative instance for Lists:
>>>
liftA (+1) [1, 2]
[2,3]
Or the Applicative instance for Maybe
>>>
liftA (+1) (Just 3)
Just 4
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
adjust :: (N t ~ n, Sectionable t, HasArcLength t, Fractional n) => t -> AdjustOpts n -> t #
(&) :: a -> (a -> b) -> b infixl 1 #
&
is a reverse application operator. This provides notational
convenience. Its precedence is one higher than that of the forward
application operator $
, which allows &
to be nested in $
.
This is a version of
, where flip
id
id
is specialized from a -> a
to (a -> b) -> (a -> b)
which by the associativity of (->)
is (a -> b) -> a -> b
.
flipping this yields a -> (a -> b) -> b
which is the type signature of &
Examples
>>>
5 & (+1) & show
"6"
>>>
sqrt $ [1 / n^2 | n <- [1..1000]] & sum & (*6)
3.1406380562059946
Since: base-4.8.0.0
data (a :: k) :~: (b :: k) where infix 4 #
Propositional equality. If a :~: b
is inhabited by some terminating
value, then the type a
is the same as the type b
. To use this equality
in practice, pattern-match on the a :~: b
to get out the Refl
constructor;
in the body of the pattern-match, the compiler knows that a ~ b
.
Since: base-4.7.0.0
Instances
Category ((:~:) :: k -> k -> Type) | Since: base-4.7.0.0 |
TestCoercion ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
TestEquality ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
NFData2 ((:~:) :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData1 ((:~:) a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
(a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
a ~ b => Enum (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality Methods succ :: (a :~: b) -> a :~: b # pred :: (a :~: b) -> a :~: b # fromEnum :: (a :~: b) -> Int # enumFrom :: (a :~: b) -> [a :~: b] # enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] # enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] # | |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Show (a :~: b) | Since: base-4.7.0.0 |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq (a :~: b) | Since: base-4.7.0.0 |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality |
apply :: Transformation v n -> v n -> v n #
The Min
Monoid
and Semigroup
always choose the smaller element as
by the Ord
instance and min
of the contained type.
Examples
>>>
Min 42 <> Min 3
Min 3
>>>
sconcat $ Min 1 :| [ Min n | n <- [2 .. 100]]
Min {getMin = 1}
Instances
MonadFix Min | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
Foldable Min | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldMap' :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |||||
Foldable1 Min | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Min m -> m # foldMap1 :: Semigroup m => (a -> m) -> Min a -> m # foldMap1' :: Semigroup m => (a -> m) -> Min a -> m # toNonEmpty :: Min a -> NonEmpty a # maximum :: Ord a => Min a -> a # minimum :: Ord a => Min a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Min a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Min a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Min a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Min a -> b # | |||||
Traversable Min | Since: base-4.9.0.0 | ||||
Applicative Min | Since: base-4.9.0.0 | ||||
Functor Min | Since: base-4.9.0.0 | ||||
Monad Min | Since: base-4.9.0.0 | ||||
NFData1 Min | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Apply Min | |||||
Bind Min | |||||
Traversable1 Min | |||||
Generic1 Min | |||||
Defined in Data.Semigroup Associated Types
| |||||
Unbox a => Vector Vector (Min a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Min a) -> ST s (Vector (Min a)) basicUnsafeThaw :: Vector (Min a) -> ST s (Mutable Vector s (Min a)) basicLength :: Vector (Min a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Min a) -> Vector (Min a) basicUnsafeIndexM :: Vector (Min a) -> Int -> Box (Min a) basicUnsafeCopy :: Mutable Vector s (Min a) -> Vector (Min a) -> ST s () | |||||
Unbox a => MVector MVector (Min a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Min a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Min a) -> MVector s (Min a) basicOverlaps :: MVector s (Min a) -> MVector s (Min a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Min a)) basicInitialize :: MVector s (Min a) -> ST s () basicUnsafeReplicate :: Int -> Min a -> ST s (MVector s (Min a)) basicUnsafeRead :: MVector s (Min a) -> Int -> ST s (Min a) basicUnsafeWrite :: MVector s (Min a) -> Int -> Min a -> ST s () basicClear :: MVector s (Min a) -> ST s () basicSet :: MVector s (Min a) -> Min a -> ST s () basicUnsafeCopy :: MVector s (Min a) -> MVector s (Min a) -> ST s () basicUnsafeMove :: MVector s (Min a) -> MVector s (Min a) -> ST s () basicUnsafeGrow :: MVector s (Min a) -> Int -> ST s (MVector s (Min a)) | |||||
Data a => Data (Min a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) # dataTypeOf :: Min a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # | |||||
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 | ||||
Ord a => Semigroup (Min a) | Since: base-4.9.0.0 | ||||
Bounded a => Bounded (Min a) | Since: base-4.9.0.0 | ||||
Enum a => Enum (Min a) | Since: base-4.9.0.0 | ||||
Generic (Min a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Num a => Num (Min a) | Since: base-4.9.0.0 | ||||
Read a => Read (Min a) | Since: base-4.9.0.0 | ||||
Show a => Show (Min a) | Since: base-4.9.0.0 | ||||
Binary a => Binary (Min a) | Since: binary-0.8.4.0 | ||||
NFData a => NFData (Min a) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Min a) | Since: base-4.9.0.0 | ||||
Ord a => Ord (Min a) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (Min a) | |||||
Defined in Data.Hashable.Class | |||||
Wrapped (Min a) | |||||
Unbox a => Unbox (Min a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ Min b => Rewrapped (Min a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep1 Min | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
newtype MVector s (Min a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Min a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
type Unwrapped (Min a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (Min a) | |||||
Defined in Data.Vector.Unboxed.Base |
The Max
Monoid
and Semigroup
always choose the bigger element as
by the Ord
instance and max
of the contained type.
Examples
>>>
Max 42 <> Max 3
Max 42
>>>
sconcat $ Max 1 :| [ Max n | n <- [2 .. 100]]
Max {getMax = 100}
Instances
MonadFix Max | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
Foldable Max | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldMap' :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |||||
Foldable1 Max | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Max m -> m # foldMap1 :: Semigroup m => (a -> m) -> Max a -> m # foldMap1' :: Semigroup m => (a -> m) -> Max a -> m # toNonEmpty :: Max a -> NonEmpty a # maximum :: Ord a => Max a -> a # minimum :: Ord a => Max a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Max a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Max a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Max a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Max a -> b # | |||||
Traversable Max | Since: base-4.9.0.0 | ||||
Applicative Max | Since: base-4.9.0.0 | ||||
Functor Max | Since: base-4.9.0.0 | ||||
Monad Max | Since: base-4.9.0.0 | ||||
NFData1 Max | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Apply Max | |||||
Bind Max | |||||
Traversable1 Max | |||||
Generic1 Max | |||||
Defined in Data.Semigroup Associated Types
| |||||
Unbox a => Vector Vector (Max a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Max a) -> ST s (Vector (Max a)) basicUnsafeThaw :: Vector (Max a) -> ST s (Mutable Vector s (Max a)) basicLength :: Vector (Max a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Max a) -> Vector (Max a) basicUnsafeIndexM :: Vector (Max a) -> Int -> Box (Max a) basicUnsafeCopy :: Mutable Vector s (Max a) -> Vector (Max a) -> ST s () | |||||
Unbox a => MVector MVector (Max a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Max a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Max a) -> MVector s (Max a) basicOverlaps :: MVector s (Max a) -> MVector s (Max a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Max a)) basicInitialize :: MVector s (Max a) -> ST s () basicUnsafeReplicate :: Int -> Max a -> ST s (MVector s (Max a)) basicUnsafeRead :: MVector s (Max a) -> Int -> ST s (Max a) basicUnsafeWrite :: MVector s (Max a) -> Int -> Max a -> ST s () basicClear :: MVector s (Max a) -> ST s () basicSet :: MVector s (Max a) -> Max a -> ST s () basicUnsafeCopy :: MVector s (Max a) -> MVector s (Max a) -> ST s () basicUnsafeMove :: MVector s (Max a) -> MVector s (Max a) -> ST s () basicUnsafeGrow :: MVector s (Max a) -> Int -> ST s (MVector s (Max a)) | |||||
Data a => Data (Max a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) # dataTypeOf :: Max a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # | |||||
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 | ||||
Ord a => Semigroup (Max a) | Since: base-4.9.0.0 | ||||
Bounded a => Bounded (Max a) | Since: base-4.9.0.0 | ||||
Enum a => Enum (Max a) | Since: base-4.9.0.0 | ||||
Generic (Max a) | |||||
Defined in Data.Semigroup Associated Types
| |||||
Num a => Num (Max a) | Since: base-4.9.0.0 | ||||
Read a => Read (Max a) | Since: base-4.9.0.0 | ||||
Show a => Show (Max a) | Since: base-4.9.0.0 | ||||
Binary a => Binary (Max a) | Since: binary-0.8.4.0 | ||||
NFData a => NFData (Max a) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Max a) | Since: base-4.9.0.0 | ||||
Ord a => Ord (Max a) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (Max a) | |||||
Defined in Data.Hashable.Class | |||||
Wrapped (Max a) | |||||
Unbox a => Unbox (Max a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ Max b => Rewrapped (Max a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep1 Max | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
newtype MVector s (Max a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Max a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
type Unwrapped (Max a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (Max a) | |||||
Defined in Data.Vector.Unboxed.Base |
to :: (Profunctor p, Contravariant f) => (s -> a) -> Optic' p f s a #
Boolean monoid under conjunction (&&)
.
All x <> All y = All (x && y)
Examples
>>>
All True <> mempty <> All False)
All {getAll = False}
>>>
mconcat (map (\x -> All (even x)) [2,4,6,7,8])
All {getAll = False}
>>>
All True <> mempty
All {getAll = True}
Instances
Data All | Since: base-4.8.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |||||
Monoid All | Since: base-2.1 | ||||
Semigroup All | Since: base-4.9.0.0 | ||||
Bounded All | Since: base-2.1 | ||||
Generic All | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Read All | Since: base-2.1 | ||||
Show All | Since: base-2.1 | ||||
Binary All | Since: binary-0.8.4.0 | ||||
Default All | |||||
Defined in Data.Default.Class | |||||
NFData All | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq All | Since: base-2.1 | ||||
Ord All | Since: base-2.1 | ||||
AsEmpty All | |||||
Defined in Control.Lens.Empty | |||||
Wrapped All | |||||
Unbox All | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ All => Rewrapped All t | |||||
Defined in Control.Lens.Wrapped | |||||
Vector Vector All | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s All -> ST s (Vector All) basicUnsafeThaw :: Vector All -> ST s (Mutable Vector s All) basicLength :: Vector All -> Int basicUnsafeSlice :: Int -> Int -> Vector All -> Vector All basicUnsafeIndexM :: Vector All -> Int -> Box All basicUnsafeCopy :: Mutable Vector s All -> Vector All -> ST s () | |||||
MVector MVector All | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s All -> Int basicUnsafeSlice :: Int -> Int -> MVector s All -> MVector s All basicOverlaps :: MVector s All -> MVector s All -> Bool basicUnsafeNew :: Int -> ST s (MVector s All) basicInitialize :: MVector s All -> ST s () basicUnsafeReplicate :: Int -> All -> ST s (MVector s All) basicUnsafeRead :: MVector s All -> Int -> ST s All basicUnsafeWrite :: MVector s All -> Int -> All -> ST s () basicClear :: MVector s All -> ST s () basicSet :: MVector s All -> All -> ST s () basicUnsafeCopy :: MVector s All -> MVector s All -> ST s () basicUnsafeMove :: MVector s All -> MVector s All -> ST s () basicUnsafeGrow :: MVector s All -> Int -> ST s (MVector s All) | |||||
RealFloat n => HasQuery (Clip n) All | |||||
type Rep All | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
type Unwrapped All | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector All | |||||
newtype MVector s All | |||||
The monoid of endomorphisms under composition.
Endo f <> Endo g == Endo (f . g)
Examples
>>>
let computation = Endo ("Hello, " ++) <> Endo (++ "!")
>>>
appEndo computation "Haskell"
"Hello, Haskell!"
>>>
let computation = Endo (*3) <> Endo (+1)
>>>
appEndo computation 1
6
Instances
Monoid (Endo a) | Since: base-2.1 | ||||
Semigroup (Endo a) | Since: base-4.9.0.0 | ||||
Generic (Endo a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Default (Endo a) | |||||
Defined in Data.Default.Class | |||||
Wrapped (Endo a) | |||||
t ~ Endo b => Rewrapped (Endo a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep (Endo a) | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
type Unwrapped (Endo a) | |||||
Defined in Control.Lens.Wrapped |
The dual of a Monoid
, obtained by swapping the arguments of (<>)
.
Dual a <> Dual b == Dual (b <> a)
Examples
>>>
Dual "Hello" <> Dual "World"
Dual {getDual = "WorldHello"}
>>>
Dual (Dual "Hello") <> Dual (Dual "World")
Dual {getDual = Dual {getDual = "HelloWorld"}}
Instances
Representable Dual | |||||
Defined in Data.Functor.Rep Associated Types
| |||||
MonadFix Dual | Since: base-4.8.0.0 | ||||
Defined in Control.Monad.Fix | |||||
MonadZip Dual | Since: base-4.8.0.0 | ||||
Foldable Dual | Since: base-4.8.0.0 | ||||
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |||||
Foldable1 Dual | Since: base-4.18.0.0 | ||||
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Dual m -> m # foldMap1 :: Semigroup m => (a -> m) -> Dual a -> m # foldMap1' :: Semigroup m => (a -> m) -> Dual a -> m # toNonEmpty :: Dual a -> NonEmpty a # maximum :: Ord a => Dual a -> a # minimum :: Ord a => Dual a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Dual a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Dual a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Dual a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Dual a -> b # | |||||
Traversable Dual | Since: base-4.8.0.0 | ||||
Applicative Dual | Since: base-4.8.0.0 | ||||
Functor Dual | Since: base-4.8.0.0 | ||||
Monad Dual | Since: base-4.8.0.0 | ||||
NFData1 Dual | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Apply Dual | |||||
Bind Dual | |||||
Traversable1 Dual | |||||
Generic1 Dual | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Unbox a => Vector Vector (Dual a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Dual a) -> ST s (Vector (Dual a)) basicUnsafeThaw :: Vector (Dual a) -> ST s (Mutable Vector s (Dual a)) basicLength :: Vector (Dual a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Dual a) -> Vector (Dual a) basicUnsafeIndexM :: Vector (Dual a) -> Int -> Box (Dual a) basicUnsafeCopy :: Mutable Vector s (Dual a) -> Vector (Dual a) -> ST s () | |||||
Unbox a => MVector MVector (Dual a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Dual a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Dual a) -> MVector s (Dual a) basicOverlaps :: MVector s (Dual a) -> MVector s (Dual a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Dual a)) basicInitialize :: MVector s (Dual a) -> ST s () basicUnsafeReplicate :: Int -> Dual a -> ST s (MVector s (Dual a)) basicUnsafeRead :: MVector s (Dual a) -> Int -> ST s (Dual a) basicUnsafeWrite :: MVector s (Dual a) -> Int -> Dual a -> ST s () basicClear :: MVector s (Dual a) -> ST s () basicSet :: MVector s (Dual a) -> Dual a -> ST s () basicUnsafeCopy :: MVector s (Dual a) -> MVector s (Dual a) -> ST s () basicUnsafeMove :: MVector s (Dual a) -> MVector s (Dual a) -> ST s () basicUnsafeGrow :: MVector s (Dual a) -> Int -> ST s (MVector s (Dual a)) | |||||
Data a => Data (Dual a) | Since: base-4.8.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |||||
Monoid a => Monoid (Dual a) | Since: base-2.1 | ||||
Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 | ||||
Bounded a => Bounded (Dual a) | Since: base-2.1 | ||||
Generic (Dual a) | |||||
Defined in Data.Semigroup.Internal Associated Types
| |||||
Read a => Read (Dual a) | Since: base-2.1 | ||||
Show a => Show (Dual a) | Since: base-2.1 | ||||
Binary a => Binary (Dual a) | Since: binary-0.8.4.0 | ||||
Default a => Default (Dual a) | |||||
Defined in Data.Default.Class | |||||
NFData a => NFData (Dual a) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Dual a) | Since: base-2.1 | ||||
Ord a => Ord (Dual a) | Since: base-2.1 | ||||
AsEmpty a => AsEmpty (Dual a) | |||||
Defined in Control.Lens.Empty | |||||
Wrapped (Dual a) | |||||
Unbox a => Unbox (Dual a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ Dual b => Rewrapped (Dual a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep Dual | |||||
Defined in Data.Functor.Rep type Rep Dual = () | |||||
type Rep1 Dual | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
newtype MVector s (Dual a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Dual a) | Since: base-4.7.0.0 | ||||
Defined in Data.Semigroup.Internal | |||||
type Unwrapped (Dual a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (Dual a) | |||||
Defined in Data.Vector.Unboxed.Base |
stimesMonoid :: (Integral b, Monoid a) => b -> a -> a #
The Const
functor.
Instances
Generic1 (Const a :: k -> Type) | |||||
Defined in Data.Functor.Const Associated Types
| |||||
FoldableWithIndex Void (Const e :: Type -> Type) | |||||
Defined in WithIndex | |||||
FunctorWithIndex Void (Const e :: Type -> Type) | |||||
TraversableWithIndex Void (Const e :: Type -> Type) | |||||
Unbox a => Vector Vector (Const a b) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Const a b) -> ST s (Vector (Const a b)) basicUnsafeThaw :: Vector (Const a b) -> ST s (Mutable Vector s (Const a b)) basicLength :: Vector (Const a b) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b) basicUnsafeIndexM :: Vector (Const a b) -> Int -> Box (Const a b) basicUnsafeCopy :: Mutable Vector s (Const a b) -> Vector (Const a b) -> ST s () | |||||
Unbox a => MVector MVector (Const a b) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Const a b) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b) basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Const a b)) basicInitialize :: MVector s (Const a b) -> ST s () basicUnsafeReplicate :: Int -> Const a b -> ST s (MVector s (Const a b)) basicUnsafeRead :: MVector s (Const a b) -> Int -> ST s (Const a b) basicUnsafeWrite :: MVector s (Const a b) -> Int -> Const a b -> ST s () basicClear :: MVector s (Const a b) -> ST s () basicSet :: MVector s (Const a b) -> Const a b -> ST s () basicUnsafeCopy :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () basicUnsafeMove :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () basicUnsafeGrow :: MVector s (Const a b) -> Int -> ST s (MVector s (Const a b)) | |||||
Bifoldable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 | ||||
Bifoldable1 (Const :: Type -> Type -> Type) | |||||
Defined in Data.Bifoldable1 | |||||
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 | ||||
Bitraversable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 | ||||
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) # | |||||
Eq2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
Ord2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] # | |||||
Show2 (Const :: Type -> Type -> Type) | Since: base-4.9.0.0 | ||||
NFData2 (Const :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Hashable2 (Const :: Type -> Type -> Type) | |||||
Defined in Data.Hashable.Class | |||||
Biapply (Const :: Type -> Type -> Type) | |||||
Bitraversable1 (Const :: Type -> Type -> Type) | |||||
Defined in Data.Semigroup.Traversable.Class Methods bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Const a c -> f (Const b d) bisequence1 :: Apply f => Const (f a) (f b) -> f (Const a b) | |||||
Foldable (Const m :: Type -> Type) | Since: base-4.7.0.0 | ||||
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |||||
Eq a => Eq1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Ord a => Ord1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes | |||||
Read a => Read1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] # | |||||
Show a => Show1 (Const a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Contravariant (Const a :: Type -> Type) | |||||
Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 | ||||
Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 | ||||
Functor (Const m :: Type -> Type) | Since: base-2.1 | ||||
NFData a => NFData1 (Const a :: Type -> Type) | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Hashable a => Hashable1 (Const a :: Type -> Type) | |||||
Defined in Data.Hashable.Class | |||||
Semigroup m => Apply (Const m :: Type -> Type) | |||||
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 | ||||
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |||||
IsString a => IsString (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.String Methods fromString :: String -> Const a b # | |||||
Storable a => Storable (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const | |||||
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 | ||||
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 | ||||
Bits a => Bits (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |||||
FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |||||
Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 | ||||
Enum a => Enum (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |||||
Floating a => Floating (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |||||
RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |||||
Generic (Const a b) | |||||
Defined in Data.Functor.Const Associated Types
| |||||
Ix a => Ix (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int # inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int # | |||||
Num a => Num (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const | |||||
Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 | ||||
Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 | ||||
Integral a => Integral (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |||||
Real a => Real (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |||||
RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 | ||||
Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 | ||||
NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Const a b) | Since: base-4.9.0.0 | ||||
Ord a => Ord (Const a b) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (Const a b) | |||||
Defined in Data.Hashable.Class | |||||
Wrapped (Const a x) | |||||
Unbox a => Unbox (Const a b) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ Const a' x' => Rewrapped (Const a x) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const | |||||
newtype MVector s (Const a b) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Const a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Functor.Const | |||||
type Unwrapped (Const a x) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (Const a b) | |||||
Defined in Data.Vector.Unboxed.Base |
fromDynamic :: Dynamic a -> Active a #
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
Identity | |
Fields
|
Instances
newtype WrappedMonoid m #
Provide a Semigroup for an arbitrary Monoid.
NOTE: This is not needed anymore since Semigroup
became a superclass of
Monoid
in base-4.11 and this newtype be deprecated at some point in the future.
Constructors
WrapMonoid | |
Fields
|
Instances
NFData1 WrappedMonoid | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq Methods liftRnf :: (a -> ()) -> WrappedMonoid a -> () # | |||||
Generic1 WrappedMonoid | |||||
Defined in Data.Semigroup Associated Types
Methods from1 :: WrappedMonoid a -> Rep1 WrappedMonoid a # to1 :: Rep1 WrappedMonoid a -> WrappedMonoid a # | |||||
Unbox a => Vector Vector (WrappedMonoid a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (WrappedMonoid a) -> ST s (Vector (WrappedMonoid a)) basicUnsafeThaw :: Vector (WrappedMonoid a) -> ST s (Mutable Vector s (WrappedMonoid a)) basicLength :: Vector (WrappedMonoid a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (WrappedMonoid a) -> Vector (WrappedMonoid a) basicUnsafeIndexM :: Vector (WrappedMonoid a) -> Int -> Box (WrappedMonoid a) basicUnsafeCopy :: Mutable Vector s (WrappedMonoid a) -> Vector (WrappedMonoid a) -> ST s () elemseq :: Vector (WrappedMonoid a) -> WrappedMonoid a -> b -> b | |||||
Unbox a => MVector MVector (WrappedMonoid a) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (WrappedMonoid a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) basicOverlaps :: MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (WrappedMonoid a)) basicInitialize :: MVector s (WrappedMonoid a) -> ST s () basicUnsafeReplicate :: Int -> WrappedMonoid a -> ST s (MVector s (WrappedMonoid a)) basicUnsafeRead :: MVector s (WrappedMonoid a) -> Int -> ST s (WrappedMonoid a) basicUnsafeWrite :: MVector s (WrappedMonoid a) -> Int -> WrappedMonoid a -> ST s () basicClear :: MVector s (WrappedMonoid a) -> ST s () basicSet :: MVector s (WrappedMonoid a) -> WrappedMonoid a -> ST s () basicUnsafeCopy :: MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) -> ST s () basicUnsafeMove :: MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) -> ST s () basicUnsafeGrow :: MVector s (WrappedMonoid a) -> Int -> ST s (MVector s (WrappedMonoid a)) | |||||
Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) # toConstr :: WrappedMonoid m -> Constr # dataTypeOf :: WrappedMonoid m -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # | |||||
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |||||
Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |||||
Bounded m => Bounded (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup | |||||
Enum a => Enum (WrappedMonoid a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods succ :: WrappedMonoid a -> WrappedMonoid a # pred :: WrappedMonoid a -> WrappedMonoid a # toEnum :: Int -> WrappedMonoid a # fromEnum :: WrappedMonoid a -> Int # enumFrom :: WrappedMonoid a -> [WrappedMonoid a] # enumFromThen :: WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a] # enumFromTo :: WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a] # enumFromThenTo :: WrappedMonoid a -> WrappedMonoid a -> WrappedMonoid a -> [WrappedMonoid a] # | |||||
Generic (WrappedMonoid m) | |||||
Defined in Data.Semigroup Associated Types
Methods from :: WrappedMonoid m -> Rep (WrappedMonoid m) x # to :: Rep (WrappedMonoid m) x -> WrappedMonoid m # | |||||
Read m => Read (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods readsPrec :: Int -> ReadS (WrappedMonoid m) # readList :: ReadS [WrappedMonoid m] # readPrec :: ReadPrec (WrappedMonoid m) # readListPrec :: ReadPrec [WrappedMonoid m] # | |||||
Show m => Show (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods showsPrec :: Int -> WrappedMonoid m -> ShowS # show :: WrappedMonoid m -> String # showList :: [WrappedMonoid m] -> ShowS # | |||||
Binary m => Binary (WrappedMonoid m) | Since: binary-0.8.4.0 | ||||
Defined in Data.Binary.Class Methods put :: WrappedMonoid m -> Put # get :: Get (WrappedMonoid m) # putList :: [WrappedMonoid m] -> Put # | |||||
NFData m => NFData (WrappedMonoid m) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq Methods rnf :: WrappedMonoid m -> () # | |||||
Eq m => Eq (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods (==) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (/=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # | |||||
Ord m => Ord (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods compare :: WrappedMonoid m -> WrappedMonoid m -> Ordering # (<) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (<=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>) :: WrappedMonoid m -> WrappedMonoid m -> Bool # (>=) :: WrappedMonoid m -> WrappedMonoid m -> Bool # max :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # min :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # | |||||
Hashable a => Hashable (WrappedMonoid a) | |||||
Defined in Data.Hashable.Class | |||||
Wrapped (WrappedMonoid a) | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' (WrappedMonoid a) (Unwrapped (WrappedMonoid a)) # | |||||
Unbox a => Unbox (WrappedMonoid a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
t ~ WrappedMonoid b => Rewrapped (WrappedMonoid a) t | |||||
Defined in Control.Lens.Wrapped | |||||
type Rep1 WrappedMonoid | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup type Rep1 WrappedMonoid = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |||||
newtype MVector s (WrappedMonoid a) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (WrappedMonoid m) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup type Rep (WrappedMonoid m) = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m))) | |||||
type Unwrapped (WrappedMonoid a) | |||||
Defined in Control.Lens.Wrapped | |||||
newtype Vector (WrappedMonoid a) | |||||
Defined in Data.Vector.Unboxed.Base |
type ArgMax a b = Max (Arg a b) #
Examples
>>>
Max (Arg 0 ()) <> Max (Arg 1 ())
Max {getMax = Arg 1 ()}
>>>
maximum [ Arg (length name) name | name <- ["violencia", "lea", "pixie"]]
Arg 9 "violencia"
type ArgMin a b = Min (Arg a b) #
Examples
>>>
Min (Arg 0 ()) <> Min (Arg 1 ())
Min {getMin = Arg 0 ()}
>>>
minimum [ Arg (length name) name | name <- ["violencia", "lea", "pixie"]]
Arg 3 "lea"
Arg
isn't itself a Semigroup
in its own right, but it can be
placed inside Min
and Max
to compute an arg min or arg max.
Examples
>>>
minimum [ Arg (x * x) x | x <- [-10 .. 10] ]
Arg 0 0
>>>
maximum [ Arg (-0.2*x^2 + 1.5*x + 1) x | x <- [-10 .. 10] ]
Arg 3.8 4.0
>>>
minimum [ Arg (-0.2*x^2 + 1.5*x + 1) x | x <- [-10 .. 10] ]
Arg (-34.0) (-10.0)
Constructors
Arg | |
Instances
Bifoldable Arg | Since: base-4.10.0.0 | ||||
Bifoldable1 Arg | |||||
Defined in Data.Bifoldable1 | |||||
Bifunctor Arg | Since: base-4.9.0.0 | ||||
Bitraversable Arg | Since: base-4.10.0.0 | ||||
Defined in Data.Semigroup Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Arg a b -> f (Arg c d) # | |||||
NFData2 Arg | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
Biapply Arg | |||||
Bitraversable1 Arg | |||||
Defined in Data.Semigroup.Traversable.Class Methods bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Arg a c -> f (Arg b d) bisequence1 :: Apply f => Arg (f a) (f b) -> f (Arg a b) | |||||
Generic1 (Arg a :: Type -> Type) | |||||
Defined in Data.Semigroup Associated Types
| |||||
(Unbox a, Unbox b) => Vector Vector (Arg a b) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Arg a b) -> ST s (Vector (Arg a b)) basicUnsafeThaw :: Vector (Arg a b) -> ST s (Mutable Vector s (Arg a b)) basicLength :: Vector (Arg a b) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Arg a b) -> Vector (Arg a b) basicUnsafeIndexM :: Vector (Arg a b) -> Int -> Box (Arg a b) basicUnsafeCopy :: Mutable Vector s (Arg a b) -> Vector (Arg a b) -> ST s () | |||||
(Unbox a, Unbox b) => MVector MVector (Arg a b) | |||||
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Arg a b) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Arg a b) -> MVector s (Arg a b) basicOverlaps :: MVector s (Arg a b) -> MVector s (Arg a b) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Arg a b)) basicInitialize :: MVector s (Arg a b) -> ST s () basicUnsafeReplicate :: Int -> Arg a b -> ST s (MVector s (Arg a b)) basicUnsafeRead :: MVector s (Arg a b) -> Int -> ST s (Arg a b) basicUnsafeWrite :: MVector s (Arg a b) -> Int -> Arg a b -> ST s () basicClear :: MVector s (Arg a b) -> ST s () basicSet :: MVector s (Arg a b) -> Arg a b -> ST s () basicUnsafeCopy :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s () basicUnsafeMove :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s () basicUnsafeGrow :: MVector s (Arg a b) -> Int -> ST s (MVector s (Arg a b)) | |||||
Foldable (Arg a) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |||||
Traversable (Arg a) | Since: base-4.9.0.0 | ||||
Functor (Arg a) | Since: base-4.9.0.0 | ||||
NFData a => NFData1 (Arg a) | Since: deepseq-1.4.3.0 | ||||
Defined in Control.DeepSeq | |||||
(Data a, Data b) => Data (Arg a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) # toConstr :: Arg a b -> Constr # dataTypeOf :: Arg a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # | |||||
Generic (Arg a b) | |||||
Defined in Data.Semigroup Associated Types
| |||||
(Read a, Read b) => Read (Arg a b) | Since: base-4.9.0.0 | ||||
(Show a, Show b) => Show (Arg a b) | Since: base-4.9.0.0 | ||||
(Binary a, Binary b) => Binary (Arg a b) | Since: binary-0.8.4.0 | ||||
(NFData a, NFData b) => NFData (Arg a b) | Since: deepseq-1.4.2.0 | ||||
Defined in Control.DeepSeq | |||||
Eq a => Eq (Arg a b) | Since: base-4.9.0.0 | ||||
Ord a => Ord (Arg a b) | Since: base-4.9.0.0 | ||||
Hashable a => Hashable (Arg a b) | |||||
Defined in Data.Hashable.Class | |||||
(Unbox a, Unbox b) => Unbox (Arg a b) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep1 (Arg a :: Type -> Type) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup type Rep1 (Arg a :: Type -> Type) = D1 ('MetaData "Arg" "Data.Semigroup" "base" 'False) (C1 ('MetaCons "Arg" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |||||
newtype MVector s (Arg a b) | |||||
Defined in Data.Vector.Unboxed.Base | |||||
type Rep (Arg a b) | Since: base-4.9.0.0 | ||||
Defined in Data.Semigroup type Rep (Arg a b) = D1 ('MetaData "Arg" "Data.Semigroup" "base" 'False) (C1 ('MetaCons "Arg" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) | |||||
newtype Vector (Arg a b) | |||||
Defined in Data.Vector.Unboxed.Base |
diff :: Semigroup m => m -> Endo m #
This lets you use a difference list of a Semigroup
as a Monoid
.
Examples
let hello = diff "Hello, "
>>>
appEndo hello "World!"
"Hello, World!"
>>>
appEndo (hello <> mempty) "World!"
"Hello, World!"
>>>
appEndo (mempty <> hello) "World!"
"Hello, World!"
let world = diff "World" let excl = diff "!"
>>>
appEndo (hello <> (world <> excl)) mempty
"Hello, World!"
>>>
appEndo ((hello <> world) <> excl) mempty
"Hello, World!"
mtimesDefault :: (Integral b, Monoid a) => b -> a -> a #
Repeat a value n
times.
mtimesDefault n a = a <> a <> ... <> a -- using <> (n-1) times
In many cases,
for a stimes
0 aMonoid
will produce mempty
.
However, there are situations when it cannot do so. In particular,
the following situation is fairly common:
data T a = ... class Constraint1 a class Constraint1 a => Constraint2 a
instance Constraint1 a =>Semigroup
(T a) instance Constraint2 a =>Monoid
(T a)
Since Constraint1
is insufficient to implement mempty
,
stimes
for T a
cannot do so.
When working with such a type, or when working polymorphically with
Semigroup
instances, mtimesDefault
should be used when the
multiplier might be zero. It is implemented using stimes
when
the multiplier is nonzero and mempty
when it is zero.
Examples
>>>
mtimesDefault 0 "bark"
[]
>>>
mtimesDefault 3 "meow"
"meowmeowmeow"
conjugate :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Transformation v n -> Transformation v n #
class Contravariant (f :: Type -> Type) where #
The class of contravariant functors.
Whereas in Haskell, one can think of a Functor
as containing or producing
values, a contravariant functor is a functor that can be thought of as
consuming values.
As an example, consider the type of predicate functions a -> Bool
. One
such predicate might be negative x = x < 0
, which
classifies integers as to whether they are negative. However, given this
predicate, we can re-use it in other situations, providing we have a way to
map values to integers. For instance, we can use the negative
predicate
on a person's bank balance to work out if they are currently overdrawn:
newtype Predicate a = Predicate { getPredicate :: a -> Bool } instance Contravariant Predicate where contramap :: (a' -> a) -> (Predicate a -> Predicate a') contramap f (Predicate p) = Predicate (p . f) | `- First, map the input... `----- then apply the predicate. overdrawn :: Predicate Person overdrawn = contramap personBankBalance negative
Any instance should be subject to the following laws:
Note, that the second law follows from the free theorem of the type of
contramap
and the first law, so you need only check that the former
condition holds.
Minimal complete definition
Instances
Contravariant Comparison | A |
Defined in Data.Functor.Contravariant Methods contramap :: (a' -> a) -> Comparison a -> Comparison a' # (>$) :: b -> Comparison b -> Comparison a # | |
Contravariant Equivalence | Equivalence relations are |
Defined in Data.Functor.Contravariant Methods contramap :: (a' -> a) -> Equivalence a -> Equivalence a' # (>$) :: b -> Equivalence b -> Equivalence a # | |
Contravariant Predicate | A Without newtypes contramap :: (a' -> a) -> (Predicate a -> Predicate a') contramap f (Predicate g) = Predicate (g . f) |
Contravariant (Op a) | |
Contravariant (Proxy :: Type -> Type) | |
Contravariant (U1 :: Type -> Type) | |
Contravariant (V1 :: Type -> Type) | |
Contravariant f => Contravariant (Indexing f) | |
Defined in Control.Lens.Internal.Indexed | |
Contravariant f => Contravariant (Indexing64 f) | |
Defined in Control.Lens.Internal.Indexed | |
Contravariant m => Contravariant (MaybeT m) | |
Contravariant (Const a :: Type -> Type) | |
Contravariant f => Contravariant (Alt f) | |
Contravariant f => Contravariant (Rec1 f) | |
Contravariant f => Contravariant (AlongsideLeft f b) | |
Defined in Control.Lens.Internal.Getter | |
Contravariant f => Contravariant (AlongsideRight f a) | |
Defined in Control.Lens.Internal.Getter | |
Contravariant f => Contravariant (Backwards f) | Derived instance. |
Contravariant m => Contravariant (ExceptT e m) | |
Contravariant f => Contravariant (IdentityT f) | |
Contravariant m => Contravariant (ReaderT r m) | |
Contravariant m => Contravariant (StateT s m) | |
Contravariant m => Contravariant (StateT s m) | |
Contravariant m => Contravariant (WriterT w m) | |
Contravariant m => Contravariant (WriterT w m) | |
Contravariant (Constant a :: Type -> Type) | |
Contravariant f => Contravariant (Reverse f) | Derived instance. |
(Contravariant f, Contravariant g) => Contravariant (Product f g) | |
(Contravariant f, Contravariant g) => Contravariant (Sum f g) | |
(Contravariant f, Contravariant g) => Contravariant (f :*: g) | |
(Contravariant f, Contravariant g) => Contravariant (f :+: g) | |
Contravariant (K1 i c :: Type -> Type) | |
Contravariant (Forget r a :: Type -> Type) | |
Defined in Data.Profunctor.Types | |
Contravariant f => Contravariant (Star f a) | |
Defined in Data.Profunctor.Types | |
(Functor f, Contravariant g) => Contravariant (Compose f g) | |
(Functor f, Contravariant g) => Contravariant (f :.: g) | |
Contravariant f => Contravariant (M1 i c f) | |
(Profunctor p, Contravariant g) => Contravariant (BazaarT p g a b) | |
Defined in Control.Lens.Internal.Bazaar | |
(Profunctor p, Contravariant g) => Contravariant (BazaarT1 p g a b) | |
Defined in Control.Lens.Internal.Bazaar | |
(Profunctor p, Contravariant g) => Contravariant (PretextT p g a b) | |
Defined in Control.Lens.Internal.Context | |
Contravariant f => Contravariant (TakingWhile p f a b) | |
Defined in Control.Lens.Internal.Magma | |
Contravariant m => Contravariant (RWST r w s m) | |
Contravariant m => Contravariant (RWST r w s m) | |
phantom :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Monoid' m, Enveloped a, Traced a) => a -> QDiagram b v n m #
newtype E (t :: Type -> Type) #
Instances
FoldableWithIndex (E Plucker) Plucker | |
Defined in Linear.Plucker Methods ifoldMap :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m # ifoldMap' :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m # ifoldr :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b # ifoldl :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b # ifoldr' :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b # ifoldl' :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b # | |
FoldableWithIndex (E Quaternion) Quaternion | |
Defined in Linear.Quaternion Methods ifoldMap :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m # ifoldMap' :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m # ifoldr :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b # ifoldl :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b # ifoldr' :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b # ifoldl' :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b # | |
FoldableWithIndex (E V0) V0 | |
FoldableWithIndex (E V1) V1 | |
FoldableWithIndex (E V2) V2 | |
FoldableWithIndex (E V3) V3 | |
FoldableWithIndex (E V4) V4 | |
FunctorWithIndex (E Plucker) Plucker | |
Defined in Linear.Plucker | |
FunctorWithIndex (E Quaternion) Quaternion | |
Defined in Linear.Quaternion | |
FunctorWithIndex (E V0) V0 | |
FunctorWithIndex (E V1) V1 | |
FunctorWithIndex (E V2) V2 | |
FunctorWithIndex (E V3) V3 | |
FunctorWithIndex (E V4) V4 | |
TraversableWithIndex (E Plucker) Plucker | |
Defined in Linear.Plucker Methods itraverse :: Applicative f => (E Plucker -> a -> f b) -> Plucker a -> f (Plucker b) # | |
TraversableWithIndex (E Quaternion) Quaternion | |
Defined in Linear.Quaternion Methods itraverse :: Applicative f => (E Quaternion -> a -> f b) -> Quaternion a -> f (Quaternion b) # | |
TraversableWithIndex (E V0) V0 | |
Defined in Linear.V0 Methods itraverse :: Applicative f => (E V0 -> a -> f b) -> V0 a -> f (V0 b) # | |
TraversableWithIndex (E V1) V1 | |
Defined in Linear.V1 Methods itraverse :: Applicative f => (E V1 -> a -> f b) -> V1 a -> f (V1 b) # | |
TraversableWithIndex (E V2) V2 | |
TraversableWithIndex (E V3) V3 | |
TraversableWithIndex (E V4) V4 | |
Defined in Linear.V4 Methods itraverse :: Applicative f => (E V4 -> a -> f b) -> V4 a -> f (V4 b) # |
value :: forall m b (v :: Type -> Type) n. Monoid m => m -> QDiagram b v n Any -> QDiagram b v n m #
class Backend b (v :: Type -> Type) n where #
Minimal complete definition
Methods
adjustDia :: (Additive v, Monoid' m, Num n) => b -> Options b v n -> QDiagram b v n m -> (Options b v n, Transformation v n, QDiagram b v n m) #
renderRTree :: b -> Options b v n -> RTree b v n Annotation -> Result b v n #
Instances
Backend NullBackend v n | |||||||||||||
Defined in Diagrams.Core.Types Associated Types
Methods adjustDia :: (Additive v, Monoid' m, Num n) => NullBackend -> Options NullBackend v n -> QDiagram NullBackend v n m -> (Options NullBackend v n, Transformation v n, QDiagram NullBackend v n m) # renderRTree :: NullBackend -> Options NullBackend v n -> RTree NullBackend v n Annotation -> Result NullBackend v n # | |||||||||||||
SVGFloat n => Backend SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG Associated Types
|
newtype Point (f :: Type -> Type) a #
Constructors
P (f a) |
Instances
Generic1 (Point f :: Type -> Type) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Unbox (f a) => Vector Vector (Point f a) | |||||||||||||
Defined in Linear.Affine Methods basicUnsafeFreeze :: Mutable Vector s (Point f a) -> ST s (Vector (Point f a)) basicUnsafeThaw :: Vector (Point f a) -> ST s (Mutable Vector s (Point f a)) basicLength :: Vector (Point f a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Point f a) -> Vector (Point f a) basicUnsafeIndexM :: Vector (Point f a) -> Int -> Box (Point f a) basicUnsafeCopy :: Mutable Vector s (Point f a) -> Vector (Point f a) -> ST s () | |||||||||||||
Unbox (f a) => MVector MVector (Point f a) | |||||||||||||
Defined in Linear.Affine Methods basicLength :: MVector s (Point f a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Point f a) -> MVector s (Point f a) basicOverlaps :: MVector s (Point f a) -> MVector s (Point f a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Point f a)) basicInitialize :: MVector s (Point f a) -> ST s () basicUnsafeReplicate :: Int -> Point f a -> ST s (MVector s (Point f a)) basicUnsafeRead :: MVector s (Point f a) -> Int -> ST s (Point f a) basicUnsafeWrite :: MVector s (Point f a) -> Int -> Point f a -> ST s () basicClear :: MVector s (Point f a) -> ST s () basicSet :: MVector s (Point f a) -> Point f a -> ST s () basicUnsafeCopy :: MVector s (Point f a) -> MVector s (Point f a) -> ST s () basicUnsafeMove :: MVector s (Point f a) -> MVector s (Point f a) -> ST s () basicUnsafeGrow :: MVector s (Point f a) -> Int -> ST s (MVector s (Point f a)) | |||||||||||||
Representable f => Representable (Point f) | |||||||||||||
Defined in Linear.Affine Associated Types
| |||||||||||||
Foldable f => Foldable (Point f) | |||||||||||||
Defined in Linear.Affine Methods fold :: Monoid m => Point f m -> m # foldMap :: Monoid m => (a -> m) -> Point f a -> m # foldMap' :: Monoid m => (a -> m) -> Point f a -> m # foldr :: (a -> b -> b) -> b -> Point f a -> b # foldr' :: (a -> b -> b) -> b -> Point f a -> b # foldl :: (b -> a -> b) -> b -> Point f a -> b # foldl' :: (b -> a -> b) -> b -> Point f a -> b # foldr1 :: (a -> a -> a) -> Point f a -> a # foldl1 :: (a -> a -> a) -> Point f a -> a # elem :: Eq a => a -> Point f a -> Bool # maximum :: Ord a => Point f a -> a # minimum :: Ord a => Point f a -> a # | |||||||||||||
Eq1 f => Eq1 (Point f) | |||||||||||||
Ord1 f => Ord1 (Point f) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Read1 f => Read1 (Point f) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Show1 f => Show1 (Point f) | |||||||||||||
Traversable f => Traversable (Point f) | |||||||||||||
Applicative f => Applicative (Point f) | |||||||||||||
Functor f => Functor (Point f) | |||||||||||||
Monad f => Monad (Point f) | |||||||||||||
Serial1 f => Serial1 (Point f) | |||||||||||||
Defined in Linear.Affine Methods serializeWith :: MonadPut m => (a -> m ()) -> Point f a -> m () deserializeWith :: MonadGet m => m a -> m (Point f a) | |||||||||||||
HasPhi v => HasPhi (Point v) | |||||||||||||
HasTheta v => HasTheta (Point v) | |||||||||||||
(Metric v, OrderedField n) => TrailLike [Point v n] | |||||||||||||
HasR v => HasR (Point v) | |||||||||||||
Distributive f => Distributive (Point f) | |||||||||||||
Hashable1 f => Hashable1 (Point f) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Additive f => Affine (Point f) | |||||||||||||
Defined in Linear.Affine Associated Types
| |||||||||||||
Metric f => Metric (Point f) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Finite f => Finite (Point f) | |||||||||||||
Defined in Linear.Affine Associated Types
| |||||||||||||
R1 f => R1 (Point f) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
R2 f => R2 (Point f) | |||||||||||||
R3 f => R3 (Point f) | |||||||||||||
R4 f => R4 (Point f) | |||||||||||||
Additive f => Additive (Point f) | |||||||||||||
Defined in Linear.Affine Methods (^+^) :: Num a => Point f a -> Point f a -> Point f a # (^-^) :: Num a => Point f a -> Point f a -> Point f a # lerp :: Num a => a -> Point f a -> Point f a -> Point f a # liftU2 :: (a -> a -> a) -> Point f a -> Point f a -> Point f a # liftI2 :: (a -> b -> c) -> Point f a -> Point f b -> Point f c # | |||||||||||||
Apply f => Apply (Point f) | |||||||||||||
Bind f => Bind (Point f) | |||||||||||||
Functor v => Cosieve (Query v) (Point v) | |||||||||||||
Defined in Diagrams.Core.Query | |||||||||||||
(Typeable f, Typeable a, Data (f a)) => Data (Point f a) | |||||||||||||
Defined in Linear.Affine Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Point f a -> c (Point f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Point f a) # toConstr :: Point f a -> Constr # dataTypeOf :: Point f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Point f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Point f a)) # gmapT :: (forall b. Data b => b -> b) -> Point f a -> Point f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Point f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Point f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Point f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Point f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Point f a -> m (Point f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Point f a -> m (Point f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Point f a -> m (Point f a) # | |||||||||||||
Storable (f a) => Storable (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Monoid (f a) => Monoid (Point f a) | |||||||||||||
Semigroup (f a) => Semigroup (Point f a) | |||||||||||||
Generic (Point f a) | |||||||||||||
Defined in Linear.Affine Associated Types
| |||||||||||||
Ix (f a) => Ix (Point f a) | |||||||||||||
Defined in Linear.Affine Methods range :: (Point f a, Point f a) -> [Point f a] # index :: (Point f a, Point f a) -> Point f a -> Int # unsafeIndex :: (Point f a, Point f a) -> Point f a -> Int # inRange :: (Point f a, Point f a) -> Point f a -> Bool # rangeSize :: (Point f a, Point f a) -> Int # unsafeRangeSize :: (Point f a, Point f a) -> Int # | |||||||||||||
Num (f a) => Num (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Read (f a) => Read (Point f a) | |||||||||||||
Fractional (f a) => Fractional (Point f a) | |||||||||||||
Show (f a) => Show (Point f a) | |||||||||||||
Binary (f a) => Binary (Point f a) | |||||||||||||
Serial (f a) => Serial (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Serialize (f a) => Serialize (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
NFData (f a) => NFData (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
(OrderedField n, Metric v) => Enveloped (Point v n) | |||||||||||||
Defined in Diagrams.Core.Envelope | |||||||||||||
(Additive v, Num n) => HasOrigin (Point v n) | |||||||||||||
Defined in Diagrams.Core.HasOrigin | |||||||||||||
(Additive v, Ord n) => Traced (Point v n) | |||||||||||||
(Additive v, Num n) => Transformable (Point v n) | |||||||||||||
Defined in Diagrams.Core.Transform | |||||||||||||
Coordinates (v n) => Coordinates (Point v n) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
Eq (f a) => Eq (Point f a) | |||||||||||||
Ord (f a) => Ord (Point f a) | |||||||||||||
Hashable (f a) => Hashable (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Ixed (f a) => Ixed (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Wrapped (Point f a) | |||||||||||||
Epsilon (f a) => Epsilon (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
Random (f a) => Random (Point f a) | |||||||||||||
Unbox (f a) => Unbox (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
r ~ Point u n => Deformable (Point v n) r | |||||||||||||
(Additive v, Num n, r ~ Point u n) => AffineMappable (Point v n) r | |||||||||||||
t ~ Point g b => Rewrapped (Point f a) t | |||||||||||||
Defined in Linear.Affine | |||||||||||||
LinearMappable (Point v n) (Point u m) | |||||||||||||
Traversable f => Each (Point f a) (Point f b) a b | |||||||||||||
(Additive v', Foldable v', Ord n') => Each (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') | |||||||||||||
Defined in Diagrams.BoundingBox Methods each :: Traversal (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') # | |||||||||||||
Each (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') | |||||||||||||
Defined in Diagrams.Segment Methods each :: Traversal (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') # | |||||||||||||
type Rep1 (Point f :: Type -> Type) | |||||||||||||
newtype MVector s (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
type Rep (Point f) | |||||||||||||
Defined in Linear.Affine type Rep (Point f) = Rep f | |||||||||||||
type Diff (Point f) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
type Size (Point f) | |||||||||||||
Defined in Linear.Affine type Size (Point f) = Size f | |||||||||||||
type Rep (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
type N (Point v n) | |||||||||||||
Defined in Diagrams.Core.Points | |||||||||||||
type V (Point v n) | |||||||||||||
Defined in Diagrams.Core.Points | |||||||||||||
type Decomposition (Point v n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type FinalCoord (Point v n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type PrevDim (Point v n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type Index (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
type IxValue (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
type Unwrapped (Point f a) | |||||||||||||
Defined in Linear.Affine | |||||||||||||
newtype Vector (Point f a) | |||||||||||||
Defined in Linear.Affine |
type family Result b (v :: Type -> Type) n #
Instances
type Result NullBackend v n | |
Defined in Diagrams.Core.Types | |
type Result SVG V2 n | |
Defined in Diagrams.Backend.SVG |
difference :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n #
intersection :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n #
class Functor f => Additive (f :: Type -> Type) where #
Minimal complete definition
Nothing
Methods
(^+^) :: Num a => f a -> f a -> f a #
(^-^) :: Num a => f a -> f a -> f a #
lerp :: Num a => a -> f a -> f a -> f a #
Instances
Additive Duration | |
Defined in Data.Active Methods (^+^) :: Num a => Duration a -> Duration a -> Duration a # (^-^) :: Num a => Duration a -> Duration a -> Duration a # lerp :: Num a => a -> Duration a -> Duration a -> Duration a # liftU2 :: (a -> a -> a) -> Duration a -> Duration a -> Duration a # liftI2 :: (a -> b -> c) -> Duration a -> Duration b -> Duration c # | |
Additive ZipList | |
Defined in Linear.Vector Methods (^+^) :: Num a => ZipList a -> ZipList a -> ZipList a # (^-^) :: Num a => ZipList a -> ZipList a -> ZipList a # lerp :: Num a => a -> ZipList a -> ZipList a -> ZipList a # liftU2 :: (a -> a -> a) -> ZipList a -> ZipList a -> ZipList a # liftI2 :: (a -> b -> c) -> ZipList a -> ZipList b -> ZipList c # | |
Additive Complex | |
Defined in Linear.Vector Methods (^+^) :: Num a => Complex a -> Complex a -> Complex a # (^-^) :: Num a => Complex a -> Complex a -> Complex a # lerp :: Num a => a -> Complex a -> Complex a -> Complex a # liftU2 :: (a -> a -> a) -> Complex a -> Complex a -> Complex a # liftI2 :: (a -> b -> c) -> Complex a -> Complex b -> Complex c # | |
Additive Identity | |
Defined in Linear.Vector Methods (^+^) :: Num a => Identity a -> Identity a -> Identity a # (^-^) :: Num a => Identity a -> Identity a -> Identity a # lerp :: Num a => a -> Identity a -> Identity a -> Identity a # liftU2 :: (a -> a -> a) -> Identity a -> Identity a -> Identity a # liftI2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c # | |
Additive IntMap | |
Defined in Linear.Vector | |
Additive Angle | |
Additive Plucker | |
Defined in Linear.Plucker Methods (^+^) :: Num a => Plucker a -> Plucker a -> Plucker a # (^-^) :: Num a => Plucker a -> Plucker a -> Plucker a # lerp :: Num a => a -> Plucker a -> Plucker a -> Plucker a # liftU2 :: (a -> a -> a) -> Plucker a -> Plucker a -> Plucker a # liftI2 :: (a -> b -> c) -> Plucker a -> Plucker b -> Plucker c # | |
Additive Quaternion | |
Defined in Linear.Quaternion Methods zero :: Num a => Quaternion a # (^+^) :: Num a => Quaternion a -> Quaternion a -> Quaternion a # (^-^) :: Num a => Quaternion a -> Quaternion a -> Quaternion a # lerp :: Num a => a -> Quaternion a -> Quaternion a -> Quaternion a # liftU2 :: (a -> a -> a) -> Quaternion a -> Quaternion a -> Quaternion a # liftI2 :: (a -> b -> c) -> Quaternion a -> Quaternion b -> Quaternion c # | |
Additive V0 | |
Additive V1 | |
Additive V2 | |
Additive V3 | |
Additive V4 | |
Additive Vector | |
Defined in Linear.Vector | |
Additive Maybe | |
Additive [] | |
Ord k => Additive (Map k) | |
Additive (Measured n) | |
Defined in Diagrams.Core.Measure Methods zero :: Num a => Measured n a # (^+^) :: Num a => Measured n a -> Measured n a -> Measured n a # (^-^) :: Num a => Measured n a -> Measured n a -> Measured n a # lerp :: Num a => a -> Measured n a -> Measured n a -> Measured n a # liftU2 :: (a -> a -> a) -> Measured n a -> Measured n a -> Measured n a # liftI2 :: (a -> b -> c) -> Measured n a -> Measured n b -> Measured n c # | |
Additive f => Additive (Point f) | |
Defined in Linear.Affine Methods (^+^) :: Num a => Point f a -> Point f a -> Point f a # (^-^) :: Num a => Point f a -> Point f a -> Point f a # lerp :: Num a => a -> Point f a -> Point f a -> Point f a # liftU2 :: (a -> a -> a) -> Point f a -> Point f a -> Point f a # liftI2 :: (a -> b -> c) -> Point f a -> Point f b -> Point f c # | |
(Eq k, Hashable k) => Additive (HashMap k) | |
Defined in Linear.Vector Methods zero :: Num a => HashMap k a # (^+^) :: Num a => HashMap k a -> HashMap k a -> HashMap k a # (^-^) :: Num a => HashMap k a -> HashMap k a -> HashMap k a # lerp :: Num a => a -> HashMap k a -> HashMap k a -> HashMap k a # liftU2 :: (a -> a -> a) -> HashMap k a -> HashMap k a -> HashMap k a # liftI2 :: (a -> b -> c) -> HashMap k a -> HashMap k b -> HashMap k c # | |
Dim n => Additive (V n) | |
(Additive f, Additive g) => Additive (Product f g) | |
Defined in Linear.Vector Methods zero :: Num a => Product f g a # (^+^) :: Num a => Product f g a -> Product f g a -> Product f g a # (^-^) :: Num a => Product f g a -> Product f g a -> Product f g a # lerp :: Num a => a -> Product f g a -> Product f g a -> Product f g a # liftU2 :: (a -> a -> a) -> Product f g a -> Product f g a -> Product f g a # liftI2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c # | |
Additive ((->) b) | |
Defined in Linear.Vector | |
(Additive f, Additive g) => Additive (Compose f g) | |
Defined in Linear.Vector Methods zero :: Num a => Compose f g a # (^+^) :: Num a => Compose f g a -> Compose f g a -> Compose f g a # (^-^) :: Num a => Compose f g a -> Compose f g a -> Compose f g a # lerp :: Num a => a -> Compose f g a -> Compose f g a -> Compose f g a # liftU2 :: (a -> a -> a) -> Compose f g a -> Compose f g a -> Compose f g a # liftI2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c # |
thin :: OrderedField n => Measure n #
Instances
(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # atEnd :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Line v n) -> N (GetSegment (Trail' Line v n)) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n) => Monoid (Trail' Line v n) | |
(OrderedField n, Metric v) => Semigroup (Trail' Line v n) | |
(Metric v, OrderedField n, Real n) => Sectionable (Trail' Line v n) | |
(Metric v, OrderedField n) => TrailLike (Trail' Line v n) | |
(Metric v, OrderedField n) => AsEmpty (Trail' Line v n) | |
Wrapped (Trail' Line v n) | |
Rewrapped (Trail' Line v n) (Trail' Line v' n') | |
Defined in Diagrams.Trail | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
type Unwrapped (Trail' Line v n) | |
Defined in Diagrams.Trail |
data Trail' l (v :: Type -> Type) n where #
Constructors
Line :: forall (v :: Type -> Type) n. SegTree v n -> Trail' Line v n | |
Loop :: forall (v :: Type -> Type) n. SegTree v n -> Segment Open v n -> Trail' Loop v n |
Instances
(Parametric (GetSegment (Trail' c v n)), EndValues (GetSegment (Trail' c v n)), Additive v, Num n) => EndValues (Tangent (Trail' c v n)) | |
(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # atEnd :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # atEnd :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
(Parametric (GetSegment (Trail' c v n)), Additive v, Num n) => Parametric (Tangent (Trail' c v n)) | |
(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Line v n) -> N (GetSegment (Trail' Line v n)) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Loop v n) -> N (GetSegment (Trail' Loop v n)) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
ToPath (Located (Trail' l v n)) | |
(Metric v, OrderedField n) => Reversing (Located (Trail' l v n)) | |
(Metric v, OrderedField n) => Monoid (Trail' Line v n) | |
(OrderedField n, Metric v) => Semigroup (Trail' Line v n) | |
Show (v n) => Show (Trail' l v n) | |
(Metric v, OrderedField n) => Enveloped (Trail' l v n) | |
Defined in Diagrams.Trail | |
(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail' l v n) | |
Defined in Diagrams.Trail | |
Num n => DomainBounds (Trail' l v n) | |
Defined in Diagrams.Trail Methods domainLower :: Trail' l v n -> N (Trail' l v n) # domainUpper :: Trail' l v n -> N (Trail' l v n) # | |
(Metric v, OrderedField n, Real n) => EndValues (Trail' l v n) | |
(Metric v, OrderedField n, Real n) => HasArcLength (Trail' l v n) | |
Defined in Diagrams.Trail Methods arcLengthBounded :: N (Trail' l v n) -> Trail' l v n -> Interval (N (Trail' l v n)) # arcLength :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) # stdArcLength :: Trail' l v n -> N (Trail' l v n) # arcLengthToParam :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) # stdArcLengthToParam :: Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) # | |
(Metric v, OrderedField n, Real n) => Parametric (Trail' l v n) | |
(Metric v, OrderedField n, Real n) => Sectionable (Trail' Line v n) | |
ToPath (Trail' l v n) | |
(Metric v, OrderedField n) => TrailLike (Trail' Line v n) | |
(Metric v, OrderedField n) => TrailLike (Trail' Loop v n) | |
Eq (v n) => Eq (Trail' l v n) | |
Ord (v n) => Ord (Trail' l v n) | |
Defined in Diagrams.Trail | |
(Metric v, OrderedField n) => AsEmpty (Trail' Line v n) | |
(Metric v, OrderedField n) => Reversing (Trail' l v n) | |
Defined in Diagrams.Trail | |
Wrapped (Trail' Line v n) | |
(HasLinearMap v, Metric v, OrderedField n) => Renderable (Trail' o v n) NullBackend | |
Defined in Diagrams.Trail Methods render :: NullBackend -> Trail' o v n -> Render NullBackend (V (Trail' o v n)) (N (Trail' o v n)) # | |
(Metric v, Metric u, OrderedField n, r ~ Trail' l u n) => AffineMappable (Trail' l v n) r | |
(Metric v, Metric u, OrderedField n, OrderedField m, r ~ Trail' l u m) => LinearMappable (Trail' l v n) r | |
Rewrapped (Trail' Line v n) (Trail' Line v' n') | |
Defined in Diagrams.Trail | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
type N (Trail' l v n) | |
Defined in Diagrams.Trail | |
type V (Trail' l v n) | |
Defined in Diagrams.Trail | |
type Codomain (Trail' l v n) | |
Defined in Diagrams.Trail | |
type Unwrapped (Trail' Line v n) | |
Defined in Diagrams.Trail |
class Additive f => Metric (f :: Type -> Type) where #
Minimal complete definition
Nothing
Methods
dot :: Num a => f a -> f a -> a #
quadrance :: Num a => f a -> a #
qd :: Num a => f a -> f a -> a #
distance :: Floating a => f a -> f a -> a #
Instances
Metric ZipList | |
Defined in Linear.Metric | |
Metric Identity | |
Defined in Linear.Metric | |
Metric IntMap | |
Metric Plucker | |
Defined in Linear.Plucker | |
Metric Quaternion | |
Metric V0 | |
Metric V1 | |
Metric V2 | |
Metric V3 | |
Metric V4 | |
Metric Vector | |
Metric Maybe | |
Metric [] | |
Ord k => Metric (Map k) | |
Metric f => Metric (Point f) | |
Defined in Linear.Affine | |
(Hashable k, Eq k) => Metric (HashMap k) | |
Defined in Linear.Metric | |
Dim n => Metric (V n) | |
(Metric f, Metric g) => Metric (Product f g) | |
(Metric f, Metric g) => Metric (Compose f g) | |
data Style (v :: Type -> Type) n #
Instances
Typeable n => Monoid (Style v n) | |
Typeable n => Semigroup (Style v n) | |
Show (Style v n) | |
Typeable n => HasStyle (Style v n) | |
Defined in Diagrams.Core.Style | |
(Additive v, Traversable v, Floating n) => Transformable (Style v n) | |
Defined in Diagrams.Core.Style | |
At (Style v n) | |
Ixed (Style v n) | |
Defined in Diagrams.Core.Style | |
Wrapped (Style v n) | |
Action (Style v n) m | |
Defined in Diagrams.Core.Style | |
Rewrapped (Style v n) (Style v' n') | |
Defined in Diagrams.Core.Style | |
Each (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') | |
type N (Style v n) | |
Defined in Diagrams.Core.Style | |
type V (Style v n) | |
Defined in Diagrams.Core.Style | |
type Index (Style v n) | |
Defined in Diagrams.Core.Style | |
type IxValue (Style v n) | |
Defined in Diagrams.Core.Style | |
type Unwrapped (Style v n) | |
Defined in Diagrams.Core.Style |
cat :: (InSpace v n a, Metric v, Floating n, Juxtaposable a, Monoid' a, HasOrigin a) => v n -> [a] -> a #
class Transformable t => Renderable t b where #
Instances
Fractional n => Renderable (Box n) NullBackend | |
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Box n -> Render NullBackend (V (Box n)) (N (Box n)) # | |
Fractional n => Renderable (Ellipsoid n) NullBackend | |
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Ellipsoid n -> Render NullBackend (V (Ellipsoid n)) (N (Ellipsoid n)) # | |
Fractional n => Renderable (Frustum n) NullBackend | |
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Frustum n -> Render NullBackend (V (Frustum n)) (N (Frustum n)) # | |
(V t ~ V2, N t ~ n, RealFloat n, Renderable t b) => Renderable (ScaleInv t) b | |
Floating n => Renderable (Text n) NullBackend | |
Defined in Diagrams.TwoD.Text Methods render :: NullBackend -> Text n -> Render NullBackend (V (Text n)) (N (Text n)) # | |
SVGFloat n => Renderable (Text n) SVG | |
SVGFloat n => Renderable (Path V2 n) SVG | |
(HasLinearMap v, Metric v, OrderedField n) => Renderable (Path v n) NullBackend | |
Defined in Diagrams.Path Methods render :: NullBackend -> Path v n -> Render NullBackend (V (Path v n)) (N (Path v n)) # | |
Num n => Renderable (Camera l n) NullBackend | |
Defined in Diagrams.ThreeD.Camera Methods render :: NullBackend -> Camera l n -> Render NullBackend (V (Camera l n)) (N (Camera l n)) # | |
SVGFloat n => Renderable (DImage n Embedded) SVG | |
SVGFloat n => Renderable (DImage n (Native Img)) SVG | |
Fractional n => Renderable (DImage n a) NullBackend | |
Defined in Diagrams.TwoD.Image Methods render :: NullBackend -> DImage n a -> Render NullBackend (V (DImage n a)) (N (DImage n a)) # | |
Renderable (Prim b v n) b | |
Renderable (Segment c v n) NullBackend | |
Defined in Diagrams.Segment Methods render :: NullBackend -> Segment c v n -> Render NullBackend (V (Segment c v n)) (N (Segment c v n)) # | |
(HasLinearMap v, Metric v, OrderedField n) => Renderable (Trail' o v n) NullBackend | |
Defined in Diagrams.Trail Methods render :: NullBackend -> Trail' o v n -> Render NullBackend (V (Trail' o v n)) (N (Trail' o v n)) # |
translate :: Transformable t => Vn t -> t -> t #
Instances
Monoid Name | |
Semigroup Name | |
Show Name | |
IsName Name | |
Defined in Diagrams.Core.Names | |
Qualifiable Name | |
Eq Name | |
Ord Name | |
Wrapped Name | |
Rewrapped Name Name | |
Defined in Diagrams.Core.Names | |
Each Name Name AName AName | |
Action Name (SubMap b v n m) | |
Defined in Diagrams.Core.Types | |
type Unwrapped Name | |
Defined in Diagrams.Core.Names |
data Prim b (v :: Type -> Type) n where #
Constructors
Prim :: forall p b. (Transformable p, Typeable p, Renderable p b) => p -> Prim b (V p) (N p) |
Instances
Transformable (Prim b v n) | |
Defined in Diagrams.Core.Types | |
Renderable (Prim b v n) b | |
type N (Prim b v n) | |
Defined in Diagrams.Core.Types | |
type V (Prim b v n) | |
Defined in Diagrams.Core.Types |
Instances
Generic (Located a) | |||||
Defined in Diagrams.Located Associated Types
| |||||
(Read (V a (N a)), Read a) => Read (Located a) | |||||
(Show (V a (N a)), Show a) => Show (Located a) | |||||
(Serialize a, Serialize (V a (N a))) => Serialize (Located a) | |||||
Defined in Diagrams.Located | |||||
Enveloped a => Enveloped (Located a) | |||||
Defined in Diagrams.Located | |||||
(Num (N a), Additive (V a)) => HasOrigin (Located a) | |||||
Defined in Diagrams.Located | |||||
Enveloped a => Juxtaposable (Located a) | |||||
Qualifiable a => Qualifiable (Located a) | |||||
(Traced a, Num (N a)) => Traced (Located a) | |||||
(Additive (V a), Num (N a), Transformable a) => Transformable (Located a) | |||||
Defined in Diagrams.Located | |||||
Alignable a => Alignable (Located a) | |||||
Defined in Diagrams.Located Methods alignBy' :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => (v n -> Located a -> Point v n) -> v n -> n -> Located a -> Located a # defaultBoundary :: (V (Located a) ~ v, N (Located a) ~ n) => v n -> Located a -> Point v n # alignBy :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => v n -> n -> Located a -> Located a # | |||||
DomainBounds a => DomainBounds (Located a) | |||||
Defined in Diagrams.Located | |||||
(InSpace v n a, EndValues a, Codomain a ~ v) => EndValues (Located a) | |||||
(DomainBounds t, EndValues (Tangent t)) => EndValues (Tangent (Located t)) | |||||
(InSpace v n a, Fractional n, HasArcLength a, Codomain a ~ v) => HasArcLength (Located a) | |||||
Defined in Diagrams.Located Methods arcLengthBounded :: N (Located a) -> Located a -> Interval (N (Located a)) # arcLength :: N (Located a) -> Located a -> N (Located a) # stdArcLength :: Located a -> N (Located a) # arcLengthToParam :: N (Located a) -> Located a -> N (Located a) -> N (Located a) # stdArcLengthToParam :: Located a -> N (Located a) -> N (Located a) # | |||||
(InSpace v n a, Parametric a, Codomain a ~ v) => Parametric (Located a) | |||||
Parametric (Tangent t) => Parametric (Tangent (Located t)) | |||||
(InSpace v n a, Fractional n, Parametric a, Sectionable a, Codomain a ~ v) => Sectionable (Located a) | |||||
ToPath (Located (Segment Closed v n)) | |||||
ToPath (Located (Trail v n)) | |||||
ToPath (Located (Trail' l v n)) | |||||
ToPath (Located [Segment Closed v n]) | |||||
TrailLike t => TrailLike (Located t) | |||||
(Eq (V a (N a)), Eq a) => Eq (Located a) | |||||
(Ord (V a (N a)), Ord a) => Ord (Located a) | |||||
(Metric v, OrderedField n) => Reversing (Located (Trail v n)) | |||||
(Metric v, OrderedField n) => Reversing (Located (Trail' l v n)) | |||||
(Metric v, Metric u, OrderedField n, r ~ Located (Trail u n)) => Deformable (Located (Trail v n)) r | |||||
(LinearMappable a b, N a ~ N b, r ~ Located b) => AffineMappable (Located a) r | |||||
(LinearMappable a b, r ~ Located b) => LinearMappable (Located a) r | |||||
Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |||||
Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |||||
Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |||||
type Rep (Located a) | |||||
Defined in Diagrams.Located type Rep (Located a) = D1 ('MetaData "Located" "Diagrams.Located" "diagrams-lib-1.4.6.2-9ym4nU13AVa88SQ1myBzrG" 'False) (C1 ('MetaCons "Loc" 'PrefixI 'True) (S1 ('MetaSel ('Just "loc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Point (V a) (N a))) :*: S1 ('MetaSel ('Just "unLoc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a))) | |||||
type N (Located a) | |||||
Defined in Diagrams.Located | |||||
type V (Located a) | |||||
Defined in Diagrams.Located | |||||
type Codomain (Located a) | |||||
Defined in Diagrams.Located |
lookupName :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> QDiagram b v n m -> Maybe (Subdiagram b v n m) #
location :: forall (v :: Type -> Type) n b m. (Additive v, Num n) => Subdiagram b v n m -> Point v n #
arrow :: (TypeableFloat n, Renderable (Path V2 n) b) => n -> QDiagram b V2 n Any #
center :: forall (v :: Type -> Type) n a. (InSpace v n a, Fractional n, Traversable v, Alignable a, HasOrigin a) => a -> a #
Minimal complete definition
Nothing
Instances
Default All | |
Defined in Data.Default.Class | |
Default Any | |
Defined in Data.Default.Class | |
Default CClock | |
Defined in Data.Default.Class | |
Default CDouble | |
Defined in Data.Default.Class | |
Default CFloat | |
Defined in Data.Default.Class | |
Default CInt | |
Defined in Data.Default.Class | |
Default CIntMax | |
Defined in Data.Default.Class | |
Default CIntPtr | |
Defined in Data.Default.Class | |
Default CLLong | |
Defined in Data.Default.Class | |
Default CLong | |
Defined in Data.Default.Class | |
Default CPtrdiff | |
Defined in Data.Default.Class | |
Default CSUSeconds | |
Defined in Data.Default.Class Methods def :: CSUSeconds # | |
Default CShort | |
Defined in Data.Default.Class | |
Default CSigAtomic | |
Defined in Data.Default.Class Methods def :: CSigAtomic # | |
Default CSize | |
Defined in Data.Default.Class | |
Default CTime | |
Defined in Data.Default.Class | |
Default CUInt | |
Defined in Data.Default.Class | |
Default CUIntMax | |
Defined in Data.Default.Class | |
Default CUIntPtr | |
Defined in Data.Default.Class | |
Default CULLong | |
Defined in Data.Default.Class | |
Default CULong | |
Defined in Data.Default.Class | |
Default CUSeconds | |
Defined in Data.Default.Class | |
Default CUShort | |
Defined in Data.Default.Class | |
Default Int16 | |
Defined in Data.Default.Class | |
Default Int32 | |
Defined in Data.Default.Class | |
Default Int64 | |
Defined in Data.Default.Class | |
Default Int8 | |
Defined in Data.Default.Class | |
Default Word16 | |
Defined in Data.Default.Class | |
Default Word32 | |
Defined in Data.Default.Class | |
Default Word64 | |
Defined in Data.Default.Class | |
Default Word8 | |
Defined in Data.Default.Class | |
Default LineCap | |
Defined in Diagrams.Attributes | |
Default LineJoin | |
Defined in Diagrams.Attributes | |
Default LineMiterLimit | |
Defined in Diagrams.Attributes Methods def :: LineMiterLimit # | |
Default AdjustSide | |
Defined in Diagrams.Parametric.Adjust Methods def :: AdjustSide # | |
Default FillRule | |
Defined in Diagrams.TwoD.Path | |
Default FontSlant | |
Defined in Diagrams.TwoD.Text | |
Default FontWeight | |
Defined in Diagrams.TwoD.Text | |
Default Ordering | |
Defined in Data.Default.Class | |
Default Configuration | |
Defined in Hakyll.Core.Configuration | |
Default PureState | |
Defined in Text.Pandoc.Class.PandocPure | |
Default ImageSize | |
Defined in Text.Pandoc.ImageSize | |
Default ReaderOptions | |
Defined in Text.Pandoc.Options | |
Default WriterOptions | |
Defined in Text.Pandoc.Options | |
Default DBState | |
Defined in Text.Pandoc.Readers.DocBook | |
Default DEnv | |
Defined in Text.Pandoc.Readers.Docx | |
Default DState | |
Defined in Text.Pandoc.Readers.Docx | |
Default FB2State | |
Defined in Text.Pandoc.Readers.FB2 | |
Default JATSState | |
Defined in Text.Pandoc.Readers.JATS | |
Default ManState | |
Defined in Text.Pandoc.Readers.Man | |
Default MdocState | |
Defined in Text.Pandoc.Readers.Mdoc | |
Default SpacifyState | |
Defined in Text.Pandoc.Readers.Mdoc | |
Default MuseEnv | |
Defined in Text.Pandoc.Readers.Muse | |
Default MuseState | |
Defined in Text.Pandoc.Readers.Muse | |
Default OPMLState | |
Defined in Text.Pandoc.Readers.OPML | |
Default Pict | |
Defined in Text.Pandoc.Readers.RTF | |
Default Properties | |
Defined in Text.Pandoc.Readers.RTF | |
Default RTFState | |
Defined in Text.Pandoc.Readers.RTF | |
Default T2TMeta | |
Defined in Text.Pandoc.Readers.Txt2Tags | |
Default WriterEnvironment | |
Defined in Text.Pandoc.Writers.DokuWiki | |
Default WriterState | |
Defined in Text.Pandoc.Writers.DokuWiki | |
Default WriterState | |
Defined in Text.Pandoc.Writers.Haddock | |
Default WriterState | |
Defined in Text.Pandoc.Writers.Muse | |
Default WriterState | |
Defined in Text.Pandoc.Writers.ZimWiki | |
Default Integer | |
Defined in Data.Default.Class | |
Default () | |
Defined in Data.Default.Class | |
Default Double | |
Defined in Data.Default.Class | |
Default Float | |
Defined in Data.Default.Class | |
Default Int | |
Defined in Data.Default.Class | |
Default Word | |
Defined in Data.Default.Class | |
(Default a, RealFloat a) => Default (Complex a) | |
Defined in Data.Default.Class | |
Default (First a) | |
Defined in Data.Default.Class | |
Default (Last a) | |
Defined in Data.Default.Class | |
Default a => Default (Dual a) | |
Defined in Data.Default.Class | |
Default (Endo a) | |
Defined in Data.Default.Class | |
Num a => Default (Product a) | |
Defined in Data.Default.Class | |
Num a => Default (Sum a) | |
Defined in Data.Default.Class | |
Integral a => Default (Ratio a) | |
Defined in Data.Default.Class | |
OrderedField n => Default (LineWidthM n) | |
Defined in Diagrams.Attributes | |
Num n => Default (CatOpts n) | |
Defined in Diagrams.Combinators | |
Fractional n => Default (AdjustMethod n) | |
Defined in Diagrams.Parametric.Adjust Methods def :: AdjustMethod n # | |
Fractional n => Default (AdjustOpts n) | |
Defined in Diagrams.Parametric.Adjust Methods def :: AdjustOpts n # | |
TypeableFloat n => Default (ArrowOpts n) | |
Defined in Diagrams.TwoD.Arrow | |
Default (FillTexture n) | |
Defined in Diagrams.TwoD.Attributes | |
Default (LineTexture n) | |
Defined in Diagrams.TwoD.Attributes | |
OrderedField n => Default (EnvelopeOpts n) | |
Defined in Diagrams.TwoD.Model Methods def :: EnvelopeOpts n # | |
Fractional n => Default (OriginOpts n) | |
Defined in Diagrams.TwoD.Model Methods def :: OriginOpts n # | |
Floating n => Default (TraceOpts n) | |
Defined in Diagrams.TwoD.Model | |
Fractional d => Default (ExpandOpts d) | |
Defined in Diagrams.TwoD.Offset | |
Fractional d => Default (OffsetOpts d) | |
Defined in Diagrams.TwoD.Offset | |
Default (StrokeOpts a) | |
Defined in Diagrams.TwoD.Path Methods def :: StrokeOpts a # | |
Num n => Default (PolygonOpts n) | |
Defined in Diagrams.TwoD.Polygons Methods def :: PolygonOpts n # | |
Num d => Default (RoundedRectOpts d) | |
Defined in Diagrams.TwoD.Shapes Methods def :: RoundedRectOpts d # | |
Num n => Default (FontSizeM n) | |
Defined in Diagrams.TwoD.Text | |
Default a => Default (IO a) | |
Defined in Data.Default.Class | |
Default (Maybe a) | |
Defined in Data.Default.Class | |
Default [a] | |
Defined in Data.Default.Class | |
(Default a, Default b) => Default (a, b) | |
Defined in Data.Default.Class | |
Default r => Default (e -> r) | |
Defined in Data.Default.Class | |
(Default a, Default b, Default c) => Default (a, b, c) | |
Defined in Data.Default.Class | |
(Default a, Default b, Default c, Default d) => Default (a, b, c, d) | |
Defined in Data.Default.Class | |
(Default a, Default b, Default c, Default d, Default e) => Default (a, b, c, d, e) | |
Defined in Data.Default.Class | |
(Default a, Default b, Default c, Default d, Default e, Default f) => Default (a, b, c, d, e, f) | |
Defined in Data.Default.Class | |
(Default a, Default b, Default c, Default d, Default e, Default f, Default g) => Default (a, b, c, d, e, f, g) | |
Defined in Data.Default.Class |
data AdjustSide #
Instances
Bounded AdjustSide | |
Defined in Diagrams.Parametric.Adjust | |
Enum AdjustSide | |
Defined in Diagrams.Parametric.Adjust Methods succ :: AdjustSide -> AdjustSide # pred :: AdjustSide -> AdjustSide # toEnum :: Int -> AdjustSide # fromEnum :: AdjustSide -> Int # enumFrom :: AdjustSide -> [AdjustSide] # enumFromThen :: AdjustSide -> AdjustSide -> [AdjustSide] # enumFromTo :: AdjustSide -> AdjustSide -> [AdjustSide] # enumFromThenTo :: AdjustSide -> AdjustSide -> AdjustSide -> [AdjustSide] # | |
Read AdjustSide | |
Defined in Diagrams.Parametric.Adjust Methods readsPrec :: Int -> ReadS AdjustSide # readList :: ReadS [AdjustSide] # readPrec :: ReadPrec AdjustSide # readListPrec :: ReadPrec [AdjustSide] # | |
Show AdjustSide | |
Defined in Diagrams.Parametric.Adjust Methods showsPrec :: Int -> AdjustSide -> ShowS # show :: AdjustSide -> String # showList :: [AdjustSide] -> ShowS # | |
Default AdjustSide | |
Defined in Diagrams.Parametric.Adjust Methods def :: AdjustSide # | |
Eq AdjustSide | |
Defined in Diagrams.Parametric.Adjust | |
Ord AdjustSide | |
Defined in Diagrams.Parametric.Adjust Methods compare :: AdjustSide -> AdjustSide -> Ordering # (<) :: AdjustSide -> AdjustSide -> Bool # (<=) :: AdjustSide -> AdjustSide -> Bool # (>) :: AdjustSide -> AdjustSide -> Bool # (>=) :: AdjustSide -> AdjustSide -> Bool # max :: AdjustSide -> AdjustSide -> AdjustSide # min :: AdjustSide -> AdjustSide -> AdjustSide # |
scale :: forall (v :: Type -> Type) n a. (InSpace v n a, Eq n, Fractional n, Transformable a) => n -> a -> a #
class Transformable t where #
Methods
transform :: Transformation (V t) (N t) -> t -> t #
Instances
(Transformable t, Ord t) => Transformable (Set t) | |
Defined in Diagrams.Core.Transform | |
(Num (N t), Additive (V t), Transformable t) => Transformable (TransInv t) | |
Defined in Diagrams.Core.Transform | |
(Additive (V a), Num (N a), Transformable a) => Transformable (Located a) | |
Defined in Diagrams.Located | |
Transformable (ParallelLight n) | |
Defined in Diagrams.ThreeD.Light Methods transform :: Transformation (V (ParallelLight n)) (N (ParallelLight n)) -> ParallelLight n -> ParallelLight n # | |
Fractional n => Transformable (PointLight n) | |
Defined in Diagrams.ThreeD.Light Methods transform :: Transformation (V (PointLight n)) (N (PointLight n)) -> PointLight n -> PointLight n # | |
Fractional n => Transformable (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
Fractional n => Transformable (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
Fractional n => Transformable (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
Fractional n => Transformable (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
(V t ~ V2, N t ~ n, RealFloat n, Transformable t) => Transformable (ScaleInv t) | |
Defined in Diagrams.Transform.ScaleInv Methods transform :: Transformation (V (ScaleInv t)) (N (ScaleInv t)) -> ScaleInv t -> ScaleInv t # | |
Floating n => Transformable (FillTexture n) | |
Defined in Diagrams.TwoD.Attributes Methods transform :: Transformation (V (FillTexture n)) (N (FillTexture n)) -> FillTexture n -> FillTexture n # | |
Fractional n => Transformable (LGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
Floating n => Transformable (LineTexture n) | |
Defined in Diagrams.TwoD.Attributes Methods transform :: Transformation (V (LineTexture n)) (N (LineTexture n)) -> LineTexture n -> LineTexture n # | |
Fractional n => Transformable (RGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
Floating n => Transformable (Texture n) | |
Defined in Diagrams.TwoD.Attributes | |
OrderedField n => Transformable (Clip n) | |
Defined in Diagrams.TwoD.Path Methods transform :: Transformation (V (Clip n)) (N (Clip n)) -> Clip n -> Clip n # | |
Floating n => Transformable (Text n) | |
Defined in Diagrams.TwoD.Text Methods transform :: Transformation (V (Text n)) (N (Text n)) -> Text n -> Text n # | |
Transformable m => Transformable (Deletable m) | |
Defined in Diagrams.Core.Transform Methods transform :: Transformation (V (Deletable m)) (N (Deletable m)) -> Deletable m -> Deletable m # | |
Transformable t => Transformable [t] | |
Defined in Diagrams.Core.Transform Methods transform :: Transformation (V [t]) (N [t]) -> [t] -> [t] # | |
Transformable t => Transformable (Map k t) | |
Defined in Diagrams.Core.Transform | |
(Metric v, Floating n) => Transformable (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
(InSpace v n t, Transformable t, HasLinearMap v, Floating n) => Transformable (Measured n t) | |
Defined in Diagrams.Core.Transform | |
(Additive v, Traversable v, Floating n) => Transformable (Attribute v n) | |
Defined in Diagrams.Core.Style | |
(Additive v, Traversable v, Floating n) => Transformable (Style v n) | |
Defined in Diagrams.Core.Style | |
(Additive v, Num n) => Transformable (Trace v n) | |
Defined in Diagrams.Core.Trace | |
(Additive v, Num n) => Transformable (Transformation v n) | |
Defined in Diagrams.Core.Transform Methods transform :: Transformation (V (Transformation v n)) (N (Transformation v n)) -> Transformation v n -> Transformation v n # | |
(V (v n) ~ v, N (v n) ~ n, Transformable (v n)) => Transformable (Direction v n) | |
Defined in Diagrams.Direction | |
(HasLinearMap v, Metric v, OrderedField n) => Transformable (Path v n) | |
Defined in Diagrams.Path | |
(Additive v, Num n) => Transformable (FixedSegment v n) | |
Defined in Diagrams.Segment Methods transform :: Transformation (V (FixedSegment v n)) (N (FixedSegment v n)) -> FixedSegment v n -> FixedSegment v n # | |
Num n => Transformable (Camera l n) | |
Defined in Diagrams.ThreeD.Camera | |
(Floating n, Ord n, Metric v) => Transformable (SegTree v n) | |
Defined in Diagrams.Trail | |
(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail v n) | |
Defined in Diagrams.Trail | |
Fractional n => Transformable (DImage n a) | |
Defined in Diagrams.TwoD.Image | |
(Additive v, Num n) => Transformable (Point v n) | |
Defined in Diagrams.Core.Transform | |
(Transformable t, Transformable s, V t ~ V s, N t ~ N s) => Transformable (t, s) | |
Defined in Diagrams.Core.Transform Methods transform :: Transformation (V (t, s)) (N (t, s)) -> (t, s) -> (t, s) # | |
(V t ~ v, N t ~ n, V t ~ V s, N t ~ N s, Functor v, Num n, Transformable t, Transformable s) => Transformable (s -> t) | |
Defined in Diagrams.Core.Transform Methods transform :: Transformation (V (s -> t)) (N (s -> t)) -> (s -> t) -> s -> t # | |
(Additive v, Num n) => Transformable (Query v n m) | |
Defined in Diagrams.Core.Query | |
Transformable (Prim b v n) | |
Defined in Diagrams.Core.Types | |
Transformable (Offset c v n) | |
Defined in Diagrams.Segment | |
Transformable (Segment c v n) | |
Defined in Diagrams.Segment | |
(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail' l v n) | |
Defined in Diagrams.Trail | |
(Transformable t, Transformable s, Transformable u, V s ~ V t, N s ~ N t, V s ~ V u, N s ~ N u) => Transformable (t, s, u) | |
Defined in Diagrams.Core.Transform Methods transform :: Transformation (V (t, s, u)) (N (t, s, u)) -> (t, s, u) -> (t, s, u) # | |
(OrderedField n, Metric v, Semigroup m) => Transformable (QDiagram b v n m) | |
Defined in Diagrams.Core.Types | |
Transformable (SubMap b v n m) | |
Defined in Diagrams.Core.Types | |
Transformable (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods transform :: Transformation (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m # |
data family Options b (v :: Type -> Type) n #
Instances
Eq n => Eq (Options SVG V2 n) | |
Hashable n => Hashable (Options SVG V2 n) | |
data Options NullBackend v n | |
Defined in Diagrams.Core.Types | |
data Options SVG V2 n | |
Defined in Diagrams.Backend.SVG data Options SVG V2 n = SVGOptions {
|
Constructors
V2 !a !a |
Instances
Representable V2 | |||||||||||||
MonadFix V2 | |||||||||||||
MonadZip V2 | |||||||||||||
Foldable V2 | |||||||||||||
Defined in Linear.V2 Methods fold :: Monoid m => V2 m -> m # foldMap :: Monoid m => (a -> m) -> V2 a -> m # foldMap' :: Monoid m => (a -> m) -> V2 a -> m # foldr :: (a -> b -> b) -> b -> V2 a -> b # foldr' :: (a -> b -> b) -> b -> V2 a -> b # foldl :: (b -> a -> b) -> b -> V2 a -> b # foldl' :: (b -> a -> b) -> b -> V2 a -> b # foldr1 :: (a -> a -> a) -> V2 a -> a # foldl1 :: (a -> a -> a) -> V2 a -> a # elem :: Eq a => a -> V2 a -> Bool # maximum :: Ord a => V2 a -> a # | |||||||||||||
Foldable1 V2 | |||||||||||||
Defined in Linear.V2 Methods fold1 :: Semigroup m => V2 m -> m # foldMap1 :: Semigroup m => (a -> m) -> V2 a -> m # foldMap1' :: Semigroup m => (a -> m) -> V2 a -> m # toNonEmpty :: V2 a -> NonEmpty a # maximum :: Ord a => V2 a -> a # minimum :: Ord a => V2 a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> V2 a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> V2 a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> V2 a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> V2 a -> b # | |||||||||||||
Eq1 V2 | |||||||||||||
Ord1 V2 | |||||||||||||
Read1 V2 | |||||||||||||
Show1 V2 | |||||||||||||
Traversable V2 | |||||||||||||
Applicative V2 | |||||||||||||
Functor V2 | |||||||||||||
Monad V2 | |||||||||||||
Serial1 V2 | |||||||||||||
Defined in Linear.V2 Methods serializeWith :: MonadPut m => (a -> m ()) -> V2 a -> m () deserializeWith :: MonadGet m => m a -> m (V2 a) | |||||||||||||
HasR V2 | |||||||||||||
Distributive V2 | |||||||||||||
Hashable1 V2 | |||||||||||||
Affine V2 | |||||||||||||
Metric V2 | |||||||||||||
Finite V2 | |||||||||||||
R1 V2 | |||||||||||||
R2 V2 | |||||||||||||
Additive V2 | |||||||||||||
Apply V2 | |||||||||||||
Bind V2 | |||||||||||||
Traversable1 V2 | |||||||||||||
Generic1 V2 | |||||||||||||
Defined in Linear.V2 Associated Types
| |||||||||||||
SVGFloat n => Backend SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG Associated Types
| |||||||||||||
Lift a => Lift (V2 a :: Type) | |||||||||||||
Unbox a => Vector Vector (V2 a) | |||||||||||||
Defined in Linear.V2 Methods basicUnsafeFreeze :: Mutable Vector s (V2 a) -> ST s (Vector (V2 a)) basicUnsafeThaw :: Vector (V2 a) -> ST s (Mutable Vector s (V2 a)) basicLength :: Vector (V2 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V2 a) -> Vector (V2 a) basicUnsafeIndexM :: Vector (V2 a) -> Int -> Box (V2 a) basicUnsafeCopy :: Mutable Vector s (V2 a) -> Vector (V2 a) -> ST s () | |||||||||||||
Unbox a => MVector MVector (V2 a) | |||||||||||||
Defined in Linear.V2 Methods basicLength :: MVector s (V2 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V2 a) -> MVector s (V2 a) basicOverlaps :: MVector s (V2 a) -> MVector s (V2 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V2 a)) basicInitialize :: MVector s (V2 a) -> ST s () basicUnsafeReplicate :: Int -> V2 a -> ST s (MVector s (V2 a)) basicUnsafeRead :: MVector s (V2 a) -> Int -> ST s (V2 a) basicUnsafeWrite :: MVector s (V2 a) -> Int -> V2 a -> ST s () basicClear :: MVector s (V2 a) -> ST s () basicSet :: MVector s (V2 a) -> V2 a -> ST s () basicUnsafeCopy :: MVector s (V2 a) -> MVector s (V2 a) -> ST s () basicUnsafeMove :: MVector s (V2 a) -> MVector s (V2 a) -> ST s () basicUnsafeGrow :: MVector s (V2 a) -> Int -> ST s (MVector s (V2 a)) | |||||||||||||
Data a => Data (V2 a) | |||||||||||||
Defined in Linear.V2 Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V2 a -> c (V2 a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V2 a) # dataTypeOf :: V2 a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V2 a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V2 a)) # gmapT :: (forall b. Data b => b -> b) -> V2 a -> V2 a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V2 a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V2 a -> r # gmapQ :: (forall d. Data d => d -> u) -> V2 a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V2 a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V2 a -> m (V2 a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V2 a -> m (V2 a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V2 a -> m (V2 a) # | |||||||||||||
Storable a => Storable (V2 a) | |||||||||||||
Monoid a => Monoid (V2 a) | |||||||||||||
Semigroup a => Semigroup (V2 a) | |||||||||||||
Bounded a => Bounded (V2 a) | |||||||||||||
Floating a => Floating (V2 a) | |||||||||||||
Generic (V2 a) | |||||||||||||
Defined in Linear.V2 Associated Types
| |||||||||||||
Ix a => Ix (V2 a) | |||||||||||||
Num a => Num (V2 a) | |||||||||||||
Read a => Read (V2 a) | |||||||||||||
Fractional a => Fractional (V2 a) | |||||||||||||
Show a => Show (V2 a) | |||||||||||||
Binary a => Binary (V2 a) | |||||||||||||
Serial a => Serial (V2 a) | |||||||||||||
Defined in Linear.V2 | |||||||||||||
Serialize a => Serialize (V2 a) | |||||||||||||
NFData a => NFData (V2 a) | |||||||||||||
Coordinates (V2 n) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
Eq a => Eq (V2 a) | |||||||||||||
Ord a => Ord (V2 a) | |||||||||||||
Hashable a => Hashable (V2 a) | |||||||||||||
Ixed (V2 a) | |||||||||||||
Epsilon a => Epsilon (V2 a) | |||||||||||||
Random a => Random (V2 a) | |||||||||||||
Uniform a => Uniform (V2 a) | |||||||||||||
UniformRange a => UniformRange (V2 a) | |||||||||||||
Unbox a => Unbox (V2 a) | |||||||||||||
Defined in Linear.V2 | |||||||||||||
FoldableWithIndex (E V2) V2 | |||||||||||||
FunctorWithIndex (E V2) V2 | |||||||||||||
TraversableWithIndex (E V2) V2 | |||||||||||||
Each (V2 a) (V2 b) a b | |||||||||||||
Field1 (V2 a) (V2 a) a a | |||||||||||||
Field2 (V2 a) (V2 a) a a | |||||||||||||
RealFloat n => Traced (BoundingBox V2 n) | |||||||||||||
Defined in Diagrams.BoundingBox Methods getTrace :: BoundingBox V2 n -> Trace (V (BoundingBox V2 n)) (N (BoundingBox V2 n)) # | |||||||||||||
SVGFloat n => Renderable (Path V2 n) SVG | |||||||||||||
Monoid (Render SVG V2 n) | |||||||||||||
Semigroup (Render SVG V2 n) | |||||||||||||
Eq n => Eq (Options SVG V2 n) | |||||||||||||
Hashable n => Hashable (Options SVG V2 n) | |||||||||||||
type Rep V2 | |||||||||||||
type Diff V2 | |||||||||||||
Defined in Linear.Affine | |||||||||||||
type Size V2 | |||||||||||||
type Rep1 V2 | |||||||||||||
Defined in Linear.V2 type Rep1 V2 = D1 ('MetaData "V2" "Linear.V2" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V2" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1)) | |||||||||||||
data Options SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG data Options SVG V2 n = SVGOptions {
| |||||||||||||
newtype Render SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG | |||||||||||||
type Result SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG | |||||||||||||
data MVector s (V2 a) | |||||||||||||
type Rep (V2 a) | |||||||||||||
Defined in Linear.V2 type Rep (V2 a) = D1 ('MetaData "V2" "Linear.V2" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V2" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a))) | |||||||||||||
type N (V2 n) | |||||||||||||
Defined in Diagrams.TwoD.Types | |||||||||||||
type V (V2 n) | |||||||||||||
Defined in Diagrams.TwoD.Types | |||||||||||||
type MainOpts [(String, QDiagram SVG V2 n Any)] | |||||||||||||
type Decomposition (V2 n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type FinalCoord (V2 n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type PrevDim (V2 n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type Index (V2 a) | |||||||||||||
type IxValue (V2 a) | |||||||||||||
data Vector (V2 a) | |||||||||||||
type MainOpts (QDiagram SVG V2 n Any) | |||||||||||||
Defined in Diagrams.Backend.SVG.CmdLine |
data QDiagram b (v :: Type -> Type) n m #
Instances
ToResult [QDiagram b v n Any] | |||||||||
Defined in Diagrams.Backend.CmdLine Associated Types
| |||||||||
ToResult [(String, QDiagram b v n Any)] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
Functor (QDiagram b v n) | |||||||||
ToResult (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine Associated Types
| |||||||||
(Metric v, OrderedField n, Semigroup m) => Monoid (QDiagram b v n m) | |||||||||
(Metric v, OrderedField n, Semigroup m) => Semigroup (QDiagram b v n m) | |||||||||
(Metric v, OrderedField n, Monoid' m) => Enveloped (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types | |||||||||
(Metric v, OrderedField n, Semigroup m) => HasOrigin (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types | |||||||||
(Metric v, OrderedField n, Monoid' m) => Juxtaposable (QDiagram b v n m) | |||||||||
(Metric v, OrderedField n, Semigroup m) => Qualifiable (QDiagram b v n m) | |||||||||
(Metric v, OrderedField n, Semigroup m) => HasStyle (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types | |||||||||
(Metric v, OrderedField n, Semigroup m) => Traced (QDiagram b v n m) | |||||||||
(OrderedField n, Metric v, Semigroup m) => Transformable (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types | |||||||||
(Metric v, OrderedField n, Monoid' m) => Alignable (QDiagram b v n m) | |||||||||
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => (v0 n0 -> QDiagram b v n m -> Point v0 n0) -> v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m # defaultBoundary :: (V (QDiagram b v n m) ~ v0, N (QDiagram b v n m) ~ n0) => v0 n0 -> QDiagram b v n m -> Point v0 n0 # alignBy :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m # | |||||||||
ToResult (QDiagram b v n Any) | |||||||||
Defined in Diagrams.Backend.CmdLine Associated Types
| |||||||||
Wrapped (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types Associated Types
| |||||||||
Monoid m => HasQuery (QDiagram b v n m) m | |||||||||
Rewrapped (QDiagram b v n m) (QDiagram b' v' n' m') | |||||||||
Defined in Diagrams.Core.Types | |||||||||
type Args [QDiagram b v n Any] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type Args [(String, QDiagram b v n Any)] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type MainOpts [(String, QDiagram SVG V2 n Any)] | |||||||||
type ResultOf [QDiagram b v n Any] | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type ResultOf [(String, QDiagram b v n Any)] | |||||||||
type Args (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine type Args (Animation b v n) = () | |||||||||
type ResultOf (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type N (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types | |||||||||
type V (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types | |||||||||
type Args (QDiagram b v n Any) | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type MainOpts (QDiagram SVG V2 n Any) | |||||||||
Defined in Diagrams.Backend.SVG.CmdLine | |||||||||
type ResultOf (QDiagram b v n Any) | |||||||||
Defined in Diagrams.Backend.CmdLine | |||||||||
type Unwrapped (QDiagram b v n m) | |||||||||
Defined in Diagrams.Core.Types |
renderDia :: forall b (v :: Type -> Type) n m. (Backend b v n, HasLinearMap v, Metric v, Typeable n, OrderedField n, Monoid' m) => b -> Options b v n -> QDiagram b v n m -> Result b v n #
pad :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m #
data Transformation (v :: Type -> Type) n #
Instances
(Additive v, Num n) => Monoid (Transformation v n) | |
Defined in Diagrams.Core.Transform Methods mempty :: Transformation v n # mappend :: Transformation v n -> Transformation v n -> Transformation v n # mconcat :: [Transformation v n] -> Transformation v n # | |
(Additive v, Num n) => Semigroup (Transformation v n) | |
Defined in Diagrams.Core.Transform Methods (<>) :: Transformation v n -> Transformation v n -> Transformation v n # sconcat :: NonEmpty (Transformation v n) -> Transformation v n # stimes :: Integral b => b -> Transformation v n -> Transformation v n # | |
(Additive v, Num n) => HasOrigin (Transformation v n) | |
Defined in Diagrams.Core.Transform Methods moveOriginTo :: Point (V (Transformation v n)) (N (Transformation v n)) -> Transformation v n -> Transformation v n # | |
(Additive v, Num n) => Transformable (Transformation v n) | |
Defined in Diagrams.Core.Transform Methods transform :: Transformation (V (Transformation v n)) (N (Transformation v n)) -> Transformation v n -> Transformation v n # | |
(Transformable a, V a ~ v, N a ~ n) => Action (Transformation v n) a | |
Defined in Diagrams.Core.Transform Methods act :: Transformation v n -> a -> a | |
type N (Transformation v n) | |
Defined in Diagrams.Core.Transform | |
type V (Transformation v n) | |
Defined in Diagrams.Core.Transform |
data family Render b (v :: Type -> Type) n #
Instances
Monoid (Render NullBackend v n) | |
Defined in Diagrams.Core.Types Methods mempty :: Render NullBackend v n # mappend :: Render NullBackend v n -> Render NullBackend v n -> Render NullBackend v n # mconcat :: [Render NullBackend v n] -> Render NullBackend v n # | |
Monoid (Render SVG V2 n) | |
Semigroup (Render NullBackend v n) | |
Defined in Diagrams.Core.Types Methods (<>) :: Render NullBackend v n -> Render NullBackend v n -> Render NullBackend v n # sconcat :: NonEmpty (Render NullBackend v n) -> Render NullBackend v n # stimes :: Integral b => b -> Render NullBackend v n -> Render NullBackend v n # | |
Semigroup (Render SVG V2 n) | |
data Render NullBackend v n | |
Defined in Diagrams.Core.Types | |
newtype Render SVG V2 n | |
Defined in Diagrams.Backend.SVG |
Instances
Fractional n => HasOrigin (DImage n a) | |
Defined in Diagrams.TwoD.Image | |
Fractional n => Transformable (DImage n a) | |
Defined in Diagrams.TwoD.Image | |
SVGFloat n => Renderable (DImage n Embedded) SVG | |
SVGFloat n => Renderable (DImage n (Native Img)) SVG | |
Fractional n => Renderable (DImage n a) NullBackend | |
Defined in Diagrams.TwoD.Image Methods render :: NullBackend -> DImage n a -> Render NullBackend (V (DImage n a)) (N (DImage n a)) # | |
RealFloat n => HasQuery (DImage n a) Any | |
type N (DImage n a) | |
Defined in Diagrams.TwoD.Image | |
type V (DImage n a) | |
Defined in Diagrams.TwoD.Image |
type family V a :: Type -> Type #
Instances
type V SVG | |
Defined in Diagrams.Backend.SVG | |
type V (Active a) | |
Defined in Diagrams.Animation.Active | |
type V (Set a) | |
Defined in Diagrams.Core.V | |
type V (TransInv t) | |
Defined in Diagrams.Core.Transform | |
type V (Located a) | |
Defined in Diagrams.Located | |
type V (Tangent t) | |
Defined in Diagrams.Tangent | |
type V (OrthoLens n) | |
Defined in Diagrams.ThreeD.Camera | |
type V (PerspectiveLens n) | |
Defined in Diagrams.ThreeD.Camera | |
type V (ParallelLight n) | |
Defined in Diagrams.ThreeD.Light | |
type V (PointLight n) | |
Defined in Diagrams.ThreeD.Light | |
type V (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (GetSegment t) | |
Defined in Diagrams.Trail | |
type V (ScaleInv t) | |
Defined in Diagrams.Transform.ScaleInv | |
type V (FillTexture n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (LGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (LineTexture n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (RGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (Texture n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (Clip n) | |
Defined in Diagrams.TwoD.Path | |
type V (BernsteinPoly n) | |
Defined in Diagrams.TwoD.Segment.Bernstein type V (BernsteinPoly n) = V1 | |
type V (Text n) | |
Defined in Diagrams.TwoD.Text | |
type V (V2 n) | |
Defined in Diagrams.TwoD.Types | |
type V (V3 n) | |
Defined in Diagrams.ThreeD.Types | |
type V (Deletable m) | |
Defined in Diagrams.Core.V | |
type V (Split m) | |
Defined in Diagrams.Core.V | |
type V (Maybe a) | |
Defined in Diagrams.Core.V | |
type V [a] | |
Defined in Diagrams.Core.V | |
type V (Map k a) | |
Defined in Diagrams.Core.V | |
type V (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
type V (Measured n a) | |
Defined in Diagrams.Core.Measure | |
type V (Attribute v n) | |
Defined in Diagrams.Core.Style | |
type V (Style v n) | |
Defined in Diagrams.Core.Style | |
type V (Trace v n) | |
Defined in Diagrams.Core.Trace | |
type V (Transformation v n) | |
Defined in Diagrams.Core.Transform | |
type V (BoundingBox v n) | |
Defined in Diagrams.BoundingBox | |
type V (NonEmptyBoundingBox v n) | |
Defined in Diagrams.BoundingBox type V (NonEmptyBoundingBox v n) = v | |
type V (Direction v n) | |
Defined in Diagrams.Direction | |
type V (Path v n) | |
Defined in Diagrams.Path | |
type V (FixedSegment v n) | |
Defined in Diagrams.Segment | |
type V (SizeSpec v n) | |
Defined in Diagrams.Size | |
type V (Camera l n) | |
Defined in Diagrams.ThreeD.Camera | |
type V (SegTree v n) | |
Defined in Diagrams.Trail | |
type V (Trail v n) | |
Defined in Diagrams.Trail | |
type V (DImage n a) | |
Defined in Diagrams.TwoD.Image | |
type V (FingerTree m a) | |
Defined in Diagrams.Trail | |
type V (Point v n) | |
Defined in Diagrams.Core.Points | |
type V (m :+: n) | |
Defined in Diagrams.Core.V | |
type V (a, b) | |
Defined in Diagrams.Core.V | |
type V (a -> b) | |
Defined in Diagrams.Core.V | |
type V (Query v n m) | |
Defined in Diagrams.Core.Query | |
type V (Prim b v n) | |
Defined in Diagrams.Core.Types | |
type V (Offset c v n) | |
Defined in Diagrams.Segment | |
type V (Segment c v n) | |
Defined in Diagrams.Segment | |
type V (Trail' l v n) | |
Defined in Diagrams.Trail | |
type V (a, b, c) | |
Defined in Diagrams.Core.V | |
type V (QDiagram b v n m) | |
Defined in Diagrams.Core.Types | |
type V (SubMap b v n m) | |
Defined in Diagrams.Core.Types | |
type V (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types |
type TypeableFloat n = (Typeable n, RealFloat n) #
newtype Path (v :: Type -> Type) n #
Instances
Monoid (Path v n) | |||||
Semigroup (Path v n) | |||||
Generic (Path v n) | |||||
Defined in Diagrams.Path Associated Types
| |||||
Show (v n) => Show (Path v n) | |||||
(OrderedField n, Metric v, Serialize (v n), Serialize (V (v n) (N (v n)))) => Serialize (Path v n) | |||||
Defined in Diagrams.Path | |||||
(Metric v, OrderedField n) => Enveloped (Path v n) | |||||
Defined in Diagrams.Path | |||||
(Additive v, Num n) => HasOrigin (Path v n) | |||||
Defined in Diagrams.Path | |||||
(Metric v, OrderedField n) => Juxtaposable (Path v n) | |||||
(HasLinearMap v, Metric v, OrderedField n) => Transformable (Path v n) | |||||
Defined in Diagrams.Path | |||||
(Metric v, OrderedField n) => Alignable (Path v n) | |||||
Defined in Diagrams.Path Methods alignBy' :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => (v0 n0 -> Path v n -> Point v0 n0) -> v0 n0 -> n0 -> Path v n -> Path v n # defaultBoundary :: (V (Path v n) ~ v0, N (Path v n) ~ n0) => v0 n0 -> Path v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => v0 n0 -> n0 -> Path v n -> Path v n # | |||||
ToPath (Path v n) | |||||
(Metric v, OrderedField n) => TrailLike (Path v n) | |||||
Eq (v n) => Eq (Path v n) | |||||
Ord (v n) => Ord (Path v n) | |||||
Defined in Diagrams.Path | |||||
AsEmpty (Path v n) | |||||
Defined in Diagrams.Path | |||||
(Metric v, OrderedField n) => Reversing (Path v n) | |||||
Defined in Diagrams.Path | |||||
Wrapped (Path v n) | |||||
SVGFloat n => Renderable (Path V2 n) SVG | |||||
(HasLinearMap v, Metric v, OrderedField n) => Renderable (Path v n) NullBackend | |||||
Defined in Diagrams.Path Methods render :: NullBackend -> Path v n -> Render NullBackend (V (Path v n)) (N (Path v n)) # | |||||
(Metric v, Metric u, OrderedField n, r ~ Path u n) => Deformable (Path v n) r | |||||
(Metric v, Metric u, OrderedField n, r ~ Path u n) => AffineMappable (Path v n) r | |||||
(Metric v, Metric u, OrderedField n, OrderedField m, r ~ Path u m) => LinearMappable (Path v n) r | |||||
Rewrapped (Path v n) (Path v' n') | |||||
Defined in Diagrams.Path | |||||
Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |||||
Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |||||
Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |||||
type Rep (Path v n) | |||||
Defined in Diagrams.Path | |||||
type N (Path v n) | |||||
Defined in Diagrams.Path | |||||
type V (Path v n) | |||||
Defined in Diagrams.Path | |||||
type Unwrapped (Path v n) | |||||
Defined in Diagrams.Path |
data Attribute (v :: Type -> Type) n where #
Constructors
Attribute :: forall a (v :: Type -> Type) n. AttributeClass a => a -> Attribute v n | |
MAttribute :: forall a n (v :: Type -> Type). AttributeClass a => Measured n a -> Attribute v n | |
TAttribute :: forall a (v :: Type -> Type) n. (AttributeClass a, Transformable a, V a ~ v, N a ~ n) => a -> Attribute v n |
Instances
Typeable n => Semigroup (Attribute v n) | |
Show (Attribute v n) | |
(Additive v, Traversable v, Floating n) => Transformable (Attribute v n) | |
Defined in Diagrams.Core.Style | |
Each (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') | |
type N (Attribute v n) | |
Defined in Diagrams.Core.Style | |
type V (Attribute v n) | |
Defined in Diagrams.Core.Style |
Constructors
ImageRaster :: DynamicImage -> ImageData Embedded | |
ImageRef :: FilePath -> ImageData External | |
ImageNative :: forall t. t -> ImageData (Native t) |
data SizeSpec (v :: Type -> Type) n #
Instances
Functor v => Functor (SizeSpec v) | |||||
Generic (SizeSpec v n) | |||||
Defined in Diagrams.Size Associated Types
| |||||
Show (v n) => Show (SizeSpec v n) | |||||
Eq (v n) => Eq (SizeSpec v n) | |||||
Hashable (v n) => Hashable (SizeSpec v n) | |||||
Defined in Diagrams.Size | |||||
type Rep (SizeSpec v n) | |||||
Defined in Diagrams.Size | |||||
type N (SizeSpec v n) | |||||
Defined in Diagrams.Size | |||||
type V (SizeSpec v n) | |||||
Defined in Diagrams.Size |
type OrderedField s = (Floating s, Ord s) #
Minimal complete definition
Methods
alignBy' :: (InSpace v n a, Fractional n, HasOrigin a) => (v n -> a -> Point v n) -> v n -> n -> a -> a #
defaultBoundary :: (V a ~ v, N a ~ n) => v n -> a -> Point v n #
alignBy :: (InSpace v n a, Fractional n, HasOrigin a) => v n -> n -> a -> a #
Instances
(V b ~ v, N b ~ n, Metric v, OrderedField n, Alignable b) => Alignable (Set b) | |
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (Set b), Fractional n0, HasOrigin (Set b)) => (v0 n0 -> Set b -> Point v0 n0) -> v0 n0 -> n0 -> Set b -> Set b # defaultBoundary :: (V (Set b) ~ v0, N (Set b) ~ n0) => v0 n0 -> Set b -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Set b), Fractional n0, HasOrigin (Set b)) => v0 n0 -> n0 -> Set b -> Set b # | |
Alignable a => Alignable (Located a) | |
Defined in Diagrams.Located Methods alignBy' :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => (v n -> Located a -> Point v n) -> v n -> n -> Located a -> Located a # defaultBoundary :: (V (Located a) ~ v, N (Located a) ~ n) => v n -> Located a -> Point v n # alignBy :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => v n -> n -> Located a -> Located a # | |
(V b ~ v, N b ~ n, Metric v, OrderedField n, Alignable b) => Alignable [b] | |
Defined in Diagrams.Align | |
(V b ~ v, N b ~ n, Metric v, OrderedField n, Alignable b) => Alignable (Map k b) | |
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (Map k b), Fractional n0, HasOrigin (Map k b)) => (v0 n0 -> Map k b -> Point v0 n0) -> v0 n0 -> n0 -> Map k b -> Map k b # defaultBoundary :: (V (Map k b) ~ v0, N (Map k b) ~ n0) => v0 n0 -> Map k b -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Map k b), Fractional n0, HasOrigin (Map k b)) => v0 n0 -> n0 -> Map k b -> Map k b # | |
(Metric v, OrderedField n) => Alignable (Envelope v n) | |
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => (v0 n0 -> Envelope v n -> Point v0 n0) -> v0 n0 -> n0 -> Envelope v n -> Envelope v n # defaultBoundary :: (V (Envelope v n) ~ v0, N (Envelope v n) ~ n0) => v0 n0 -> Envelope v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => v0 n0 -> n0 -> Envelope v n -> Envelope v n # | |
(Metric v, OrderedField n) => Alignable (Trace v n) | |
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => (v0 n0 -> Trace v n -> Point v0 n0) -> v0 n0 -> n0 -> Trace v n -> Trace v n # defaultBoundary :: (V (Trace v n) ~ v0, N (Trace v n) ~ n0) => v0 n0 -> Trace v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => v0 n0 -> n0 -> Trace v n -> Trace v n # | |
(Metric v, Traversable v, OrderedField n) => Alignable (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods alignBy' :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => (v0 n0 -> BoundingBox v n -> Point v0 n0) -> v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n # defaultBoundary :: (V (BoundingBox v n) ~ v0, N (BoundingBox v n) ~ n0) => v0 n0 -> BoundingBox v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n # | |
(Metric v, OrderedField n) => Alignable (Path v n) | |
Defined in Diagrams.Path Methods alignBy' :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => (v0 n0 -> Path v n -> Point v0 n0) -> v0 n0 -> n0 -> Path v n -> Path v n # defaultBoundary :: (V (Path v n) ~ v0, N (Path v n) ~ n0) => v0 n0 -> Path v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => v0 n0 -> n0 -> Path v n -> Path v n # | |
(InSpace v n a, HasOrigin a, Alignable a) => Alignable (b -> a) | |
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (b -> a), Fractional n0, HasOrigin (b -> a)) => (v0 n0 -> (b -> a) -> Point v0 n0) -> v0 n0 -> n0 -> (b -> a) -> b -> a # defaultBoundary :: (V (b -> a) ~ v0, N (b -> a) ~ n0) => v0 n0 -> (b -> a) -> Point v0 n0 # alignBy :: (InSpace v0 n0 (b -> a), Fractional n0, HasOrigin (b -> a)) => v0 n0 -> n0 -> (b -> a) -> b -> a # | |
(Metric v, OrderedField n, Monoid' m) => Alignable (QDiagram b v n m) | |
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => (v0 n0 -> QDiagram b v n m -> Point v0 n0) -> v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m # defaultBoundary :: (V (QDiagram b v n m) ~ v0, N (QDiagram b v n m) ~ n0) => v0 n0 -> QDiagram b v n m -> Point v0 n0 # alignBy :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m # |
alignBy'Default :: (InSpace v n a, Fractional n, HasOrigin a) => (v n -> a -> Point v n) -> v n -> n -> a -> a #
snugCenter :: forall (v :: Type -> Type) n a. (InSpace v n a, Traversable v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugCenterV :: (InSpace v n a, Fractional n, Alignable a, Traced a, HasOrigin a) => v n -> a -> a #
Instances
Applicative Angle | |
Functor Angle | |
Additive Angle | |
Num n => Monoid (Angle n) | |
Num n => Semigroup (Angle n) | |
Enum n => Enum (Angle n) | |
Read n => Read (Angle n) | |
Show n => Show (Angle n) | |
Eq n => Eq (Angle n) | |
Ord n => Ord (Angle n) | |
(V t ~ V2, N t ~ n, Transformable t, Floating n) => Action (Angle n) t | |
Defined in Diagrams.Angle | |
type N (Angle n) | |
Defined in Diagrams.Angle |
angleRatio :: Floating n => Angle n -> Angle n -> n #
atan2A' :: OrderedField n => n -> n -> Angle n #
quarterTurn :: Floating v => Angle v #
animEnvelope :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => QAnimation b v n m -> QAnimation b v n m #
animEnvelope' :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => Rational -> QAnimation b v n m -> QAnimation b v n m #
animRect :: (InSpace V2 n t, Monoid' m, TrailLike t, Enveloped t, Transformable t, Monoid t) => QAnimation b V2 n m -> t #
animRect' :: (InSpace V2 n t, Monoid' m, TrailLike t, Enveloped t, Transformable t, Monoid t) => Rational -> QAnimation b V2 n m -> t #
Instances
Color SomeColor | |
Defined in Diagrams.Attributes Methods toAlphaColour :: SomeColor -> AlphaColour Double # | |
a ~ Double => Color (AlphaColour a) | |
Defined in Diagrams.Attributes Methods toAlphaColour :: AlphaColour a -> AlphaColour Double # fromAlphaColour :: AlphaColour Double -> AlphaColour a # | |
a ~ Double => Color (Colour a) | |
Defined in Diagrams.Attributes Methods toAlphaColour :: Colour a -> AlphaColour Double # fromAlphaColour :: AlphaColour Double -> Colour a # |
Constructors
Dashing [n] n |
data FillOpacity #
Instances
Semigroup FillOpacity | |
Defined in Diagrams.Attributes Methods (<>) :: FillOpacity -> FillOpacity -> FillOpacity # sconcat :: NonEmpty FillOpacity -> FillOpacity # stimes :: Integral b => b -> FillOpacity -> FillOpacity # | |
AttributeClass FillOpacity | |
Defined in Diagrams.Attributes |
Constructors
LineCapButt | |
LineCapRound | |
LineCapSquare |
Instances
Semigroup LineCap | |
Show LineCap | |
Default LineCap | |
Defined in Diagrams.Attributes | |
AttributeClass LineCap | |
Defined in Diagrams.Attributes | |
Eq LineCap | |
Ord LineCap | |
Constructors
LineJoinMiter | |
LineJoinRound | |
LineJoinBevel |
Instances
Semigroup LineJoin | |
Show LineJoin | |
Default LineJoin | |
Defined in Diagrams.Attributes | |
AttributeClass LineJoin | |
Defined in Diagrams.Attributes | |
Eq LineJoin | |
Ord LineJoin | |
Defined in Diagrams.Attributes |
newtype LineMiterLimit #
Constructors
LineMiterLimit (Last Double) |
Instances
Semigroup LineMiterLimit | |
Defined in Diagrams.Attributes Methods (<>) :: LineMiterLimit -> LineMiterLimit -> LineMiterLimit # sconcat :: NonEmpty LineMiterLimit -> LineMiterLimit # stimes :: Integral b => b -> LineMiterLimit -> LineMiterLimit # | |
Default LineMiterLimit | |
Defined in Diagrams.Attributes Methods def :: LineMiterLimit # | |
AttributeClass LineMiterLimit | |
Defined in Diagrams.Attributes | |
Eq LineMiterLimit | |
Defined in Diagrams.Attributes Methods (==) :: LineMiterLimit -> LineMiterLimit -> Bool # (/=) :: LineMiterLimit -> LineMiterLimit -> Bool # | |
Ord LineMiterLimit | |
Defined in Diagrams.Attributes Methods compare :: LineMiterLimit -> LineMiterLimit -> Ordering # (<) :: LineMiterLimit -> LineMiterLimit -> Bool # (<=) :: LineMiterLimit -> LineMiterLimit -> Bool # (>) :: LineMiterLimit -> LineMiterLimit -> Bool # (>=) :: LineMiterLimit -> LineMiterLimit -> Bool # max :: LineMiterLimit -> LineMiterLimit -> LineMiterLimit # min :: LineMiterLimit -> LineMiterLimit -> LineMiterLimit # |
Instances
Semigroup (LineWidth n) | |
OrderedField n => Default (LineWidthM n) | |
Defined in Diagrams.Attributes | |
Typeable n => AttributeClass (LineWidth n) | |
Defined in Diagrams.Attributes |
Instances
Show SomeColor | |
Color SomeColor | |
Defined in Diagrams.Attributes Methods toAlphaColour :: SomeColor -> AlphaColour Double # |
data StrokeOpacity #
Instances
Semigroup StrokeOpacity | |
Defined in Diagrams.Attributes Methods (<>) :: StrokeOpacity -> StrokeOpacity -> StrokeOpacity # sconcat :: NonEmpty StrokeOpacity -> StrokeOpacity # stimes :: Integral b => b -> StrokeOpacity -> StrokeOpacity # | |
AttributeClass StrokeOpacity | |
Defined in Diagrams.Attributes |
_Commit :: forall a p f. (Choice p, Applicative f) => p a (f a) -> p (Recommend a) (f (Recommend a)) #
_LineWidth :: forall n p f. (Profunctor p, Functor f) => p n (f n) -> p (LineWidth n) (f (LineWidth n)) #
_LineWidthM :: forall n p f. (Profunctor p, Functor f) => p (Measure n) (f (Measure n)) -> p (LineWidthM n) (f (LineWidthM n)) #
_Recommend :: forall a p f. (Choice p, Applicative f) => p a (f a) -> p (Recommend a) (f (Recommend a)) #
_dashing :: forall n (v :: Type -> Type). Typeable n => Lens' (Style v n) (Maybe (Measured n (Dashing n))) #
_fillOpacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #
_lineCap :: forall (v :: Type -> Type) n f. Functor f => (LineCap -> f LineCap) -> Style v n -> f (Style v n) #
_lineJoin :: forall (v :: Type -> Type) n f. Functor f => (LineJoin -> f LineJoin) -> Style v n -> f (Style v n) #
_lineMiterLimit :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #
_lineWidth :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n) #
_lw :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n) #
_opacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #
_recommend :: forall a b f. Functor f => (a -> f b) -> Recommend a -> f (Recommend b) #
_strokeOpacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #
committed :: forall a b p f. (Profunctor p, Functor f) => p a (f b) -> p (Recommend a) (f (Recommend b)) #
fillOpacity :: HasStyle a => Double -> a -> a #
getDashing :: Dashing n -> Dashing n #
getFillOpacity :: FillOpacity -> Double #
getLineCap :: LineCap -> LineCap #
getLineJoin :: LineJoin -> LineJoin #
getLineWidth :: LineWidth n -> n #
getOpacity :: Opacity -> Double #
getStrokeOpacity :: StrokeOpacity -> Double #
huge :: OrderedField n => Measure n #
isCommitted :: forall a f. Functor f => (Bool -> f Bool) -> Recommend a -> f (Recommend a) #
large :: OrderedField n => Measure n #
lineMiterLimit :: HasStyle a => Double -> a -> a #
lineMiterLimitA :: HasStyle a => LineMiterLimit -> a -> a #
medium :: OrderedField n => Measure n #
none :: OrderedField n => Measure n #
normal :: OrderedField n => Measure n #
small :: OrderedField n => Measure n #
someToAlpha :: SomeColor -> AlphaColour Double #
strokeOpacity :: HasStyle a => Double -> a -> a #
thick :: OrderedField n => Measure n #
tiny :: OrderedField n => Measure n #
ultraThick :: OrderedField n => Measure n #
ultraThin :: OrderedField n => Measure n #
veryLarge :: OrderedField n => Measure n #
verySmall :: OrderedField n => Measure n #
veryThick :: OrderedField n => Measure n #
veryThin :: OrderedField n => Measure n #
data BoundingBox (v :: Type -> Type) n #
Instances
Functor v => Functor (BoundingBox v) | |
Defined in Diagrams.BoundingBox Methods fmap :: (a -> b) -> BoundingBox v a -> BoundingBox v b # (<$) :: a -> BoundingBox v b -> BoundingBox v a # | |
(Additive v, Ord n) => Monoid (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods mempty :: BoundingBox v n # mappend :: BoundingBox v n -> BoundingBox v n -> BoundingBox v n # mconcat :: [BoundingBox v n] -> BoundingBox v n # | |
(Additive v, Ord n) => Semigroup (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods (<>) :: BoundingBox v n -> BoundingBox v n -> BoundingBox v n # sconcat :: NonEmpty (BoundingBox v n) -> BoundingBox v n # stimes :: Integral b => b -> BoundingBox v n -> BoundingBox v n # | |
Read (v n) => Read (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods readsPrec :: Int -> ReadS (BoundingBox v n) # readList :: ReadS [BoundingBox v n] # readPrec :: ReadPrec (BoundingBox v n) # readListPrec :: ReadPrec [BoundingBox v n] # | |
Show (v n) => Show (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods showsPrec :: Int -> BoundingBox v n -> ShowS # show :: BoundingBox v n -> String # showList :: [BoundingBox v n] -> ShowS # | |
(Metric v, Traversable v, OrderedField n) => Enveloped (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods getEnvelope :: BoundingBox v n -> Envelope (V (BoundingBox v n)) (N (BoundingBox v n)) # | |
(Additive v, Num n) => HasOrigin (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods moveOriginTo :: Point (V (BoundingBox v n)) (N (BoundingBox v n)) -> BoundingBox v n -> BoundingBox v n # | |
RealFloat n => Traced (BoundingBox V2 n) | |
Defined in Diagrams.BoundingBox Methods getTrace :: BoundingBox V2 n -> Trace (V (BoundingBox V2 n)) (N (BoundingBox V2 n)) # | |
TypeableFloat n => Traced (BoundingBox V3 n) | |
Defined in Diagrams.BoundingBox Methods getTrace :: BoundingBox V3 n -> Trace (V (BoundingBox V3 n)) (N (BoundingBox V3 n)) # | |
(Metric v, Traversable v, OrderedField n) => Alignable (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods alignBy' :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => (v0 n0 -> BoundingBox v n -> Point v0 n0) -> v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n # defaultBoundary :: (V (BoundingBox v n) ~ v0, N (BoundingBox v n) ~ n0) => v0 n0 -> BoundingBox v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n # | |
Eq (v n) => Eq (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods (==) :: BoundingBox v n -> BoundingBox v n -> Bool # (/=) :: BoundingBox v n -> BoundingBox v n -> Bool # | |
AsEmpty (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods _Empty :: Prism' (BoundingBox v n) () # | |
(Additive v, Foldable v, Ord n) => HasQuery (BoundingBox v n) Any | |
Defined in Diagrams.BoundingBox Methods getQuery :: BoundingBox v n -> Query (V (BoundingBox v n)) (N (BoundingBox v n)) Any # | |
(Additive v', Foldable v', Ord n') => Each (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') | |
Defined in Diagrams.BoundingBox Methods each :: Traversal (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') # | |
type N (BoundingBox v n) | |
Defined in Diagrams.BoundingBox | |
type V (BoundingBox v n) | |
Defined in Diagrams.BoundingBox |
boundingBox :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> BoundingBox v n #
boxCenter :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => BoundingBox v n -> Maybe (Point v n) #
boxExtents :: (Additive v, Num n) => BoundingBox v n -> v n #
boxFit :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a, Transformable a, Monoid a) => BoundingBox v n -> a -> a #
boxGrid :: forall (v :: Type -> Type) n. (Traversable v, Additive v, Num n, Enum n) => n -> BoundingBox v n -> [Point v n] #
boxTransform :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => BoundingBox v n -> BoundingBox v n -> Maybe (Transformation v n) #
centerPoint :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> Point v n #
contains' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> Point v n -> Bool #
emptyBox :: forall (v :: Type -> Type) n. BoundingBox v n #
fromCorners :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => Point v n -> Point v n -> BoundingBox v n #
fromPoints :: forall (v :: Type -> Type) n. (Additive v, Ord n) => [Point v n] -> BoundingBox v n #
getAllCorners :: forall (v :: Type -> Type) n. (Additive v, Traversable v) => BoundingBox v n -> [Point v n] #
getCorners :: forall (v :: Type -> Type) n. BoundingBox v n -> Maybe (Point v n, Point v n) #
inside' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> BoundingBox v n -> Bool #
isEmptyBox :: forall (v :: Type -> Type) n. BoundingBox v n -> Bool #
mCenterPoint :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> Maybe (Point v n) #
outside' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> BoundingBox v n -> Bool #
appends :: (Juxtaposable a, Monoid' a) => a -> [(Vn a, a)] -> a #
atDirection :: forall (v :: Type -> Type) n a. (InSpace v n a, Metric v, Floating n, Juxtaposable a, Semigroup a) => Direction v n -> a -> a -> a #
atPoints :: forall (v :: Type -> Type) n a. (InSpace v n a, HasOrigin a, Monoid' a) => [Point v n] -> [a] -> a #
beneath :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #
beside :: (Juxtaposable a, Semigroup a) => Vn a -> a -> a -> a #
cat' :: (InSpace v n a, Metric v, Floating n, Juxtaposable a, Monoid' a, HasOrigin a) => v n -> CatOpts n -> [a] -> a #
composeAligned :: forall m n (v :: Type -> Type) b. (Monoid' m, Floating n, Ord n, Metric v) => (QDiagram b v n m -> QDiagram b v n m) -> ([QDiagram b v n m] -> QDiagram b v n m) -> [QDiagram b v n m] -> QDiagram b v n m #
extrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m #
frame :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m #
intrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m #
position :: forall (v :: Type -> Type) n a. (InSpace v n a, HasOrigin a, Monoid' a) => [(Point v n, a)] -> a #
strut :: (Metric v, OrderedField n) => v n -> QDiagram b v n m #
withEnvelope :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Monoid' m, Enveloped a) => a -> QDiagram b v n m -> QDiagram b v n m #
withTrace :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Metric v, OrderedField n, Monoid' m, Traced a) => a -> QDiagram b v n m -> QDiagram b v n m #
Constructors
a :& b |
Instances
(Show a, Show b) => Show (a :& b) | |||||||||||||
Coordinates (a :& b) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
(Eq a, Eq b) => Eq (a :& b) | |||||||||||||
(Ord a, Ord b) => Ord (a :& b) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type Decomposition (a :& b) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type FinalCoord (a :& b) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type PrevDim (a :& b) | |||||||||||||
Defined in Diagrams.Coordinates |
class Coordinates c where #
Methods
(^&) :: PrevDim c -> FinalCoord c -> c #
pr :: PrevDim c -> FinalCoord c -> c #
coords :: c -> Decomposition c #
Instances
Coordinates (V2 n) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
Coordinates (V3 n) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
Coordinates (V4 n) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
Methods (^&) :: PrevDim (V4 n) -> FinalCoord (V4 n) -> V4 n # pr :: PrevDim (V4 n) -> FinalCoord (V4 n) -> V4 n # coords :: V4 n -> Decomposition (V4 n) # | |||||||||||||
Coordinates (a :& b) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
Coordinates (v n) => Coordinates (Point v n) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
Coordinates (a, b) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
Methods (^&) :: PrevDim (a, b) -> FinalCoord (a, b) -> (a, b) # pr :: PrevDim (a, b) -> FinalCoord (a, b) -> (a, b) # coords :: (a, b) -> Decomposition (a, b) # | |||||||||||||
Coordinates (a, b, c) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
Methods (^&) :: PrevDim (a, b, c) -> FinalCoord (a, b, c) -> (a, b, c) # pr :: PrevDim (a, b, c) -> FinalCoord (a, b, c) -> (a, b, c) # coords :: (a, b, c) -> Decomposition (a, b, c) # | |||||||||||||
Coordinates (a, b, c, d) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
Methods (^&) :: PrevDim (a, b, c, d) -> FinalCoord (a, b, c, d) -> (a, b, c, d) # pr :: PrevDim (a, b, c, d) -> FinalCoord (a, b, c, d) -> (a, b, c, d) # coords :: (a, b, c, d) -> Decomposition (a, b, c, d) # |
type family Decomposition c #
Instances
type Decomposition (V2 n) | |
Defined in Diagrams.Coordinates | |
type Decomposition (V3 n) | |
Defined in Diagrams.Coordinates | |
type Decomposition (V4 n) | |
Defined in Diagrams.Coordinates | |
type Decomposition (a :& b) | |
Defined in Diagrams.Coordinates | |
type Decomposition (Point v n) | |
Defined in Diagrams.Coordinates | |
type Decomposition (a, b) | |
Defined in Diagrams.Coordinates | |
type Decomposition (a, b, c) | |
Defined in Diagrams.Coordinates | |
type Decomposition (a, b, c, d) | |
Defined in Diagrams.Coordinates |
type family FinalCoord c #
Instances
type FinalCoord (V2 n) | |
Defined in Diagrams.Coordinates | |
type FinalCoord (V3 n) | |
Defined in Diagrams.Coordinates | |
type FinalCoord (V4 n) | |
Defined in Diagrams.Coordinates type FinalCoord (V4 n) = n | |
type FinalCoord (a :& b) | |
Defined in Diagrams.Coordinates | |
type FinalCoord (Point v n) | |
Defined in Diagrams.Coordinates | |
type FinalCoord (a, b) | |
Defined in Diagrams.Coordinates type FinalCoord (a, b) = b | |
type FinalCoord (a, b, c) | |
Defined in Diagrams.Coordinates type FinalCoord (a, b, c) = c | |
type FinalCoord (a, b, c, d) | |
Defined in Diagrams.Coordinates type FinalCoord (a, b, c, d) = d |
Instances
type PrevDim (V2 n) | |
Defined in Diagrams.Coordinates | |
type PrevDim (V3 n) | |
Defined in Diagrams.Coordinates | |
type PrevDim (V4 n) | |
Defined in Diagrams.Coordinates | |
type PrevDim (a :& b) | |
Defined in Diagrams.Coordinates | |
type PrevDim (Point v n) | |
Defined in Diagrams.Coordinates | |
type PrevDim (a, b) | |
Defined in Diagrams.Coordinates type PrevDim (a, b) = a | |
type PrevDim (a, b, c) | |
Defined in Diagrams.Coordinates type PrevDim (a, b, c) = (a, b) | |
type PrevDim (a, b, c, d) | |
Defined in Diagrams.Coordinates type PrevDim (a, b, c, d) = (a, b, c) |
cubicSpline :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t, Fractional (v n)) => Bool -> [Point v n] -> t #
class Deformable a b where #
Instances
(Metric v, Metric u, OrderedField n, r ~ Located (Trail u n)) => Deformable (Located (Trail v n)) r | |
(Metric v, Metric u, OrderedField n, r ~ Path u n) => Deformable (Path v n) r | |
r ~ Point u n => Deformable (Point v n) r | |
newtype Deformation (v :: Type -> Type) (u :: Type -> Type) n #
Constructors
Deformation (Point v n -> Point u n) |
Instances
Monoid (Deformation v v n) | |
Defined in Diagrams.Deform Methods mempty :: Deformation v v n # mappend :: Deformation v v n -> Deformation v v n -> Deformation v v n # mconcat :: [Deformation v v n] -> Deformation v v n # | |
Semigroup (Deformation v v n) | |
Defined in Diagrams.Deform Methods (<>) :: Deformation v v n -> Deformation v v n -> Deformation v v n # sconcat :: NonEmpty (Deformation v v n) -> Deformation v v n # stimes :: Integral b => b -> Deformation v v n -> Deformation v v n # |
asDeformation :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Deformation v v n #
data Direction (v :: Type -> Type) n #
Instances
Functor v => Functor (Direction v) | |
HasPhi v => HasPhi (Direction v) | |
HasTheta v => HasTheta (Direction v) | |
Read (v n) => Read (Direction v n) | |
Show (v n) => Show (Direction v n) | |
(V (v n) ~ v, N (v n) ~ n, Transformable (v n)) => Transformable (Direction v n) | |
Defined in Diagrams.Direction | |
Eq (v n) => Eq (Direction v n) | |
Ord (v n) => Ord (Direction v n) | |
Defined in Diagrams.Direction Methods compare :: Direction v n -> Direction v n -> Ordering # (<) :: Direction v n -> Direction v n -> Bool # (<=) :: Direction v n -> Direction v n -> Bool # (>) :: Direction v n -> Direction v n -> Bool # (>=) :: Direction v n -> Direction v n -> Bool # | |
type N (Direction v n) | |
Defined in Diagrams.Direction | |
type V (Direction v n) | |
Defined in Diagrams.Direction |
_Dir :: forall v n p f. (Profunctor p, Functor f) => p (v n) (f (v n)) -> p (Direction v n) (f (Direction v n)) #
angleBetweenDirs :: forall (v :: Type -> Type) n. (Metric v, Floating n, Ord n) => Direction v n -> Direction v n -> Angle n #
dirBetween :: forall (v :: Type -> Type) n. (Additive v, Num n) => Point v n -> Point v n -> Direction v n #
fromDirection :: (Metric v, Floating n) => Direction v n -> v n #
_loc :: forall a f. Functor f => (Point (V a) (N a) -> f (Point (V a) (N a))) -> Located a -> f (Located a) #
namePoint :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => (QDiagram b v n m -> Point v n) -> nm -> QDiagram b v n m -> QDiagram b v n m #
named :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => nm -> QDiagram b v n m -> QDiagram b v n m #
type family Codomain p :: Type -> Type #
Instances
type Codomain (Located a) | |
Defined in Diagrams.Located | |
type Codomain (Tangent t) | |
Defined in Diagrams.Tangent | |
type Codomain (GetSegment t) | |
Defined in Diagrams.Trail | |
type Codomain (BernsteinPoly n) | |
Defined in Diagrams.TwoD.Segment.Bernstein type Codomain (BernsteinPoly n) = V1 | |
type Codomain (FixedSegment v n) | |
Defined in Diagrams.Segment | |
type Codomain (SegTree v n) | |
Defined in Diagrams.Trail | |
type Codomain (Trail v n) | |
Defined in Diagrams.Trail | |
type Codomain (Segment Closed v n) | |
Defined in Diagrams.Segment | |
type Codomain (Trail' l v n) | |
Defined in Diagrams.Trail |
class DomainBounds p where #
Minimal complete definition
Nothing
Instances
DomainBounds a => DomainBounds (Located a) | |
Defined in Diagrams.Located | |
DomainBounds t => DomainBounds (Tangent t) | |
Defined in Diagrams.Tangent | |
DomainBounds t => DomainBounds (GetSegment t) | |
Defined in Diagrams.Trail Methods domainLower :: GetSegment t -> N (GetSegment t) # domainUpper :: GetSegment t -> N (GetSegment t) # | |
Num n => DomainBounds (BernsteinPoly n) | |
Defined in Diagrams.TwoD.Segment.Bernstein Methods domainLower :: BernsteinPoly n -> N (BernsteinPoly n) # domainUpper :: BernsteinPoly n -> N (BernsteinPoly n) # | |
Num n => DomainBounds (FixedSegment v n) | |
Defined in Diagrams.Segment Methods domainLower :: FixedSegment v n -> N (FixedSegment v n) # domainUpper :: FixedSegment v n -> N (FixedSegment v n) # | |
Num n => DomainBounds (SegTree v n) | |
Defined in Diagrams.Trail Methods domainLower :: SegTree v n -> N (SegTree v n) # domainUpper :: SegTree v n -> N (SegTree v n) # | |
Num n => DomainBounds (Trail v n) | |
Defined in Diagrams.Trail | |
Num n => DomainBounds (Segment Closed v n) | |
Defined in Diagrams.Segment | |
Num n => DomainBounds (Trail' l v n) | |
Defined in Diagrams.Trail Methods domainLower :: Trail' l v n -> N (Trail' l v n) # domainUpper :: Trail' l v n -> N (Trail' l v n) # |
class (Parametric p, DomainBounds p) => EndValues p where #
Minimal complete definition
Nothing
Instances
(InSpace v n a, EndValues a, Codomain a ~ v) => EndValues (Located a) | |
(DomainBounds t, EndValues (Tangent t)) => EndValues (Tangent (Located t)) | |
(Additive v, Num n) => EndValues (Tangent (FixedSegment v n)) | |
Defined in Diagrams.Tangent Methods atStart :: Tangent (FixedSegment v n) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # atEnd :: Tangent (FixedSegment v n) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # | |
(Additive v, Num n) => EndValues (Tangent (Segment Closed v n)) | |
(Metric v, OrderedField n, Real n) => EndValues (Tangent (Trail v n)) | |
(Parametric (GetSegment (Trail' c v n)), EndValues (GetSegment (Trail' c v n)), Additive v, Num n) => EndValues (Tangent (Trail' c v n)) | |
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # atEnd :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # | |
(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # atEnd :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # atEnd :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
Fractional n => EndValues (BernsteinPoly n) | |
(Additive v, Num n) => EndValues (FixedSegment v n) | |
Defined in Diagrams.Segment Methods atStart :: FixedSegment v n -> Codomain (FixedSegment v n) (N (FixedSegment v n)) # atEnd :: FixedSegment v n -> Codomain (FixedSegment v n) (N (FixedSegment v n)) # | |
(Metric v, OrderedField n, Real n) => EndValues (SegTree v n) | |
(Metric v, OrderedField n, Real n) => EndValues (Trail v n) | |
(Additive v, Num n) => EndValues (Segment Closed v n) | |
(Metric v, OrderedField n, Real n) => EndValues (Trail' l v n) | |
class Parametric p => HasArcLength p where #
Minimal complete definition
Methods
arcLengthBounded :: N p -> p -> Interval (N p) #
arcLength :: N p -> p -> N p #
stdArcLength :: p -> N p #
arcLengthToParam :: N p -> p -> N p -> N p #
stdArcLengthToParam :: p -> N p -> N p #
Instances
(InSpace v n a, Fractional n, HasArcLength a, Codomain a ~ v) => HasArcLength (Located a) | |
Defined in Diagrams.Located Methods arcLengthBounded :: N (Located a) -> Located a -> Interval (N (Located a)) # arcLength :: N (Located a) -> Located a -> N (Located a) # stdArcLength :: Located a -> N (Located a) # arcLengthToParam :: N (Located a) -> Located a -> N (Located a) -> N (Located a) # stdArcLengthToParam :: Located a -> N (Located a) -> N (Located a) # | |
(Metric v, OrderedField n) => HasArcLength (FixedSegment v n) | |
Defined in Diagrams.Segment Methods arcLengthBounded :: N (FixedSegment v n) -> FixedSegment v n -> Interval (N (FixedSegment v n)) # arcLength :: N (FixedSegment v n) -> FixedSegment v n -> N (FixedSegment v n) # stdArcLength :: FixedSegment v n -> N (FixedSegment v n) # arcLengthToParam :: N (FixedSegment v n) -> FixedSegment v n -> N (FixedSegment v n) -> N (FixedSegment v n) # stdArcLengthToParam :: FixedSegment v n -> N (FixedSegment v n) -> N (FixedSegment v n) # | |
(Metric v, OrderedField n, Real n) => HasArcLength (SegTree v n) | |
Defined in Diagrams.Trail Methods arcLengthBounded :: N (SegTree v n) -> SegTree v n -> Interval (N (SegTree v n)) # arcLength :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) # stdArcLength :: SegTree v n -> N (SegTree v n) # arcLengthToParam :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) -> N (SegTree v n) # stdArcLengthToParam :: SegTree v n -> N (SegTree v n) -> N (SegTree v n) # | |
(Metric v, OrderedField n, Real n) => HasArcLength (Trail v n) | |
Defined in Diagrams.Trail Methods arcLengthBounded :: N (Trail v n) -> Trail v n -> Interval (N (Trail v n)) # arcLength :: N (Trail v n) -> Trail v n -> N (Trail v n) # stdArcLength :: Trail v n -> N (Trail v n) # arcLengthToParam :: N (Trail v n) -> Trail v n -> N (Trail v n) -> N (Trail v n) # stdArcLengthToParam :: Trail v n -> N (Trail v n) -> N (Trail v n) # | |
(Metric v, OrderedField n) => HasArcLength (Segment Closed v n) | |
Defined in Diagrams.Segment Methods arcLengthBounded :: N (Segment Closed v n) -> Segment Closed v n -> Interval (N (Segment Closed v n)) # arcLength :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) # stdArcLength :: Segment Closed v n -> N (Segment Closed v n) # arcLengthToParam :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) # stdArcLengthToParam :: Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) # | |
(Metric v, OrderedField n, Real n) => HasArcLength (Trail' l v n) | |
Defined in Diagrams.Trail Methods arcLengthBounded :: N (Trail' l v n) -> Trail' l v n -> Interval (N (Trail' l v n)) # arcLength :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) # stdArcLength :: Trail' l v n -> N (Trail' l v n) # arcLengthToParam :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) # stdArcLengthToParam :: Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) # |
class Parametric p where #
Instances
(InSpace v n a, Parametric a, Codomain a ~ v) => Parametric (Located a) | |
Parametric (Tangent t) => Parametric (Tangent (Located t)) | |
(Additive v, Num n) => Parametric (Tangent (FixedSegment v n)) | |
Defined in Diagrams.Tangent Methods atParam :: Tangent (FixedSegment v n) -> N (Tangent (FixedSegment v n)) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # | |
(Additive v, Num n) => Parametric (Tangent (Segment Closed v n)) | |
(Metric v, OrderedField n, Real n) => Parametric (Tangent (Trail v n)) | |
(Parametric (GetSegment (Trail' c v n)), Additive v, Num n) => Parametric (Tangent (Trail' c v n)) | |
(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail v n) -> N (GetSegment (Trail v n)) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # | |
(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Line v n) -> N (GetSegment (Trail' Line v n)) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Loop v n) -> N (GetSegment (Trail' Loop v n)) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
Fractional n => Parametric (BernsteinPoly n) | |
(Additive v, Num n) => Parametric (FixedSegment v n) | |
Defined in Diagrams.Segment Methods atParam :: FixedSegment v n -> N (FixedSegment v n) -> Codomain (FixedSegment v n) (N (FixedSegment v n)) # | |
(Metric v, OrderedField n, Real n) => Parametric (SegTree v n) | |
(Metric v, OrderedField n, Real n) => Parametric (Trail v n) | |
(Additive v, Num n) => Parametric (Segment Closed v n) | |
(Metric v, OrderedField n, Real n) => Parametric (Trail' l v n) | |
class DomainBounds p => Sectionable p where #
Minimal complete definition
Methods
splitAtParam :: p -> N p -> (p, p) #
section :: p -> N p -> N p -> p #
reverseDomain :: p -> p #
Instances
(InSpace v n a, Fractional n, Parametric a, Sectionable a, Codomain a ~ v) => Sectionable (Located a) | |
Fractional n => Sectionable (BernsteinPoly n) | |
Defined in Diagrams.TwoD.Segment.Bernstein Methods splitAtParam :: BernsteinPoly n -> N (BernsteinPoly n) -> (BernsteinPoly n, BernsteinPoly n) # section :: BernsteinPoly n -> N (BernsteinPoly n) -> N (BernsteinPoly n) -> BernsteinPoly n # reverseDomain :: BernsteinPoly n -> BernsteinPoly n # | |
(Additive v, Fractional n) => Sectionable (FixedSegment v n) | |
Defined in Diagrams.Segment Methods splitAtParam :: FixedSegment v n -> N (FixedSegment v n) -> (FixedSegment v n, FixedSegment v n) # section :: FixedSegment v n -> N (FixedSegment v n) -> N (FixedSegment v n) -> FixedSegment v n # reverseDomain :: FixedSegment v n -> FixedSegment v n # | |
(Metric v, OrderedField n, Real n) => Sectionable (SegTree v n) | |
(Metric v, OrderedField n, Real n) => Sectionable (Trail v n) | |
(Additive v, Fractional n) => Sectionable (Segment Closed v n) | |
Defined in Diagrams.Segment | |
(Metric v, OrderedField n, Real n) => Sectionable (Trail' Line v n) | |
domainBounds :: DomainBounds p => p -> (N p, N p) #
stdTolerance :: Fractional a => a #
data AdjustMethod n #
Constructors
ByParam n | |
ByAbsolute n | |
ToAbsolute n |
Instances
Fractional n => Default (AdjustMethod n) | |
Defined in Diagrams.Parametric.Adjust Methods def :: AdjustMethod n # |
data AdjustOpts n #
Instances
Fractional n => Default (AdjustOpts n) | |
Defined in Diagrams.Parametric.Adjust Methods def :: AdjustOpts n # |
adjEps :: forall n f. Functor f => (n -> f n) -> AdjustOpts n -> f (AdjustOpts n) #
adjMethod :: forall n f. Functor f => (AdjustMethod n -> f (AdjustMethod n)) -> AdjustOpts n -> f (AdjustOpts n) #
adjSide :: forall n f. Functor f => (AdjustSide -> f AdjustSide) -> AdjustOpts n -> f (AdjustOpts n) #
Instances
ToPath (Located (Segment Closed v n)) | |
ToPath (Located (Trail v n)) | |
ToPath (Located (Trail' l v n)) | |
ToPath (Located [Segment Closed v n]) | |
ToPath a => ToPath [a] | |
ToPath (Path v n) | |
ToPath (FixedSegment v n) | |
Defined in Diagrams.Path Methods toPath :: FixedSegment v n -> Path (V (FixedSegment v n)) (N (FixedSegment v n)) # | |
ToPath (Trail v n) | |
ToPath (Trail' l v n) | |
explodePath :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Path v n -> [[t]] #
fixPath :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[FixedSegment v n]] #
partitionPath :: forall (v :: Type -> Type) n. (Located (Trail v n) -> Bool) -> Path v n -> (Path v n, Path v n) #
pathCentroid :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> Point v n #
pathFromLocTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> Path v n #
pathFromTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Path v n #
pathFromTrailAt :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Point v n -> Path v n #
pathLocSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[Located (Segment Closed v n)]] #
pathOffsets :: (Metric v, OrderedField n) => Path v n -> [v n] #
pathVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[Point v n]] #
pathVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Path v n -> [[Point v n]] #
reversePath :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> Path v n #
scalePath :: forall (v :: Type -> Type) n. (HasLinearMap v, Metric v, OrderedField n) => n -> Path v n -> Path v n #
class HasQuery t m | t -> m where #
Instances
(Num n, Ord n) => HasQuery (Box n) Any | |
(Floating n, Ord n) => HasQuery (CSG n) Any | |
(Num n, Ord n) => HasQuery (Ellipsoid n) Any | |
OrderedField n => HasQuery (Frustum n) Any | |
RealFloat n => HasQuery (Clip n) All | |
(Additive v, Foldable v, Ord n) => HasQuery (BoundingBox v n) Any | |
Defined in Diagrams.BoundingBox Methods getQuery :: BoundingBox v n -> Query (V (BoundingBox v n)) (N (BoundingBox v n)) Any # | |
RealFloat n => HasQuery (DImage n a) Any | |
HasQuery (Query v n m) m | |
Monoid m => HasQuery (QDiagram b v n m) m | |
resetValue :: forall m b (v :: Type -> Type) n. (Eq m, Monoid m) => QDiagram b v n m -> QDiagram b v n Any #
Instances
(Num n, Ord n) => Monoid (ArcLength n) | |
(Num n, Ord n) => Semigroup (ArcLength n) | |
Wrapped (ArcLength n) | |
Rewrapped (ArcLength n) (ArcLength n') | |
Defined in Diagrams.Segment | |
(Metric v, OrderedField n) => Measured (SegMeasure v n) (SegMeasure v n) | |
Defined in Diagrams.Segment Methods measure :: SegMeasure v n -> SegMeasure v n | |
(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) | |
Defined in Diagrams.Trail Methods measure :: SegTree v n -> SegMeasure v n | |
(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) | |
Defined in Diagrams.Segment Methods measure :: Segment Closed v n -> SegMeasure v n | |
type Unwrapped (ArcLength n) | |
Defined in Diagrams.Segment |
Instances
(Additive v, Num n) => EndValues (Tangent (Segment Closed v n)) | |
(Additive v, Num n) => Parametric (Tangent (Segment Closed v n)) | |
ToPath (Located (Segment Closed v n)) | |
ToPath (Located [Segment Closed v n]) | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') | |
(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) | |
Defined in Diagrams.Segment Methods measure :: Segment Closed v n -> SegMeasure v n | |
Serialize (v n) => Serialize (Segment Closed v n) | |
(Metric v, OrderedField n) => Enveloped (Segment Closed v n) | |
Num n => DomainBounds (Segment Closed v n) | |
Defined in Diagrams.Segment | |
(Additive v, Num n) => EndValues (Segment Closed v n) | |
(Metric v, OrderedField n) => HasArcLength (Segment Closed v n) | |
Defined in Diagrams.Segment Methods arcLengthBounded :: N (Segment Closed v n) -> Segment Closed v n -> Interval (N (Segment Closed v n)) # arcLength :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) # stdArcLength :: Segment Closed v n -> N (Segment Closed v n) # arcLengthToParam :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) # stdArcLengthToParam :: Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) # | |
(Additive v, Num n) => Parametric (Segment Closed v n) | |
(Additive v, Fractional n) => Sectionable (Segment Closed v n) | |
Defined in Diagrams.Segment | |
(Additive v, Num n) => Reversing (Segment Closed v n) | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
type Codomain (Segment Closed v n) | |
Defined in Diagrams.Segment |
data FixedSegment (v :: Type -> Type) n #
Instances
(Additive v, Num n) => EndValues (Tangent (FixedSegment v n)) | |
Defined in Diagrams.Tangent Methods atStart :: Tangent (FixedSegment v n) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # atEnd :: Tangent (FixedSegment v n) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # | |
(Additive v, Num n) => Parametric (Tangent (FixedSegment v n)) | |
Defined in Diagrams.Tangent Methods atParam :: Tangent (FixedSegment v n) -> N (Tangent (FixedSegment v n)) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # | |
Show (v n) => Show (FixedSegment v n) | |
Defined in Diagrams.Segment Methods showsPrec :: Int -> FixedSegment v n -> ShowS # show :: FixedSegment v n -> String # showList :: [FixedSegment v n] -> ShowS # | |
(Metric v, OrderedField n) => Enveloped (FixedSegment v n) | |
Defined in Diagrams.Segment Methods getEnvelope :: FixedSegment v n -> Envelope (V (FixedSegment v n)) (N (FixedSegment v n)) # | |
(Additive v, Num n) => HasOrigin (FixedSegment v n) | |
Defined in Diagrams.Segment Methods moveOriginTo :: Point (V (FixedSegment v n)) (N (FixedSegment v n)) -> FixedSegment v n -> FixedSegment v n # | |
(Additive v, Num n) => Transformable (FixedSegment v n) | |
Defined in Diagrams.Segment Methods transform :: Transformation (V (FixedSegment v n)) (N (FixedSegment v n)) -> FixedSegment v n -> FixedSegment v n # | |
Num n => DomainBounds (FixedSegment v n) | |
Defined in Diagrams.Segment Methods domainLower :: FixedSegment v n -> N (FixedSegment v n) # domainUpper :: FixedSegment v n -> N (FixedSegment v n) # | |
(Additive v, Num n) => EndValues (FixedSegment v n) | |
Defined in Diagrams.Segment Methods atStart :: FixedSegment v n -> Codomain (FixedSegment v n) (N (FixedSegment v n)) # atEnd :: FixedSegment v n -> Codomain (FixedSegment v n) (N (FixedSegment v n)) # | |
(Metric v, OrderedField n) => HasArcLength (FixedSegment v n) | |
Defined in Diagrams.Segment Methods arcLengthBounded :: N (FixedSegment v n) -> FixedSegment v n -> Interval (N (FixedSegment v n)) # arcLength :: N (FixedSegment v n) -> FixedSegment v n -> N (FixedSegment v n) # stdArcLength :: FixedSegment v n -> N (FixedSegment v n) # arcLengthToParam :: N (FixedSegment v n) -> FixedSegment v n -> N (FixedSegment v n) -> N (FixedSegment v n) # stdArcLengthToParam :: FixedSegment v n -> N (FixedSegment v n) -> N (FixedSegment v n) # | |
(Additive v, Num n) => Parametric (FixedSegment v n) | |
Defined in Diagrams.Segment Methods atParam :: FixedSegment v n -> N (FixedSegment v n) -> Codomain (FixedSegment v n) (N (FixedSegment v n)) # | |
(Additive v, Fractional n) => Sectionable (FixedSegment v n) | |
Defined in Diagrams.Segment Methods splitAtParam :: FixedSegment v n -> N (FixedSegment v n) -> (FixedSegment v n, FixedSegment v n) # section :: FixedSegment v n -> N (FixedSegment v n) -> N (FixedSegment v n) -> FixedSegment v n # reverseDomain :: FixedSegment v n -> FixedSegment v n # | |
ToPath (FixedSegment v n) | |
Defined in Diagrams.Path Methods toPath :: FixedSegment v n -> Path (V (FixedSegment v n)) (N (FixedSegment v n)) # | |
Eq (v n) => Eq (FixedSegment v n) | |
Defined in Diagrams.Segment Methods (==) :: FixedSegment v n -> FixedSegment v n -> Bool # (/=) :: FixedSegment v n -> FixedSegment v n -> Bool # | |
Ord (v n) => Ord (FixedSegment v n) | |
Defined in Diagrams.Segment Methods compare :: FixedSegment v n -> FixedSegment v n -> Ordering # (<) :: FixedSegment v n -> FixedSegment v n -> Bool # (<=) :: FixedSegment v n -> FixedSegment v n -> Bool # (>) :: FixedSegment v n -> FixedSegment v n -> Bool # (>=) :: FixedSegment v n -> FixedSegment v n -> Bool # max :: FixedSegment v n -> FixedSegment v n -> FixedSegment v n # min :: FixedSegment v n -> FixedSegment v n -> FixedSegment v n # | |
Reversing (FixedSegment v n) | |
Defined in Diagrams.Segment Methods reversing :: FixedSegment v n -> FixedSegment v n # | |
r ~ FixedSegment u n => AffineMappable (FixedSegment v n) r | |
Defined in Diagrams.LinearMap Methods amap :: AffineMap (V (FixedSegment v n)) (V r) (N r) -> FixedSegment v n -> r | |
r ~ FixedSegment u m => LinearMappable (FixedSegment v n) r | |
Defined in Diagrams.LinearMap Methods vmap :: (Vn (FixedSegment v n) -> Vn r) -> FixedSegment v n -> r | |
Each (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') | |
Defined in Diagrams.Segment Methods each :: Traversal (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') # | |
type N (FixedSegment v n) | |
Defined in Diagrams.Segment | |
type V (FixedSegment v n) | |
Defined in Diagrams.Segment | |
type Codomain (FixedSegment v n) | |
Defined in Diagrams.Segment |
data Offset c (v :: Type -> Type) n where #
Constructors
OffsetOpen :: forall (v :: Type -> Type) n. Offset Open v n | |
OffsetClosed :: forall (v :: Type -> Type) n. v n -> Offset Closed v n |
Instances
Functor v => Functor (Offset c v) | |
Show (v n) => Show (Offset c v n) | |
Transformable (Offset c v n) | |
Defined in Diagrams.Segment | |
Eq (v n) => Eq (Offset c v n) | |
Ord (v n) => Ord (Offset c v n) | |
Defined in Diagrams.Segment | |
(Additive v, Num n) => Reversing (Offset c v n) | |
Defined in Diagrams.Segment | |
r ~ Offset c u n => AffineMappable (Offset c v n) r | |
r ~ Offset c u m => LinearMappable (Offset c v n) r | |
Each (Offset c v n) (Offset c v' n') (v n) (v' n') | |
type N (Offset c v n) | |
Defined in Diagrams.Segment | |
type V (Offset c v n) | |
Defined in Diagrams.Segment |
data OffsetEnvelope (v :: Type -> Type) n #
Constructors
OffsetEnvelope | |
Fields
|
Instances
(Metric v, OrderedField n) => Semigroup (OffsetEnvelope v n) | |
Defined in Diagrams.Segment Methods (<>) :: OffsetEnvelope v n -> OffsetEnvelope v n -> OffsetEnvelope v n # sconcat :: NonEmpty (OffsetEnvelope v n) -> OffsetEnvelope v n # stimes :: Integral b => b -> OffsetEnvelope v n -> OffsetEnvelope v n # | |
(Metric v, OrderedField n) => Measured (SegMeasure v n) (SegMeasure v n) | |
Defined in Diagrams.Segment Methods measure :: SegMeasure v n -> SegMeasure v n | |
(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) | |
Defined in Diagrams.Trail Methods measure :: SegTree v n -> SegMeasure v n | |
(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) | |
Defined in Diagrams.Segment Methods measure :: Segment Closed v n -> SegMeasure v n |
Instances
Monoid SegCount | |
Semigroup SegCount | |
Wrapped SegCount | |
Rewrapped SegCount SegCount | |
Defined in Diagrams.Segment | |
(Metric v, OrderedField n) => Measured (SegMeasure v n) (SegMeasure v n) | |
Defined in Diagrams.Segment Methods measure :: SegMeasure v n -> SegMeasure v n | |
(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) | |
Defined in Diagrams.Trail Methods measure :: SegTree v n -> SegMeasure v n | |
(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) | |
Defined in Diagrams.Segment Methods measure :: Segment Closed v n -> SegMeasure v n | |
type Unwrapped SegCount | |
Defined in Diagrams.Segment |
type SegMeasure (v :: Type -> Type) n = SegCount ::: (ArcLength n ::: (OffsetEnvelope v n ::: ())) #
newtype TotalOffset (v :: Type -> Type) n #
Constructors
TotalOffset (v n) |
Instances
(Num n, Additive v) => Monoid (TotalOffset v n) | |||||
Defined in Diagrams.Segment Methods mempty :: TotalOffset v n # mappend :: TotalOffset v n -> TotalOffset v n -> TotalOffset v n # mconcat :: [TotalOffset v n] -> TotalOffset v n # | |||||
(Num n, Additive v) => Semigroup (TotalOffset v n) | |||||
Defined in Diagrams.Segment Methods (<>) :: TotalOffset v n -> TotalOffset v n -> TotalOffset v n # sconcat :: NonEmpty (TotalOffset v n) -> TotalOffset v n # stimes :: Integral b => b -> TotalOffset v n -> TotalOffset v n # | |||||
Wrapped (TotalOffset v n) | |||||
Defined in Diagrams.Segment Associated Types
Methods _Wrapped' :: Iso' (TotalOffset v n) (Unwrapped (TotalOffset v n)) # | |||||
Rewrapped (TotalOffset v n) (TotalOffset v' n') | |||||
Defined in Diagrams.Segment | |||||
type Unwrapped (TotalOffset v n) | |||||
Defined in Diagrams.Segment |
fixedSegIso :: forall n (v :: Type -> Type). (Num n, Additive v) => Iso' (FixedSegment v n) (Located (Segment Closed v n)) #
fromFixedSeg :: forall n (v :: Type -> Type). (Num n, Additive v) => FixedSegment v n -> Located (Segment Closed v n) #
getArcLengthBounded :: (Num n, Ord n) => n -> ArcLength n -> Interval n #
getArcLengthCached :: ArcLength n -> Interval n #
getArcLengthFun :: ArcLength n -> n -> Interval n #
mapSegmentVectors :: (v n -> v' n') -> Segment c v n -> Segment c v' n' #
mkFixedSeg :: forall n (v :: Type -> Type). (Num n, Additive v) => Located (Segment Closed v n) -> FixedSegment v n #
oeEnvelope :: forall (v :: Type -> Type) n f. Functor f => (Envelope v n -> f (Envelope v n)) -> OffsetEnvelope v n -> f (OffsetEnvelope v n) #
oeOffset :: forall (v :: Type -> Type) n f. Functor f => (TotalOffset v n -> f (TotalOffset v n)) -> OffsetEnvelope v n -> f (OffsetEnvelope v n) #
reverseSegment :: forall n (v :: Type -> Type). (Num n, Additive v) => Segment Closed v n -> Segment Closed v n #
requiredScale :: (Additive v, Foldable v, Fractional n, Ord n) => SizeSpec v n -> v n -> n #
requiredScaling :: (Additive v, Foldable v, Fractional n, Ord n) => SizeSpec v n -> v n -> Transformation v n #
sizeAdjustment :: (Additive v, Foldable v, OrderedField n) => SizeSpec v n -> BoundingBox v n -> (v n, Transformation v n) #
sized :: forall (v :: Type -> Type) n a. (InSpace v n a, HasLinearMap v, Transformable a, Enveloped a) => SizeSpec v n -> a -> a #
sizedAs :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasLinearMap v, Transformable a, Enveloped a, Enveloped b) => b -> a -> a #
Constructors
Tangent t |
Instances
DomainBounds t => DomainBounds (Tangent t) | |
Defined in Diagrams.Tangent | |
(DomainBounds t, EndValues (Tangent t)) => EndValues (Tangent (Located t)) | |
(Additive v, Num n) => EndValues (Tangent (FixedSegment v n)) | |
Defined in Diagrams.Tangent Methods atStart :: Tangent (FixedSegment v n) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # atEnd :: Tangent (FixedSegment v n) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # | |
(Additive v, Num n) => EndValues (Tangent (Segment Closed v n)) | |
(Metric v, OrderedField n, Real n) => EndValues (Tangent (Trail v n)) | |
(Parametric (GetSegment (Trail' c v n)), EndValues (GetSegment (Trail' c v n)), Additive v, Num n) => EndValues (Tangent (Trail' c v n)) | |
Parametric (Tangent t) => Parametric (Tangent (Located t)) | |
(Additive v, Num n) => Parametric (Tangent (FixedSegment v n)) | |
Defined in Diagrams.Tangent Methods atParam :: Tangent (FixedSegment v n) -> N (Tangent (FixedSegment v n)) -> Codomain (Tangent (FixedSegment v n)) (N (Tangent (FixedSegment v n))) # | |
(Additive v, Num n) => Parametric (Tangent (Segment Closed v n)) | |
(Metric v, OrderedField n, Real n) => Parametric (Tangent (Trail v n)) | |
(Parametric (GetSegment (Trail' c v n)), Additive v, Num n) => Parametric (Tangent (Trail' c v n)) | |
type N (Tangent t) | |
Defined in Diagrams.Tangent | |
type V (Tangent t) | |
Defined in Diagrams.Tangent | |
type Codomain (Tangent t) | |
Defined in Diagrams.Tangent |
normalAtParam :: (InSpace V2 n t, Parametric (Tangent t), Floating n) => t -> n -> V2 n #
tangentAtEnd :: EndValues (Tangent t) => t -> Vn t #
tangentAtParam :: Parametric (Tangent t) => t -> N t -> Vn t #
tangentAtStart :: EndValues (Tangent t) => t -> Vn t #
alignXMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
alignXMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
alignYMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
alignYMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
alignZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a #
alignZMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
alignZMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
centerXYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
centerXZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
centerYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
centerZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
snugCenterXYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugCenterXZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugCenterYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugCenterZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugXMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugXMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugYMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugYMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugZ :: forall a (v :: Type -> Type) n. (V a ~ v, N a ~ n, Alignable a, Traced a, HasOrigin a, R3 v, Fractional n) => n -> a -> a #
snugZMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
snugZMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #
Instances
Instances
Instances
Constructors
Specular | |
Fields |
newtype SurfaceColor #
Constructors
SurfaceColor (Last (Colour Double)) |
Instances
Semigroup SurfaceColor | |
Defined in Diagrams.ThreeD.Attributes Methods (<>) :: SurfaceColor -> SurfaceColor -> SurfaceColor # sconcat :: NonEmpty SurfaceColor -> SurfaceColor # stimes :: Integral b => b -> SurfaceColor -> SurfaceColor # | |
Show SurfaceColor | |
Defined in Diagrams.ThreeD.Attributes Methods showsPrec :: Int -> SurfaceColor -> ShowS # show :: SurfaceColor -> String # showList :: [SurfaceColor] -> ShowS # | |
AttributeClass SurfaceColor | |
Defined in Diagrams.ThreeD.Attributes |
_ambient :: forall (v :: Type -> Type) n f. Functor f => (Maybe Double -> f (Maybe Double)) -> Style v n -> f (Style v n) #
_diffuse :: forall (v :: Type -> Type) n f. Functor f => (Maybe Double -> f (Maybe Double)) -> Style v n -> f (Style v n) #
_highlight :: forall (v :: Type -> Type) n f. Functor f => (Maybe Specular -> f (Maybe Specular)) -> Style v n -> f (Style v n) #
_sc :: forall (v :: Type -> Type) n f. Functor f => (Maybe (Colour Double) -> f (Maybe (Colour Double))) -> Style v n -> f (Style v n) #
highlightIntensity :: forall (v :: Type -> Type) n f. Applicative f => (Double -> f Double) -> Style v n -> f (Style v n) #
highlightSize :: forall (v :: Type -> Type) n f. Applicative f => (Double -> f Double) -> Style v n -> f (Style v n) #
data Camera (l :: Type -> Type) n #
Instances
Num n => Transformable (Camera l n) | |
Defined in Diagrams.ThreeD.Camera | |
Num n => Renderable (Camera l n) NullBackend | |
Defined in Diagrams.ThreeD.Camera Methods render :: NullBackend -> Camera l n -> Render NullBackend (V (Camera l n)) (N (Camera l n)) # | |
type N (Camera l n) | |
Defined in Diagrams.ThreeD.Camera | |
type V (Camera l n) | |
Defined in Diagrams.ThreeD.Camera |
Constructors
OrthoLens | |
Fields
|
data PerspectiveLens n #
Constructors
PerspectiveLens | |
Fields
|
Instances
CameraLens PerspectiveLens | |
Defined in Diagrams.ThreeD.Camera Methods aspect :: Floating n => PerspectiveLens n -> n # | |
type N (PerspectiveLens n) | |
Defined in Diagrams.ThreeD.Camera | |
type V (PerspectiveLens n) | |
Defined in Diagrams.ThreeD.Camera |
facing_ZCamera :: (Floating n, Ord n, Typeable n, CameraLens l, Renderable (Camera l n) b) => l n -> QDiagram b V3 n Any #
horizontalFieldOfView :: forall n f. Functor f => (Angle n -> f (Angle n)) -> PerspectiveLens n -> f (PerspectiveLens n) #
mm50 :: Floating n => PerspectiveLens n #
mm50Camera :: (Typeable n, Floating n, Ord n, Renderable (Camera PerspectiveLens n) b) => QDiagram b V3 n Any #
mm50Narrow :: Floating n => PerspectiveLens n #
mm50Wide :: Floating n => PerspectiveLens n #
orthoHeight :: forall n f. Functor f => (n -> f n) -> OrthoLens n -> f (OrthoLens n) #
orthoWidth :: forall n f. Functor f => (n -> f n) -> OrthoLens n -> f (OrthoLens n) #
verticalFieldOfView :: forall n f. Functor f => (Angle n -> f (Angle n)) -> PerspectiveLens n -> f (PerspectiveLens n) #
facingZ :: forall (v :: Type -> Type) n. (R3 v, Functor v, Fractional n) => Deformation v v n #
parallelZ0 :: forall (v :: Type -> Type) n. (R3 v, Num n) => Deformation v v n #
perspectiveZ1 :: forall (v :: Type -> Type) n. (R3 v, Functor v, Fractional n) => Deformation v v n #
data ParallelLight n #
Constructors
ParallelLight (V3 n) (Colour Double) |
Instances
Transformable (ParallelLight n) | |
Defined in Diagrams.ThreeD.Light Methods transform :: Transformation (V (ParallelLight n)) (N (ParallelLight n)) -> ParallelLight n -> ParallelLight n # | |
type N (ParallelLight n) | |
Defined in Diagrams.ThreeD.Light | |
type V (ParallelLight n) | |
Defined in Diagrams.ThreeD.Light |
data PointLight n #
Constructors
PointLight (Point V3 n) (Colour Double) |
Instances
Fractional n => Transformable (PointLight n) | |
Defined in Diagrams.ThreeD.Light Methods transform :: Transformation (V (PointLight n)) (N (PointLight n)) -> PointLight n -> PointLight n # | |
type N (PointLight n) | |
Defined in Diagrams.ThreeD.Light | |
type V (PointLight n) | |
Defined in Diagrams.ThreeD.Light |
parallelLight :: (Typeable n, OrderedField n, Renderable (ParallelLight n) b) => Direction V3 n -> Colour Double -> QDiagram b V3 n Any #
pointLight :: (Typeable n, Num n, Ord n, Renderable (PointLight n) b) => Colour Double -> QDiagram b V3 n Any #
Constructors
Box (Transformation V3 n) |
Instances
CsgPrim Box | |
Defined in Diagrams.ThreeD.Shapes | |
OrderedField n => Enveloped (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
(Fractional n, Ord n) => Traced (Box n) | |
Fractional n => Transformable (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
OrderedField n => Skinned (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
Fractional n => Renderable (Box n) NullBackend | |
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Box n -> Render NullBackend (V (Box n)) (N (Box n)) # | |
(Num n, Ord n) => HasQuery (Box n) Any | |
type N (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (Box n) | |
Defined in Diagrams.ThreeD.Shapes |
Constructors
CsgEllipsoid (Ellipsoid n) | |
CsgBox (Box n) | |
CsgFrustum (Frustum n) | |
CsgUnion [CSG n] | |
CsgIntersection [CSG n] | |
CsgDifference (CSG n) (CSG n) |
Instances
CsgPrim CSG | |
Defined in Diagrams.ThreeD.Shapes | |
RealFloat n => Enveloped (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
(RealFloat n, Ord n) => Traced (CSG n) | |
Fractional n => Transformable (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
(RealFloat n, Ord n) => Skinned (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
(Floating n, Ord n) => HasQuery (CSG n) Any | |
type N (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (CSG n) | |
Defined in Diagrams.ThreeD.Shapes |
Constructors
Ellipsoid (Transformation V3 n) |
Instances
CsgPrim Ellipsoid | |
Defined in Diagrams.ThreeD.Shapes | |
OrderedField n => Enveloped (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
OrderedField n => Traced (Ellipsoid n) | |
Fractional n => Transformable (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
OrderedField n => Skinned (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
Fractional n => Renderable (Ellipsoid n) NullBackend | |
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Ellipsoid n -> Render NullBackend (V (Ellipsoid n)) (N (Ellipsoid n)) # | |
(Num n, Ord n) => HasQuery (Ellipsoid n) Any | |
type N (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes |
Constructors
Frustum n n (Transformation V3 n) |
Instances
CsgPrim Frustum | |
Defined in Diagrams.ThreeD.Shapes | |
(OrderedField n, RealFloat n) => Enveloped (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
(RealFloat n, Ord n) => Traced (Frustum n) | |
Fractional n => Transformable (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
Skinned (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
Fractional n => Renderable (Frustum n) NullBackend | |
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Frustum n -> Render NullBackend (V (Frustum n)) (N (Frustum n)) # | |
OrderedField n => HasQuery (Frustum n) Any | |
type N (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
type V (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes |
Methods
skin :: (Renderable t b, N t ~ n, TypeableFloat n) => t -> QDiagram b V3 n Any #
Instances
OrderedField n => Skinned (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
(RealFloat n, Ord n) => Skinned (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
OrderedField n => Skinned (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
Skinned (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes |
pointAt :: (Floating n, Ord n) => Direction V3 n -> Direction V3 n -> Direction V3 n -> Transformation V3 n #
reflectAcross :: (InSpace v n t, Metric v, Fractional n, Transformable t) => Point v n -> v n -> t -> t #
reflectionAcross :: (Metric v, Fractional n) => Point v n -> v n -> Transformation v n #
reflectionZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Num n) => Transformation v n #
rotateAbout :: (InSpace V3 n t, Floating n, Transformable t) => Point V3 n -> Direction V3 n -> Angle n -> t -> t #
rotationAbout :: Floating n => Point V3 n -> Direction V3 n -> Angle n -> Transformation V3 n #
scaleZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Fractional n, Transformable t) => n -> t -> t #
scalingZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Fractional n) => n -> Transformation v n #
translateZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Transformable t) => n -> t -> t #
translationZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Num n) => n -> Transformation v n #
type T3 = Transformation V3 #
p3Iso :: forall n p f. (Profunctor p, Functor f) => p (n, n, n) (f (n, n, n)) -> p (P3 n) (f (P3 n)) #
r3Iso :: forall n p f. (Profunctor p, Functor f) => p (n, n, n) (f (n, n, n)) -> p (V3 n) (f (V3 n)) #
boundaryFrom :: (OrderedField n, Metric v, Semigroup m) => Subdiagram b v n m -> v n -> Point v n #
boundaryFromMay :: (Metric v, OrderedField n, Semigroup m) => Subdiagram b v n m -> v n -> Maybe (Point v n) #
newtype GetSegment t #
Constructors
GetSegment t |
Instances
DomainBounds t => DomainBounds (GetSegment t) | |
Defined in Diagrams.Trail Methods domainLower :: GetSegment t -> N (GetSegment t) # domainUpper :: GetSegment t -> N (GetSegment t) # | |
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # atEnd :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # | |
(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # atEnd :: GetSegment (Trail' Line v n) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # atEnd :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail v n) -> N (GetSegment (Trail v n)) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # | |
(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Line v n) -> N (GetSegment (Trail' Line v n)) -> Codomain (GetSegment (Trail' Line v n)) (N (GetSegment (Trail' Line v n))) # | |
(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Loop v n) -> N (GetSegment (Trail' Loop v n)) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
type N (GetSegment t) | |
Defined in Diagrams.Trail | |
type V (GetSegment t) | |
Defined in Diagrams.Trail | |
type Codomain (GetSegment t) | |
Defined in Diagrams.Trail |
newtype GetSegmentCodomain (v :: Type -> Type) n #
Constructors
GetSegmentCodomain (Maybe (v n, Segment Closed v n, AnIso' n n)) |
Instances
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # atEnd :: GetSegment (Trail' Loop v n) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail' Loop v n) -> N (GetSegment (Trail' Loop v n)) -> Codomain (GetSegment (Trail' Loop v n)) (N (GetSegment (Trail' Loop v n))) # | |
(Metric v, OrderedField n) => TrailLike (Trail' Loop v n) | |
newtype SegTree (v :: Type -> Type) n #
Constructors
SegTree (FingerTree (SegMeasure v n) (Segment Closed v n)) |
Instances
(Ord n, Floating n, Metric v) => Monoid (SegTree v n) | |||||
(Ord n, Floating n, Metric v) => Semigroup (SegTree v n) | |||||
Show (v n) => Show (SegTree v n) | |||||
(OrderedField n, Metric v, Serialize (v n)) => Serialize (SegTree v n) | |||||
Defined in Diagrams.Trail | |||||
(Floating n, Ord n, Metric v) => Transformable (SegTree v n) | |||||
Defined in Diagrams.Trail | |||||
Num n => DomainBounds (SegTree v n) | |||||
Defined in Diagrams.Trail Methods domainLower :: SegTree v n -> N (SegTree v n) # domainUpper :: SegTree v n -> N (SegTree v n) # | |||||
(Metric v, OrderedField n, Real n) => EndValues (SegTree v n) | |||||
(Metric v, OrderedField n, Real n) => HasArcLength (SegTree v n) | |||||
Defined in Diagrams.Trail Methods arcLengthBounded :: N (SegTree v n) -> SegTree v n -> Interval (N (SegTree v n)) # arcLength :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) # stdArcLength :: SegTree v n -> N (SegTree v n) # arcLengthToParam :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) -> N (SegTree v n) # stdArcLengthToParam :: SegTree v n -> N (SegTree v n) -> N (SegTree v n) # | |||||
(Metric v, OrderedField n, Real n) => Parametric (SegTree v n) | |||||
(Metric v, OrderedField n, Real n) => Sectionable (SegTree v n) | |||||
Eq (v n) => Eq (SegTree v n) | |||||
Ord (v n) => Ord (SegTree v n) | |||||
Defined in Diagrams.Trail | |||||
Wrapped (SegTree v n) | |||||
Defined in Diagrams.Trail Associated Types
| |||||
(Metric v, Metric u, OrderedField n, r ~ SegTree u n) => AffineMappable (SegTree v n) r | |||||
(Metric v, Metric u, OrderedField n, OrderedField m, r ~ SegTree u m) => LinearMappable (SegTree v n) r | |||||
(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) | |||||
Defined in Diagrams.Trail Methods measure :: SegTree v n -> SegMeasure v n | |||||
Rewrapped (SegTree v n) (SegTree v' n') | |||||
Defined in Diagrams.Trail | |||||
(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') | |||||
(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') | |||||
type N (SegTree v n) | |||||
Defined in Diagrams.Trail | |||||
type V (SegTree v n) | |||||
Defined in Diagrams.Trail | |||||
type Codomain (SegTree v n) | |||||
Defined in Diagrams.Trail | |||||
type Unwrapped (SegTree v n) | |||||
Defined in Diagrams.Trail |
data Trail (v :: Type -> Type) n where #
Instances
(Metric v, OrderedField n, Real n) => EndValues (Tangent (Trail v n)) | |
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail v n)) | |
Defined in Diagrams.Trail Methods atStart :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # atEnd :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # | |
(Metric v, OrderedField n, Real n) => Parametric (Tangent (Trail v n)) | |
(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail v n)) | |
Defined in Diagrams.Trail Methods atParam :: GetSegment (Trail v n) -> N (GetSegment (Trail v n)) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) # | |
ToPath (Located (Trail v n)) | |
(Metric v, OrderedField n) => Reversing (Located (Trail v n)) | |
(Metric v, Metric u, OrderedField n, r ~ Located (Trail u n)) => Deformable (Located (Trail v n)) r | |
(Metric v, OrderedField n) => Monoid (Trail v n) | |
(OrderedField n, Metric v) => Semigroup (Trail v n) | |
Show (v n) => Show (Trail v n) | |
(Serialize (v n), OrderedField n, Metric v) => Serialize (Trail v n) | |
Defined in Diagrams.Trail | |
(Metric v, OrderedField n) => Enveloped (Trail v n) | |
Defined in Diagrams.Trail | |
(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail v n) | |
Defined in Diagrams.Trail | |
Num n => DomainBounds (Trail v n) | |
Defined in Diagrams.Trail | |
(Metric v, OrderedField n, Real n) => EndValues (Trail v n) | |
(Metric v, OrderedField n, Real n) => HasArcLength (Trail v n) | |
Defined in Diagrams.Trail Methods arcLengthBounded :: N (Trail v n) -> Trail v n -> Interval (N (Trail v n)) # arcLength :: N (Trail v n) -> Trail v n -> N (Trail v n) # stdArcLength :: Trail v n -> N (Trail v n) # arcLengthToParam :: N (Trail v n) -> Trail v n -> N (Trail v n) -> N (Trail v n) # stdArcLengthToParam :: Trail v n -> N (Trail v n) -> N (Trail v n) # | |
(Metric v, OrderedField n, Real n) => Parametric (Trail v n) | |
(Metric v, OrderedField n, Real n) => Sectionable (Trail v n) | |
ToPath (Trail v n) | |
(Metric v, OrderedField n) => TrailLike (Trail v n) | |
Eq (v n) => Eq (Trail v n) | |
Ord (v n) => Ord (Trail v n) | |
(Metric v, OrderedField n) => AsEmpty (Trail v n) | |
Defined in Diagrams.Trail | |
(Metric v, OrderedField n) => Reversing (Trail v n) | |
Defined in Diagrams.Trail | |
Wrapped (Trail v n) | |
(Metric v, Metric u, OrderedField n, r ~ Trail u n) => AffineMappable (Trail v n) r | |
(Metric v, Metric u, OrderedField n, OrderedField m, r ~ Trail u m) => LinearMappable (Trail v n) r | |
Rewrapped (Trail v n) (Trail v' n') | |
Defined in Diagrams.Trail | |
Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |
Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |
Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |
type N (Trail v n) | |
Defined in Diagrams.Trail | |
type V (Trail v n) | |
Defined in Diagrams.Trail | |
type Codomain (Trail v n) | |
Defined in Diagrams.Trail | |
type Unwrapped (Trail v n) | |
_Line :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Trail' Line v n) (f (Trail' Line v n)) -> p (Trail v n) (f (Trail v n)) #
_LocLine :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Located (Trail' Line v n)) (f (Located (Trail' Line v n))) -> p (Located (Trail v n)) (f (Located (Trail v n))) #
_LocLoop :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Located (Trail' Loop v n)) (f (Located (Trail' Loop v n))) -> p (Located (Trail v n)) (f (Located (Trail v n))) #
_Loop :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Trail' Loop v n) (f (Trail' Loop v n)) -> p (Trail v n) (f (Trail v n)) #
cutLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Loop v n -> Trail' Line v n #
emptyTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n #
fixTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [FixedSegment v n] #
getSegment :: t -> GetSegment t #
glueLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Trail' Loop v n #
isLineEmpty :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Bool #
isTrailEmpty :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Bool #
lineFromOffsets :: (Metric v, OrderedField n) => [v n] -> Trail' Line v n #
lineFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Trail' Line v n #
lineFromVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Point v n] -> Trail' Line v n #
lineOffset :: (Metric v, OrderedField n) => Trail' Line v n -> v n #
lineOffsets :: Trail' Line v n -> [v n] #
lineVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Line v n) -> [Point v n] #
lineVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail' Line v n) -> [Point v n] #
loopFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Segment Open v n -> Trail' Loop v n #
loopOffsets :: (Metric v, OrderedField n) => Trail' Loop v n -> [v n] #
loopSegments :: forall (v :: Type -> Type) n. Trail' Loop v n -> ([Segment Closed v n], Segment Open v n) #
loopVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Loop v n) -> [Point v n] #
loopVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail' Loop v n) -> [Point v n] #
offset :: (OrderedField n, Metric v, Measured (SegMeasure v n) t) => t -> v n #
onLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => (Trail' Line v n -> Trail' Line v n) -> Trail v n -> Trail v n #
onLineSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => ([Segment Closed v n] -> [Segment Closed v n]) -> Trail' Line v n -> Trail' Line v n #
onTrail :: forall (v :: Type -> Type) n l1 l2. (Trail' Line v n -> Trail' l1 v n) -> (Trail' Loop v n -> Trail' l2 v n) -> Trail v n -> Trail v n #
reverseLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Trail' Line v n #
reverseLocLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Line v n) -> Located (Trail' Line v n) #
reverseLocLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Loop v n) -> Located (Trail' Loop v n) #
reverseLocTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> Located (Trail v n) #
reverseLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Loop v n -> Trail' Loop v n #
reverseTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Trail v n #
trailFromOffsets :: (Metric v, OrderedField n) => [v n] -> Trail v n #
trailFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Trail v n #
trailFromVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Point v n] -> Trail v n #
trailLocSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [Located (Segment Closed v n)] #
trailMeasure :: forall (v :: Type -> Type) n m t a. (SegMeasure v n :>: m, Measured (SegMeasure v n) t) => a -> (m -> a) -> t -> a #
trailOffset :: (Metric v, OrderedField n) => Trail v n -> v n #
trailOffsets :: (Metric v, OrderedField n) => Trail v n -> [v n] #
trailSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> [Segment Closed v n] #
trailVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [Point v n] #
trailVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail v n) -> [Point v n] #
unfixTrail :: forall (v :: Type -> Type) n. (Metric v, Ord n, Floating n) => [FixedSegment v n] -> Located (Trail v n) #
withLine :: forall (v :: Type -> Type) n r. (Metric v, OrderedField n) => (Trail' Line v n -> r) -> Trail v n -> r #
withTrail :: forall (v :: Type -> Type) n r. (Trail' Line v n -> r) -> (Trail' Loop v n -> r) -> Trail v n -> r #
withTrail' :: forall (v :: Type -> Type) n r l. (Trail' Line v n -> r) -> (Trail' Loop v n -> r) -> Trail' l v n -> r #
class (Metric (V t), OrderedField (N t)) => TrailLike t where #
Instances
TrailLike t => TrailLike (TransInv t) | |
TrailLike t => TrailLike (Located t) | |
(Metric v, OrderedField n) => TrailLike [Point v n] | |
(Metric v, OrderedField n) => TrailLike (Path v n) | |
(Metric v, OrderedField n) => TrailLike (Trail v n) | |
(Metric v, OrderedField n) => TrailLike (Trail' Line v n) | |
(Metric v, OrderedField n) => TrailLike (Trail' Loop v n) | |
explodeTrail :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Located (Trail v n) -> [t] #
fromOffsets :: TrailLike t => [Vn t] -> t #
movedFrom :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasOrigin a, HasOrigin b) => Point v n -> Iso a b a b #
movedTo :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasOrigin a, HasOrigin b) => Point v n -> Iso a b a b #
transformed :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => Transformation v n -> Iso a b a b #
translated :: (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => v n -> Iso a b a b #
underT :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => (a -> b) -> Transformation v n -> a -> b #
alignX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a #
alignY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a #
centerX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
centerXY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
centerY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #
snugCenterX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #
snugCenterXY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #
snugCenterY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #
snugX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n -> a -> a #
snugY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n -> a -> a #
annularWedge :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => n -> n -> Direction V2 n -> Angle n -> t #
Constructors
ArrowOpts | |
Fields
|
Instances
TypeableFloat n => Default (ArrowOpts n) | |
Defined in Diagrams.TwoD.Arrow |
arrow' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> n -> QDiagram b V2 n Any #
arrowAt :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n -> V2 n -> QDiagram b V2 n Any #
arrowAt' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> Point V2 n -> V2 n -> QDiagram b V2 n Any #
arrowBetween :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n -> Point V2 n -> QDiagram b V2 n Any #
arrowBetween' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> Point V2 n -> Point V2 n -> QDiagram b V2 n Any #
arrowHead :: forall n f. Functor f => (ArrowHT n -> f (ArrowHT n)) -> ArrowOpts n -> f (ArrowOpts n) #
arrowShaft :: forall n f. Functor f => (Trail V2 n -> f (Trail V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #
arrowTail :: forall n f. Functor f => (ArrowHT n -> f (ArrowHT n)) -> ArrowOpts n -> f (ArrowOpts n) #
arrowV :: (TypeableFloat n, Renderable (Path V2 n) b) => V2 n -> QDiagram b V2 n Any #
arrowV' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> V2 n -> QDiagram b V2 n Any #
connect :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
connect' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
connectOutside :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
connectOutside' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
connectPerim :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> Angle n -> Angle n -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
connectPerim' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> Angle n -> Angle n -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
gap :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #
gaps :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #
headGap :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #
headLength :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #
headStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #
headTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n) #
lengths :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #
shaftStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #
shaftTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n) #
straightShaft :: OrderedField n => Trail V2 n #
tailGap :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #
tailLength :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #
tailStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #
tailTexture :: TypeableFloat n => Lens' (ArrowOpts n) (Texture n) #
arrowheadDart :: RealFloat n => Angle n -> ArrowHT n #
arrowheadHalfDart :: RealFloat n => Angle n -> ArrowHT n #
arrowheadSpike :: RealFloat n => Angle n -> ArrowHT n #
arrowheadThorn :: RealFloat n => Angle n -> ArrowHT n #
arrowheadTriangle :: RealFloat n => Angle n -> ArrowHT n #
arrowtailBlock :: RealFloat n => Angle n -> ArrowHT n #
arrowtailQuill :: OrderedField n => Angle n -> ArrowHT n #
data SpreadMethod #
Constructors
GradPad | |
GradReflect | |
GradRepeat |
data GradientStop d #
Constructors
GradientStop | |
Fields
|
Instances
Floating n => Transformable (Texture n) | |
Defined in Diagrams.TwoD.Attributes | |
type N (Texture n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (Texture n) | |
Defined in Diagrams.TwoD.Attributes |
Constructors
LGradient | |
Fields
|
Instances
Fractional n => Transformable (LGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type N (LGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (LGradient n) | |
Defined in Diagrams.TwoD.Attributes |
Constructors
RGradient | |
Fields
|
Instances
Fractional n => Transformable (RGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type N (RGradient n) | |
Defined in Diagrams.TwoD.Attributes | |
type V (RGradient n) | |
Defined in Diagrams.TwoD.Attributes |
_AC :: forall n p f. (Choice p, Applicative f) => p (AlphaColour Double) (f (AlphaColour Double)) -> p (Texture n) (f (Texture n)) #
_FillTexture :: forall n p f. (Profunctor p, Functor f) => p (Recommend (Texture n)) (f (Recommend (Texture n))) -> p (FillTexture n) (f (FillTexture n)) #
_LG :: forall n p f. (Choice p, Applicative f) => p (LGradient n) (f (LGradient n)) -> p (Texture n) (f (Texture n)) #
_LineTexture :: forall n n' p f. (Profunctor p, Functor f) => p (Texture n) (f (Texture n')) -> p (LineTexture n) (f (LineTexture n')) #
_RG :: forall n p f. (Choice p, Applicative f) => p (RGradient n) (f (RGradient n)) -> p (Texture n) (f (Texture n)) #
_SC :: forall n p f. (Choice p, Applicative f) => p SomeColor (f SomeColor) -> p (Texture n) (f (Texture n)) #
defaultLG :: Fractional n => Texture n #
defaultRG :: Fractional n => Texture n #
getFillTexture :: FillTexture n -> Texture n #
getLineTexture :: LineTexture n -> Texture n #
lGradEnd :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> LGradient n -> f (LGradient n) #
lGradSpreadMethod :: forall n f. Functor f => (SpreadMethod -> f SpreadMethod) -> LGradient n -> f (LGradient n) #
lGradStart :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> LGradient n -> f (LGradient n) #
lGradStops :: forall n f. Functor f => ([GradientStop n] -> f [GradientStop n]) -> LGradient n -> f (LGradient n) #
lGradTrans :: forall n f. Functor f => (Transformation V2 n -> f (Transformation V2 n)) -> LGradient n -> f (LGradient n) #
mkLinearGradient :: Num n => [GradientStop n] -> Point V2 n -> Point V2 n -> SpreadMethod -> Texture n #
mkRadialGradient :: Num n => [GradientStop n] -> Point V2 n -> n -> Point V2 n -> n -> SpreadMethod -> Texture n #
rGradCenter0 :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> RGradient n -> f (RGradient n) #
rGradCenter1 :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> RGradient n -> f (RGradient n) #
rGradRadius0 :: forall n f. Functor f => (n -> f n) -> RGradient n -> f (RGradient n) #
rGradRadius1 :: forall n f. Functor f => (n -> f n) -> RGradient n -> f (RGradient n) #
rGradSpreadMethod :: forall n f. Functor f => (SpreadMethod -> f SpreadMethod) -> RGradient n -> f (RGradient n) #
rGradStops :: forall n f. Functor f => ([GradientStop n] -> f [GradientStop n]) -> RGradient n -> f (RGradient n) #
rGradTrans :: forall n f. Functor f => (Transformation V2 n -> f (Transformation V2 n)) -> RGradient n -> f (RGradient n) #
recommendFillColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c -> a -> a #
stopColor :: forall n f. Functor f => (SomeColor -> f SomeColor) -> GradientStop n -> f (GradientStop n) #
stopFraction :: forall n f. Functor f => (n -> f n) -> GradientStop n -> f (GradientStop n) #
bg :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' q) => Colour Double -> QDiagram b V2 n q -> QDiagram b V2 n q #
bgFrame :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' q) => n -> Colour Double -> QDiagram b V2 n q -> QDiagram b V2 n q #
boundingRect :: (InSpace V2 n a, SameSpace a t, Enveloped t, Transformable t, TrailLike t, Monoid t, Enveloped a) => a -> t #
crop :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n -> V2 n -> QDiagram b V2 n m -> QDiagram b V2 n m #
extrudeBottom :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #
extrudeLeft :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #
extrudeRight :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #
extrudeTop :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #
hcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n -> [a] -> a #
padX :: forall (v :: Type -> Type) n m b. (Metric v, R2 v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m #
padY :: forall (v :: Type -> Type) m n b. (Metric v, R2 v, Monoid' m, OrderedField n) => n -> QDiagram b v n m -> QDiagram b v n m #
rectEnvelope :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n -> V2 n -> QDiagram b V2 n m -> QDiagram b V2 n m #
strutX :: forall (v :: Type -> Type) n b m. (Metric v, R1 v, OrderedField n) => n -> QDiagram b v n m #
strutY :: forall (v :: Type -> Type) n b m. (Metric v, R2 v, OrderedField n) => n -> QDiagram b v n m #
vcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n -> [a] -> a #
facingX :: forall (v :: Type -> Type) n. (R1 v, Functor v, Fractional n) => Deformation v v n #
facingY :: forall (v :: Type -> Type) n. (R2 v, Functor v, Fractional n) => Deformation v v n #
parallelX0 :: forall (v :: Type -> Type) n. (R1 v, Num n) => Deformation v v n #
parallelY0 :: forall (v :: Type -> Type) n. (R2 v, Num n) => Deformation v v n #
perspectiveX1 :: forall (v :: Type -> Type) n. (R1 v, Functor v, Fractional n) => Deformation v v n #
perspectiveY1 :: forall (v :: Type -> Type) n. (R2 v, Functor v, Floating n) => Deformation v v n #
image :: (TypeableFloat n, Typeable a, Renderable (DImage n a) b) => DImage n a -> QDiagram b V2 n Any #
rasterDia :: (TypeableFloat n, Renderable (DImage n Embedded) b) => (Int -> Int -> AlphaColour Double) -> Int -> Int -> QDiagram b V2 n Any #
data EnvelopeOpts n #
Constructors
EnvelopeOpts | |
Instances
OrderedField n => Default (EnvelopeOpts n) | |
Defined in Diagrams.TwoD.Model Methods def :: EnvelopeOpts n # |
data OriginOpts n #
Instances
Fractional n => Default (OriginOpts n) | |
Defined in Diagrams.TwoD.Model Methods def :: OriginOpts n # |
eColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> EnvelopeOpts n -> f (EnvelopeOpts n) #
eLineWidth :: forall n1 n2 f. Functor f => (Measure n1 -> f (Measure n2)) -> EnvelopeOpts n1 -> f (EnvelopeOpts n2) #
ePoints :: forall n f. Functor f => (Int -> f Int) -> EnvelopeOpts n -> f (EnvelopeOpts n) #
oColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> OriginOpts n -> f (OriginOpts n) #
oMinSize :: forall n f. Functor f => (n -> f n) -> OriginOpts n -> f (OriginOpts n) #
oScale :: forall n f. Functor f => (n -> f n) -> OriginOpts n -> f (OriginOpts n) #
showEnvelope :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => QDiagram b V2 n Any -> QDiagram b V2 n Any #
showEnvelope' :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => EnvelopeOpts n -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
showLabels :: (TypeableFloat n, Renderable (Text n) b, Semigroup m) => QDiagram b V2 n m -> QDiagram b V2 n Any #
showOrigin :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' m) => QDiagram b V2 n m -> QDiagram b V2 n m #
showOrigin' :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' m) => OriginOpts n -> QDiagram b V2 n m -> QDiagram b V2 n m #
showTrace :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => QDiagram b V2 n Any -> QDiagram b V2 n Any #
showTrace' :: (Enum n, TypeableFloat n, Renderable (Path V2 n) b) => TraceOpts n -> QDiagram b V2 n Any -> QDiagram b V2 n Any #
tColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> TraceOpts n -> f (TraceOpts n) #
Instances
Semigroup FillRule | |
Show FillRule | |
Default FillRule | |
Defined in Diagrams.TwoD.Path | |
AttributeClass FillRule | |
Defined in Diagrams.TwoD.Path | |
Eq FillRule | |
Ord FillRule | |
Defined in Diagrams.TwoD.Path |
data StrokeOpts a #
Constructors
StrokeOpts | |
Fields
|
Instances
Default (StrokeOpts a) | |
Defined in Diagrams.TwoD.Path Methods def :: StrokeOpts a # |
_Clip :: forall n n' p f. (Profunctor p, Functor f) => p [Path V2 n] (f [Path V2 n']) -> p (Clip n) (f (Clip n')) #
intersectPoints :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => t -> s -> [P2 n] #
intersectPoints' :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => n -> t -> s -> [P2 n] #
intersectPointsP :: OrderedField n => Path V2 n -> Path V2 n -> [P2 n] #
intersectPointsP' :: OrderedField n => n -> Path V2 n -> Path V2 n -> [P2 n] #
intersectPointsT :: OrderedField n => Located (Trail V2 n) -> Located (Trail V2 n) -> [P2 n] #
intersectPointsT' :: OrderedField n => n -> Located (Trail V2 n) -> Located (Trail V2 n) -> [P2 n] #
queryFillRule :: forall a f. Functor f => (FillRule -> f FillRule) -> StrokeOpts a -> f (StrokeOpts a) #
stroke :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b) => t -> QDiagram b V2 n Any #
stroke' :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> t -> QDiagram b V2 n Any #
strokeLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Line V2 n -> QDiagram b V2 n Any #
strokeLocLine :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Line V2 n) -> QDiagram b V2 n Any #
strokeLocLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail' Loop V2 n) -> QDiagram b V2 n Any #
strokeLocT :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) -> QDiagram b V2 n Any #
strokeLocTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Located (Trail V2 n) -> QDiagram b V2 n Any #
strokeLoop :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail' Loop V2 n -> QDiagram b V2 n Any #
strokeP' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Path V2 n -> QDiagram b V2 n Any #
strokePath :: (TypeableFloat n, Renderable (Path V2 n) b) => Path V2 n -> QDiagram b V2 n Any #
strokePath' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Path V2 n -> QDiagram b V2 n Any #
strokeT' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Trail V2 n -> QDiagram b V2 n Any #
strokeTrail :: (TypeableFloat n, Renderable (Path V2 n) b) => Trail V2 n -> QDiagram b V2 n Any #
strokeTrail' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> Trail V2 n -> QDiagram b V2 n Any #
vertexNames :: forall a a' f. Functor f => ([[a]] -> f [[a']]) -> StrokeOpts a -> f (StrokeOpts a') #
data PolyOrientation n #
Instances
Read n => Read (PolyOrientation n) | |
Defined in Diagrams.TwoD.Polygons Methods readsPrec :: Int -> ReadS (PolyOrientation n) # readList :: ReadS [PolyOrientation n] # readPrec :: ReadPrec (PolyOrientation n) # readListPrec :: ReadPrec [PolyOrientation n] # | |
Show n => Show (PolyOrientation n) | |
Defined in Diagrams.TwoD.Polygons Methods showsPrec :: Int -> PolyOrientation n -> ShowS # show :: PolyOrientation n -> String # showList :: [PolyOrientation n] -> ShowS # | |
Eq n => Eq (PolyOrientation n) | |
Defined in Diagrams.TwoD.Polygons Methods (==) :: PolyOrientation n -> PolyOrientation n -> Bool # (/=) :: PolyOrientation n -> PolyOrientation n -> Bool # | |
Ord n => Ord (PolyOrientation n) | |
Defined in Diagrams.TwoD.Polygons Methods compare :: PolyOrientation n -> PolyOrientation n -> Ordering # (<) :: PolyOrientation n -> PolyOrientation n -> Bool # (<=) :: PolyOrientation n -> PolyOrientation n -> Bool # (>) :: PolyOrientation n -> PolyOrientation n -> Bool # (>=) :: PolyOrientation n -> PolyOrientation n -> Bool # max :: PolyOrientation n -> PolyOrientation n -> PolyOrientation n # min :: PolyOrientation n -> PolyOrientation n -> PolyOrientation n # |
data PolygonOpts n #
Constructors
PolygonOpts | |
Fields
|
Instances
Num n => Default (PolygonOpts n) | |
Defined in Diagrams.TwoD.Polygons Methods def :: PolygonOpts n # |
polyCenter :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> PolygonOpts n -> f (PolygonOpts n) #
polyOrient :: forall n f. Functor f => (PolyOrientation n -> f (PolyOrientation n)) -> PolygonOpts n -> f (PolygonOpts n) #
polyTrail :: OrderedField n => PolygonOpts n -> Located (Trail V2 n) #
polyType :: forall n f. Functor f => (PolyType n -> f (PolyType n)) -> PolygonOpts n -> f (PolygonOpts n) #
data RoundedRectOpts d #
Constructors
RoundedRectOpts | |
Instances
Num d => Default (RoundedRectOpts d) | |
Defined in Diagrams.TwoD.Shapes Methods def :: RoundedRectOpts d # |
eqTriangle :: (InSpace V2 n t, TrailLike t) => n -> t #
hendecagon :: (InSpace V2 n t, TrailLike t) => n -> t #
radiusBL :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #
radiusBR :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #
radiusTL :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #
radiusTR :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #
roundedRect' :: (InSpace V2 n t, TrailLike t, RealFloat n) => n -> n -> RoundedRectOpts n -> t #
unitSquare :: (InSpace V2 n t, TrailLike t) => t #
extentX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Enveloped a) => a -> Maybe (n, n) #
extentY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Enveloped a) => a -> Maybe (n, n) #
_font :: forall (v :: Type -> Type) n f. Functor f => (Maybe String -> f (Maybe String)) -> Style v n -> f (Style v n) #
_fontSize :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n) #
_fontSizeR :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measured n (Recommend n)) #
alignedText :: (TypeableFloat n, Renderable (Text n) b) => n -> n -> String -> QDiagram b V2 n Any #
baselineText :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any #
mediumWeight :: HasStyle a => a -> a #
thinWeight :: HasStyle a => a -> a #
topLeftText :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any #
ultraLight :: HasStyle a => a -> a #
reflectAbout :: (InSpace V2 n t, OrderedField n, Transformable t) => P2 n -> Direction V2 n -> t -> t #
reflectionAbout :: OrderedField n => P2 n -> Direction V2 n -> T2 n #
reflectionX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Num n) => Transformation v n #
reflectionXY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => Transformation v n #
reflectionY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => Transformation v n #
rotateAround :: (InSpace V2 n t, Transformable t, Floating n) => P2 n -> Angle n -> t -> t #
rotateTo :: (InSpace V2 n t, OrderedField n, Transformable t) => Direction V2 n -> t -> t #
rotated :: (InSpace V2 n a, Floating n, SameSpace a b, Transformable a, Transformable b) => Angle n -> Iso a b a b #
rotationTo :: OrderedField n => Direction V2 n -> T2 n #
scaleRotateTo :: (InSpace V2 n t, Transformable t, Floating n) => V2 n -> t -> t #
scaleToX :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t #
scaleToY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t #
scaleUToX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Enveloped t, Transformable t) => n -> t -> t #
scaleUToY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t #
scaleX :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Fractional n, Transformable t) => n -> t -> t #
scaleY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Fractional n, Transformable t) => n -> t -> t #
scalingRotationTo :: Floating n => V2 n -> T2 n #
scalingX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Fractional n) => n -> Transformation v n #
scalingY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Fractional n) => n -> Transformation v n #
shearX :: (InSpace V2 n t, Transformable t) => n -> t -> t #
shearY :: (InSpace V2 n t, Transformable t) => n -> t -> t #
translateX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Transformable t) => n -> t -> t #
translateY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Transformable t) => n -> t -> t #
translationX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Num n) => n -> Transformation v n #
translationY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => n -> Transformation v n #
type T2 = Transformation V2 #
globalPackage :: IO FilePath #
activeStart :: Active a -> a #
clampAfter :: Active a -> Active a #
clampBefore :: Active a -> Active a #
fromDuration :: Duration n -> n #
isConstant :: Active a -> Bool #
toDuration :: n -> Duration n #
trimBefore :: Monoid a => Active a -> Active a #
ui :: Fractional a => Active a #
alphaChannel :: AlphaColour a -> a #
alphaColourConvert :: (Fractional b, Real a) => AlphaColour a -> AlphaColour b #
colourConvert :: (Fractional b, Real a) => Colour a -> Colour b #
dissolve :: Num a => a -> AlphaColour a -> AlphaColour a #
opaque :: Num a => Colour a -> AlphaColour a #
transparent :: Num a => AlphaColour a #
withOpacity :: Num a => Colour a -> a -> AlphaColour a #
antiquewhite :: (Ord a, Floating a) => Colour a #
aquamarine :: (Ord a, Floating a) => Colour a #
blanchedalmond :: (Ord a, Floating a) => Colour a #
blueviolet :: (Ord a, Floating a) => Colour a #
chartreuse :: (Ord a, Floating a) => Colour a #
cornflowerblue :: (Ord a, Floating a) => Colour a #
darkgoldenrod :: (Ord a, Floating a) => Colour a #
darkmagenta :: (Ord a, Floating a) => Colour a #
darkolivegreen :: (Ord a, Floating a) => Colour a #
darkorange :: (Ord a, Floating a) => Colour a #
darkorchid :: (Ord a, Floating a) => Colour a #
darksalmon :: (Ord a, Floating a) => Colour a #
darkseagreen :: (Ord a, Floating a) => Colour a #
darkslateblue :: (Ord a, Floating a) => Colour a #
darkslategray :: (Ord a, Floating a) => Colour a #
darkslategrey :: (Ord a, Floating a) => Colour a #
darkturquoise :: (Ord a, Floating a) => Colour a #
darkviolet :: (Ord a, Floating a) => Colour a #
deepskyblue :: (Ord a, Floating a) => Colour a #
dodgerblue :: (Ord a, Floating a) => Colour a #
floralwhite :: (Ord a, Floating a) => Colour a #
forestgreen :: (Ord a, Floating a) => Colour a #
ghostwhite :: (Ord a, Floating a) => Colour a #
greenyellow :: (Ord a, Floating a) => Colour a #
lavenderblush :: (Ord a, Floating a) => Colour a #
lemonchiffon :: (Ord a, Floating a) => Colour a #
lightcoral :: (Ord a, Floating a) => Colour a #
lightgoldenrodyellow :: (Ord a, Floating a) => Colour a #
lightgreen :: (Ord a, Floating a) => Colour a #
lightsalmon :: (Ord a, Floating a) => Colour a #
lightseagreen :: (Ord a, Floating a) => Colour a #
lightskyblue :: (Ord a, Floating a) => Colour a #
lightslategray :: (Ord a, Floating a) => Colour a #
lightslategrey :: (Ord a, Floating a) => Colour a #
lightsteelblue :: (Ord a, Floating a) => Colour a #
lightyellow :: (Ord a, Floating a) => Colour a #
mediumaquamarine :: (Ord a, Floating a) => Colour a #
mediumblue :: (Ord a, Floating a) => Colour a #
mediumorchid :: (Ord a, Floating a) => Colour a #
mediumpurple :: (Ord a, Floating a) => Colour a #
mediumseagreen :: (Ord a, Floating a) => Colour a #
mediumslateblue :: (Ord a, Floating a) => Colour a #
mediumspringgreen :: (Ord a, Floating a) => Colour a #
mediumturquoise :: (Ord a, Floating a) => Colour a #
mediumvioletred :: (Ord a, Floating a) => Colour a #
midnightblue :: (Ord a, Floating a) => Colour a #
navajowhite :: (Ord a, Floating a) => Colour a #
palegoldenrod :: (Ord a, Floating a) => Colour a #
paleturquoise :: (Ord a, Floating a) => Colour a #
palevioletred :: (Ord a, Floating a) => Colour a #
papayawhip :: (Ord a, Floating a) => Colour a #
powderblue :: (Ord a, Floating a) => Colour a #
saddlebrown :: (Ord a, Floating a) => Colour a #
sandybrown :: (Ord a, Floating a) => Colour a #
springgreen :: (Ord a, Floating a) => Colour a #
whitesmoke :: (Ord a, Floating a) => Colour a #
yellowgreen :: (Ord a, Floating a) => Colour a #
renderDiaT :: forall b (v :: Type -> Type) n m. (Backend b v n, HasLinearMap v, Metric v, Typeable n, OrderedField n, Monoid' m) => b -> Options b v n -> QDiagram b v n m -> (Transformation v n, Result b v n) #
appEnvelope :: Envelope v n -> Maybe (v n -> n) #
mkEnvelope :: (v n -> n) -> Envelope v n #
onEnvelope :: ((v n -> n) -> v n -> n) -> Envelope v n -> Envelope v n #
juxtaposeDefault :: (Enveloped a, HasOrigin a) => Vn a -> a -> a -> a #
fromMeasured :: Num n => n -> n -> Measured n a -> a #
normalized :: Num n => n -> Measure n #
scaleLocal :: Num n => n -> Measured n a -> Measured n a #
applyAttr :: (AttributeClass a, HasStyle d) => a -> d -> d #
applyMAttr :: (AttributeClass a, N d ~ n, HasStyle d) => Measured n a -> d -> d #
applyTAttr :: (AttributeClass a, Transformable a, V a ~ V d, N a ~ N d, HasStyle d) => a -> d -> d #
atMAttr :: forall a n (v :: Type -> Type). (AttributeClass a, Typeable n) => Lens' (Style v n) (Maybe (Measured n a)) #
atTAttr :: forall a (v :: Type -> Type) n. (V a ~ v, N a ~ n, AttributeClass a, Transformable a) => Lens' (Style v n) (Maybe a) #
getSortedList :: SortedList a -> [a] #
maxRayTraceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) #
mkSortedList :: Ord a => [a] -> SortedList a #
mkTrace :: (Point v n -> v n -> SortedList n) -> Trace v n #
avgScale :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Floating n) => Transformation v n -> n #
determinant :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Num n) => Transformation v n -> n #
dropTransl :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Transformation v n #
fromLinear :: (Additive v, Num n) => (v n :-: v n) -> (v n :-: v n) -> Transformation v n #
inv :: forall (v :: Type -> Type) n. (Functor v, Num n) => Transformation v n -> Transformation v n #
isReflection :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Num n, Ord n) => Transformation v n -> Bool #
papply :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Point v n -> Point v n #
scaling :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => n -> Transformation v n #
transl :: Transformation v n -> v n #
translation :: v n -> Transformation v n #
transp :: Transformation v n -> v n :-: v n #
atop :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Semigroup m) => QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #
envelope :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => Lens' (QDiagram b v n m) (Envelope v n) #
fromNames :: forall a b (v :: Type -> Type) n m. IsName a => [(a, Subdiagram b v n m)] -> SubMap b v n m #
getSub :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Subdiagram b v n m -> QDiagram b v n m #
groupOpacity :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Double -> QDiagram b v n m -> QDiagram b v n m #
href :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => String -> QDiagram b v n m -> QDiagram b v n m #
localize :: forall b (v :: Type -> Type) n m. (Metric v, OrderedField n, Semigroup m) => QDiagram b v n m -> QDiagram b v n m #
lookupSub :: forall nm b (v :: Type -> Type) n m. IsName nm => nm -> SubMap b v n m -> Maybe [Subdiagram b v n m] #
mkQD :: forall b (v :: Type -> Type) n m. Prim b v n -> Envelope v n -> Trace v n -> SubMap b v n m -> Query v n m -> QDiagram b v n m #
mkSubdiagram :: forall b (v :: Type -> Type) n m. QDiagram b v n m -> Subdiagram b v n m #
nameSub :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => (QDiagram b v n m -> Subdiagram b v n m) -> nm -> QDiagram b v n m -> QDiagram b v n m #
names :: forall (v :: Type -> Type) m n b. (Metric v, Semigroup m, OrderedField n) => QDiagram b v n m -> [(Name, [Point v n])] #
opacityGroup :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Double -> QDiagram b v n m -> QDiagram b v n m #
pointDiagram :: forall (v :: Type -> Type) n b m. (Metric v, Fractional n) => Point v n -> QDiagram b v n m #
rememberAs :: forall a b (v :: Type -> Type) n m. IsName a => a -> QDiagram b v n m -> SubMap b v n m -> SubMap b v n m #
setEnvelope :: forall b (v :: Type -> Type) n m. (OrderedField n, Metric v, Monoid' m) => Envelope v n -> QDiagram b v n m -> QDiagram b v n m #
setTrace :: forall b (v :: Type -> Type) n m. (OrderedField n, Metric v, Semigroup m) => Trace v n -> QDiagram b v n m -> QDiagram b v n m #
subMap :: forall (v :: Type -> Type) m n b. (Metric v, Semigroup m, OrderedField n) => Lens' (QDiagram b v n m) (SubMap b v n m) #
subPoint :: forall (v :: Type -> Type) n b m. (Metric v, OrderedField n) => Point v n -> Subdiagram b v n m #
withName :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> (Subdiagram b v n m -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m #
withNameAll :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> ([Subdiagram b v n m] -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m #
withNames :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => [nm] -> ([Subdiagram b v n m] -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m #
iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #
iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #
iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b] #
ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a) #
ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b #
ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b #
iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m () #
ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () #
imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m () #
inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #
itoList :: FoldableWithIndex i f => f a -> [(i, a)] #
itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () #
ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) #
iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b) #
imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) #
imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) #
imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b) #
(<|=) :: (MonadState s m, Cons b b a a) => ASetter s s b b -> a -> m () #
_head :: Cons s s a a => Traversal' s a #
_init :: Snoc s s a a => Traversal' s s #
_last :: Snoc s s a a => Traversal' s a #
_tail :: Cons s s a a => Traversal' s s #
(|>=) :: (MonadState s m, Snoc b b a a) => ASetter s s b b -> a -> m () #
cloneEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Equality s t a b #
equality :: forall {k1} {k2} (s :: k1) (a :: k1) (b :: k2) (t :: k2). (s :~: a) -> (b :~: t) -> Equality s t a b #
fromEq :: forall {k2} {k1} (s :: k2) (t :: k1) (a :: k2) (b :: k1). AnEquality s t a b -> Equality b a t s #
fromLeibniz :: forall {k1} {k2} (a :: k1) (b :: k2) (s :: k1) (t :: k2). (Identical a b a b -> Identical a b s t) -> Equality s t a b #
fromLeibniz' :: forall {k2} (s :: k2) (a :: k2). ((s :~: s) -> s :~: a) -> Equality' s a #
mapEq :: forall k1 k2 (s :: k1) (t :: k2) (a :: k1) (b :: k2) f. AnEquality s t a b -> f s -> f a #
overEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p a b -> p s t #
runEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Identical s t a b #
simply :: forall {k} {k1} p (f :: k -> k1) (s :: k) (a :: k) r. (Optic' p f s a -> r) -> Optic' p f s a -> r #
substEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) r. AnEquality s t a b -> ((s ~ a, t ~ b) => r) -> r #
underEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p t s -> p b a #
withEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) r. AnEquality s t a b -> ((s :~: a) -> (b :~: t) -> r) -> r #
(^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a #
(^@..) :: s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)] #
(^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a) #
altOf :: Applicative f => Getting (Alt f a) s a -> s -> f a #
asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a #
concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r] #
droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a #
elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i #
elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i] #
filteredBy :: (Indexable i p, Applicative f) => Getting (First i) a i -> p a (f a) -> a -> f a #
findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i #
findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i] #
foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r #
foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a #
foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b #
iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r] #
idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a #
ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a) #
ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m #
ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b #
ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r #
ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r #
ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r #
ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r #
ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r #
ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r #
ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b #
iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m () #
iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f () #
imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m () #
ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a)) #
ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) #
ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) #
ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) #
ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) #
itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s)) :: Type -> Type) s a -> Optical' p q f s a #
itoListOf :: IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)] #
itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f () #
lined :: forall (f :: Type -> Type). Applicative f => IndexedLensLike' Int f String String #
maximum1Of :: Ord a => Getting (Max a) s a -> s -> a #
minimum1Of :: Ord a => Getting (Min a) s a -> s -> a #
replicated :: Int -> Fold a a #
sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f () #
sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f () #
sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m () #
takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a #
toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a #
traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f () #
traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f () #
worded :: forall (f :: Type -> Type). Applicative f => IndexedLensLike' Int f String String #
(^@.) :: s -> IndexedGetting i (i, a) s a -> (i, a) #
getting :: (Profunctor p, Profunctor q, Functor f, Contravariant f) => Optical p q f s t a b -> Optical' p q f s a #
ilistening :: MonadWriter w m => IndexedGetting i (i, u) w u -> m a -> m (a, (i, u)) #
ilistenings :: MonadWriter w m => IndexedGetting i v w u -> (i -> u -> v) -> m a -> m (a, v) #
ito :: (Indexable i p, Contravariant f) => (s -> (i, a)) -> Over' p f s a #
iuse :: MonadState s m => IndexedGetting i (i, a) s a -> m (i, a) #
iuses :: MonadState s m => IndexedGetting i r s a -> (i -> a -> r) -> m r #
iview :: MonadReader s m => IndexedGetting i (i, a) s a -> m (i, a) #
iviews :: MonadReader s m => IndexedGetting i r s a -> (i -> a -> r) -> m r #
like :: (Profunctor p, Contravariant f, Functor f) => a -> Optic' p f s a #
listening :: MonadWriter w m => Getting u w u -> m a -> m (a, u) #
listenings :: MonadWriter w m => Getting v w u -> (u -> v) -> m a -> m (a, v) #
use :: MonadState s m => Getting a s a -> m a #
view :: MonadReader s m => Getting a s a -> m a #
icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r #
ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r #
ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r #
ifolded :: forall i (f :: Type -> Type) a. FoldableWithIndex i f => IndexedFold i (f a) a #
imapped :: forall i (f :: Type -> Type) a b. FunctorWithIndex i f => IndexedSetter i (f a) (f b) a b #
itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b) #
itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t #
itraversed :: forall i (t :: Type -> Type) a b. TraversableWithIndex i t => IndexedTraversal i (t a) (t b) a b #
indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t #
indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t #
makeClassyPrisms :: Name -> DecsQ #
makePrisms :: Name -> DecsQ #
retagged :: (Profunctor p, Bifunctor p) => p a b -> p s b #
bimapping :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b s' t' a' b'. (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b') #
contramapping :: forall (f :: Type -> Type) s t a b. Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t) #
curried :: forall a b c d e f1 p f2. (Profunctor p, Functor f2) => p (a -> b -> c) (f2 (d -> e -> f1)) -> p ((a, b) -> c) (f2 ((d, e) -> f1)) #
dimapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b s' t' a' b'. (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b') #
firsting :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y) #
flipped :: forall a b c a' b' c' p f. (Profunctor p, Functor f) => p (b -> a -> c) (f (b' -> a' -> c')) -> p (a -> b -> c) (f (a' -> b' -> c')) #
lmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y) #
mapping :: forall (f :: Type -> Type) (g :: Type -> Type) s t a b. (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b) #
rmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b) #
seconding :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b) #
swapped :: forall (p :: Type -> Type -> Type) a b c d. Swap p => Iso (p a b) (p c d) (p b a) (p d c) #
uncurried :: forall a b c d e f1 p f2. (Profunctor p, Functor f2) => p ((a, b) -> c) (f2 ((d, e) -> f1)) -> p (a -> b -> c) (f2 (d -> e -> f1)) #
xplat :: forall {k2} s g (t :: k2) a (b :: k2). Optic (Costar ((->) s)) g s t a b -> ((s -> a) -> g b) -> g t #
xplatf :: forall {k} {k2} f g (s :: k) (t :: k2) (a :: k) (b :: k2). Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t #
(#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r #
(#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m () #
(#=) :: MonadState s m => ALens s s a b -> b -> m () #
(%%=) :: forall {k} s m p r (a :: k) b. MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r #
(%%@~) :: forall {k1} i f s (t :: k1) a (b :: k1). Over (Indexed i) f s t a b -> (i -> a -> f b) -> s -> f t #
(<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b #
(<#=) :: MonadState s m => ALens s s a b -> b -> m b #
(<%=) :: MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b #
(<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a #
(<//~) :: Fractional a => LensLike ((,) a) s t a a -> a -> s -> (a, t) #
(<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a #
(<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a #
(<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a #
(<<//~) :: Fractional a => LensLike' ((,) a) s a -> a -> s -> (a, s) #
(<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a #
(<<~) :: MonadState s m => ALens s s a b -> m b -> m b #
(<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a #
alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b') #
choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b #
chosen :: forall a b p f. (Conjoined p, Functor f) => p a (f b) -> p (Either a a) (f (Either b b)) #
cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a b #
cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b #
ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b #
iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b #
locus :: forall (p :: Type -> Type -> Type -> Type) a c s b. IndexedComonadStore p => Lens (p a c s) (p b c s) a b #
ilevels :: forall (f :: Type -> Type) i s t a b j. Applicative f => Traversing (Indexed i) f s t a b -> IndexedLensLike Int f s t (Level i a) (Level j b) #
composOpFold :: Plated a => b -> (b -> b -> b) -> (a -> b) -> a -> b #
contextsOf :: ATraversal' a a -> a -> [Context a a a] #
contextsOn :: Plated a => ATraversal s t a a -> s -> [Context a a t] #
contextsOnOf :: ATraversal s t a a -> ATraversal' a a -> s -> [Context a a t] #
cosmosOf :: (Applicative f, Contravariant f) => LensLike' f a a -> LensLike' f a a #
cosmosOn :: (Applicative f, Contravariant f, Plated a) => LensLike' f s a -> LensLike' f s a #
cosmosOnOf :: (Applicative f, Contravariant f) => LensLike' f s a -> LensLike' f a a -> LensLike' f s a #
deep :: (Conjoined p, Applicative f, Plated s) => Traversing p f s s a b -> Over p f s s a b #
gplate1 :: forall {k} (f :: k -> Type) (a :: k). (Generic1 f, GPlated1 f (Rep1 f)) => Traversal' (f a) (f a) #
holesOnOf :: Conjoined p => LensLike (Bazaar p r r) s t a b -> Over p (Bazaar p r r) a b r r -> s -> [Pretext p r r t] #
rewriteMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> a -> m b #
rewriteMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m (Maybe a)) -> s -> m t #
rewriteMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> s -> m t #
rewriteOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> Maybe a) -> s -> t #
transformM :: (Monad m, Plated a) => (a -> m a) -> a -> m a #
transformMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m b) -> a -> m b #
transformMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m a) -> s -> m t #
transformMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m b) -> s -> m t #
transformOf :: ASetter a b a b -> (b -> b) -> a -> b #
transformOn :: Plated a => ASetter s t a a -> (a -> a) -> s -> t #
transformOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> b) -> s -> t #
universeOf :: Getting (Endo [a]) a a -> a -> [a] #
universeOn :: Plated a => Getting (Endo [a]) s a -> s -> [a] #
_Left :: forall a c b p f. (Choice p, Applicative f) => p a (f b) -> p (Either a c) (f (Either b c)) #
_Right :: forall c a b p f. (Choice p, Applicative f) => p a (f b) -> p (Either c a) (f (Either c b)) #
_Void :: forall s a p f. (Choice p, Applicative f) => p a (f Void) -> p s (f s) #
clonePrism :: APrism s t a b -> Prism s t a b #
without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d) #
reuse :: MonadState b m => AReview t b -> m t #
reuses :: MonadState b m => AReview t b -> (t -> r) -> m r #
review :: MonadReader b m => AReview t b -> m t #
reviewing :: (Bifunctor p, Functor f) => Optic (Tagged :: Type -> Type -> Type) Identity s t a b -> Optic' p f t b #
reviews :: MonadReader b m => AReview t b -> (t -> r) -> m r #
(%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m () #
(%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () #
(%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #
(**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m () #
(*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () #
(+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () #
(-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () #
(.=) :: MonadState s m => ASetter s s a b -> b -> m () #
(.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m () #
(.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t #
(//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m () #
(//~) :: Fractional a => ASetter s t a a -> a -> s -> t #
(<.=) :: MonadState s m => ASetter s s a b -> b -> m b #
(<>:=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m () #
(<>=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m () #
(<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b #
(<~) :: MonadState s m => ASetter s s a b -> m b -> m () #
(?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m () #
(^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m () #
(^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t #
assign :: MonadState s m => ASetter s s a b -> b -> m () #
censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a #
cloneIndexPreservingSetter :: ASetter s t a b -> IndexPreservingSetter s t a b #
cloneIndexedSetter :: AnIndexedSetter i s t a b -> IndexedSetter i s t a b #
cloneSetter :: ASetter s t a b -> Setter s t a b #
contramapped :: forall (f :: Type -> Type) b a. Contravariant f => Setter (f b) (f a) a b #
icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a #
ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r #
imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #
imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () #
iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #
ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a #
iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t #
isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b #
locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r #
modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m () #
passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a #
scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m () #
sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b #
setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b #
declareClassy :: DecsQ -> DecsQ #
declareFields :: DecsQ -> DecsQ #
declareLenses :: DecsQ -> DecsQ #
declareLensesWith :: LensRules -> DecsQ -> DecsQ #
declarePrisms :: DecsQ -> DecsQ #
declareWrapped :: DecsQ -> DecsQ #
lensRulesFor :: [(String, String)] -> LensRules #
lookingupNamer :: [(String, String)] -> FieldNamer #
makeClassy :: Name -> DecsQ #
makeClassy_ :: Name -> DecsQ #
makeFields :: Name -> DecsQ #
makeFieldsId :: Name -> DecsQ #
makeFieldsNoPrefix :: Name -> DecsQ #
makeLenses :: Name -> DecsQ #
makeLensesWith :: LensRules -> Name -> DecsQ #
makeWrapped :: Name -> DecsQ #
mappingNamer :: (String -> [String]) -> FieldNamer #
both1 :: forall (r :: Type -> Type -> Type) a b. Bitraversable1 r => Traversal1 (r a a) (r b b) a b #
cloneIndexPreservingTraversal :: ATraversal s t a b -> IndexPreservingTraversal s t a b #
cloneIndexPreservingTraversal1 :: ATraversal1 s t a b -> IndexPreservingTraversal1 s t a b #
cloneIndexedTraversal :: AnIndexedTraversal i s t a b -> IndexedTraversal i s t a b #
cloneIndexedTraversal1 :: AnIndexedTraversal1 i s t a b -> IndexedTraversal1 i s t a b #
cloneTraversal :: ATraversal s t a b -> Traversal s t a b #
cloneTraversal1 :: ATraversal1 s t a b -> Traversal1 s t a b #
confusing :: Applicative f => LensLike (Curried (Yoneda f) (Yoneda f)) s t a b -> LensLike f s t a b #
deepOf :: (Conjoined p, Applicative f) => LensLike f s t s t -> Traversing p f s t a b -> Over p f s t a b #
dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a #
element :: forall (t :: Type -> Type) a. Traversable t => Int -> IndexedTraversal' Int (t a) a #
elementOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a #
elements :: forall (t :: Type -> Type) a. Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a #
elementsOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a #
failing :: (Conjoined p, Applicative f) => Traversing p f s t a b -> Over p f s t a b -> Over p f s t a b #
forMOf :: LensLike (WrappedMonad m) s t a b -> s -> (a -> m b) -> m t #
iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t #
ignored :: Applicative f => pafb -> s -> f s #
iloci :: forall i a c s b p f. (Indexable i p, Applicative f) => p a (f b) -> Bazaar (Indexed i) a c s -> f (Bazaar (Indexed i) b c s) #
imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t #
ipartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a] #
ipartsOf' :: forall i p f s t a. (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a] #
itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t #
iunsafePartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b] #
iunsafePartsOf' :: forall i s t a b. Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b] #
loci :: forall a c s b f. Applicative f => (a -> f b) -> Bazaar (->) a c s -> f (Bazaar (->) b c s) #
mapAccumLOf :: LensLike (State acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
mapAccumROf :: LensLike (Backwards (State acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #
mapMOf :: LensLike (WrappedMonad m) s t a b -> (a -> m b) -> s -> m t #
partsOf :: Functor f => Traversing (->) f s t a a -> LensLike f s t [a] [a] #
partsOf' :: ATraversal s t a a -> Lens s t [a] [a] #
sequenceAOf :: LensLike f s t (f b) b -> s -> f t #
sequenceByOf :: Traversal s t (f b) b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> s -> f t #
sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t #
taking :: (Conjoined p, Applicative f) => Int -> Traversing p f s t a a -> Over p f s t a a #
transposeOf :: LensLike ZipList s t [a] a -> s -> [t] #
traverseByOf :: Traversal s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> s -> f t #
traverseOf :: LensLike f s t a b -> (a -> f b) -> s -> f t #
traversed :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int (f a) (f b) a b #
traversed1 :: forall (f :: Type -> Type) a b. Traversable1 f => IndexedTraversal1 Int (f a) (f b) a b #
traversed64 :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int64 (f a) (f b) a b #
unsafePartsOf :: Functor f => Traversing (->) f s t a b -> LensLike f s t [a] [b] #
unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b] #
unsafeSingular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a b -> Over p f s t a b #
Minimal complete definition
Nothing
Instances
Wrapped NoMethodError | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods | |||||
Wrapped PatternMatchFail | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' PatternMatchFail (Unwrapped PatternMatchFail) # | |||||
Wrapped RecConError | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods | |||||
Wrapped RecSelError | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods | |||||
Wrapped RecUpdError | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods | |||||
Wrapped TypeError | |||||
Wrapped All | |||||
Wrapped Any | |||||
Wrapped Errno | |||||
Wrapped CBool | |||||
Wrapped CChar | |||||
Wrapped CClock | |||||
Wrapped CDouble | |||||
Wrapped CFloat | |||||
Wrapped CInt | |||||
Wrapped CIntMax | |||||
Wrapped CIntPtr | |||||
Wrapped CLLong | |||||
Wrapped CLong | |||||
Wrapped CPtrdiff | |||||
Wrapped CSChar | |||||
Wrapped CSUSeconds | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods | |||||
Wrapped CShort | |||||
Wrapped CSigAtomic | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods | |||||
Wrapped CSize | |||||
Wrapped CTime | |||||
Wrapped CUChar | |||||
Wrapped CUInt | |||||
Wrapped CUIntMax | |||||
Wrapped CUIntPtr | |||||
Wrapped CULLong | |||||
Wrapped CULong | |||||
Wrapped CUSeconds | |||||
Wrapped CUShort | |||||
Wrapped CWchar | |||||
Wrapped ErrorCall | |||||
Wrapped AssertionFailed | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' AssertionFailed (Unwrapped AssertionFailed) # | |||||
Wrapped CompactionFailed | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' CompactionFailed (Unwrapped CompactionFailed) # | |||||
Wrapped CBlkCnt | |||||
Wrapped CBlkSize | |||||
Wrapped CCc | |||||
Wrapped CClockId | |||||
Wrapped CDev | |||||
Wrapped CFsBlkCnt | |||||
Wrapped CFsFilCnt | |||||
Wrapped CGid | |||||
Wrapped CId | |||||
Wrapped CIno | |||||
Wrapped CKey | |||||
Wrapped CMode | |||||
Wrapped CNlink | |||||
Wrapped COff | |||||
Wrapped CPid | |||||
Wrapped CRLim | |||||
Wrapped CSpeed | |||||
Wrapped CSsize | |||||
Wrapped CTcflag | |||||
Wrapped CTimer | |||||
Wrapped CUid | |||||
Wrapped Fd | |||||
Wrapped IntSet | |||||
Wrapped Name | |||||
Wrapped SegCount | |||||
Wrapped (Active a) | |||||
Wrapped (Duration a) | |||||
Wrapped (Time a) | |||||
Wrapped (ZipList a) | |||||
Wrapped (Comparison a) | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' (Comparison a) (Unwrapped (Comparison a)) # | |||||
Wrapped (Equivalence a) | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' (Equivalence a) (Unwrapped (Equivalence a)) # | |||||
Wrapped (Predicate a) | |||||
Wrapped (Identity a) | |||||
Wrapped (First a) | |||||
Wrapped (Last a) | |||||
Wrapped (Down a) | |||||
Wrapped (First a) | |||||
Wrapped (Last a) | |||||
Wrapped (Max a) | |||||
Wrapped (Min a) | |||||
Wrapped (WrappedMonoid a) | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' (WrappedMonoid a) (Unwrapped (WrappedMonoid a)) # | |||||
Wrapped (Dual a) | |||||
Wrapped (Endo a) | |||||
Wrapped (Product a) | |||||
Wrapped (Sum a) | |||||
Wrapped (NonEmpty a) | |||||
Wrapped (Par1 p) | |||||
Wrapped (IntMap a) | |||||
Wrapped (Seq a) | |||||
Ord a => Wrapped (Set a) | |||||
Wrapped (TransInv t) | |||||
Wrapped (ArcLength n) | |||||
Wrapped (Clip n) | |||||
Defined in Diagrams.TwoD.Path Associated Types
| |||||
(Hashable a, Eq a) => Wrapped (HashSet a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Vector a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Prim a => Wrapped (Vector a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Storable a => Wrapped (Vector a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Vector a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Unbox a => Wrapped (Vector a) | |||||
Wrapped (WrappedMonad m a) | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' (WrappedMonad m a) (Unwrapped (WrappedMonad m a)) # | |||||
Wrapped (ArrowMonad m a) | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' (ArrowMonad m a) (Unwrapped (ArrowMonad m a)) # | |||||
Wrapped (Op a b) | |||||
Ord k => Wrapped (Map k a) | |||||
Wrapped (Envelope v n) | |||||
Wrapped (Style v n) | |||||
Wrapped (Trace v n) | |||||
Defined in Diagrams.Core.Trace Associated Types
| |||||
Wrapped (Path v n) | |||||
Wrapped (TotalOffset v n) | |||||
Defined in Diagrams.Segment Associated Types
Methods _Wrapped' :: Iso' (TotalOffset v n) (Unwrapped (TotalOffset v n)) # | |||||
Wrapped (SegTree v n) | |||||
Defined in Diagrams.Trail Associated Types
| |||||
Wrapped (Trail v n) | |||||
Wrapped (CatchT m a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Alt f a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (CoiterT w a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (IterT m a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Point f a) | |||||
Wrapped (MaybeApply f a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (WrappedApplicative f a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (MaybeT m a) | |||||
(Hashable k, Eq k) => Wrapped (HashMap k a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (WrappedArrow a b c) | |||||
Defined in Control.Lens.Wrapped Associated Types
Methods _Wrapped' :: Iso' (WrappedArrow a b c) (Unwrapped (WrappedArrow a b c)) # | |||||
Wrapped (Kleisli m a b) | |||||
Wrapped (Const a x) | |||||
Wrapped (Ap f a) | |||||
Wrapped (Alt f a) | |||||
Wrapped (Rec1 f p) | |||||
Wrapped (Fix p a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Join p a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (TracedT m w a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Compose f g a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (ComposeCF f g a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (ComposeFC f g a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Query v n m) | |||||
Wrapped (Trail' Line v n) | |||||
Wrapped (ApT f g a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (CofreeT f w a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (FreeT f m a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Static f a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Tagged s a) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Backwards f a) | |||||
Wrapped (ExceptT e m a) | |||||
Wrapped (IdentityT m a) | |||||
Wrapped (ReaderT r m a) | |||||
Wrapped (StateT s m a) | |||||
Wrapped (StateT s m a) | |||||
Wrapped (WriterT w m a) | |||||
Wrapped (WriterT w m a) | |||||
Wrapped (Constant a b) | |||||
Wrapped (Reverse f a) | |||||
Wrapped (K1 i c p) | |||||
Wrapped (QDiagram b v n m) | |||||
Defined in Diagrams.Core.Types Associated Types
| |||||
Wrapped (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types Associated Types
| |||||
Wrapped (Costar f d c) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Forget r a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Star f d c) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (ContT r m a) | |||||
Wrapped (Compose f g a) | |||||
Wrapped ((f :.: g) p) | |||||
Wrapped (M1 i c f p) | |||||
Wrapped (Clown f a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Flip p a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Joker g a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (WrappedBifunctor p a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (WrappedArrow p a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Semi m a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (WrappedCategory k3 a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Dual k3 a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (RWST r w s m a) | |||||
Wrapped (RWST r w s m a) | |||||
Wrapped (Tannen f p a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Cayley f p a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
| |||||
Wrapped (Biff p f g a b) | |||||
Defined in Control.Lens.Wrapped Associated Types
|
Instances
type Unwrapped NoMethodError | |
Defined in Control.Lens.Wrapped | |
type Unwrapped PatternMatchFail | |
Defined in Control.Lens.Wrapped | |
type Unwrapped RecConError | |
Defined in Control.Lens.Wrapped | |
type Unwrapped RecSelError | |
Defined in Control.Lens.Wrapped | |
type Unwrapped RecUpdError | |
Defined in Control.Lens.Wrapped | |
type Unwrapped TypeError | |
Defined in Control.Lens.Wrapped | |
type Unwrapped All | |
Defined in Control.Lens.Wrapped | |
type Unwrapped Any | |
Defined in Control.Lens.Wrapped | |
type Unwrapped Errno | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CBool | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CChar | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CClock | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CDouble | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CFloat | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CInt | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CIntMax | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CIntPtr | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CLLong | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CLong | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CPtrdiff | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CSChar | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CSUSeconds | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CShort | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CSigAtomic | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CSize | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CTime | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CUChar | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CUInt | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CUIntMax | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CUIntPtr | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CULLong | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CULong | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CUSeconds | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CUShort | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CWchar | |
Defined in Control.Lens.Wrapped | |
type Unwrapped ErrorCall | |
Defined in Control.Lens.Wrapped | |
type Unwrapped AssertionFailed | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CompactionFailed | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CBlkCnt | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CBlkSize | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CCc | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CClockId | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CDev | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CFsBlkCnt | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CFsFilCnt | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CGid | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CId | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CIno | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CKey | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CMode | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CNlink | |
Defined in Control.Lens.Wrapped | |
type Unwrapped COff | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CPid | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CRLim | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CSpeed | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CSsize | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CTcflag | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CTimer | |
Defined in Control.Lens.Wrapped | |
type Unwrapped CUid | |
Defined in Control.Lens.Wrapped | |
type Unwrapped Fd | |
Defined in Control.Lens.Wrapped | |
type Unwrapped IntSet | |
Defined in Control.Lens.Wrapped | |
type Unwrapped Name | |
Defined in Diagrams.Core.Names | |
type Unwrapped SegCount | |
Defined in Diagrams.Segment | |
type Unwrapped (Active a) | |
Defined in Data.Active | |
type Unwrapped (Duration a) | |
Defined in Data.Active | |
type Unwrapped (Time a) | |
Defined in Data.Active | |
type Unwrapped (ZipList a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Comparison a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Equivalence a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Predicate a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Identity a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (First a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Last a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Down a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (First a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Last a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Max a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Min a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (WrappedMonoid a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Dual a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Endo a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Product a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Sum a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (NonEmpty a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Par1 p) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (IntMap a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Seq a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Set a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (TransInv t) | |
Defined in Diagrams.Core.Transform | |
type Unwrapped (ArcLength n) | |
Defined in Diagrams.Segment | |
type Unwrapped (Clip n) | |
Defined in Diagrams.TwoD.Path | |
type Unwrapped (HashSet a) | |
Defined in Control.Lens.Wrapped type Unwrapped (HashSet a) = [a] | |
type Unwrapped (Vector a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Vector a) = [a] | |
type Unwrapped (Vector a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Vector a) = [a] | |
type Unwrapped (Vector a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Vector a) = [a] | |
type Unwrapped (Vector a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Vector a) = [a] | |
type Unwrapped (Vector a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (WrappedMonad m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (ArrowMonad m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Op a b) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Map k a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
type Unwrapped (Style v n) | |
Defined in Diagrams.Core.Style | |
type Unwrapped (Trace v n) | |
Defined in Diagrams.Core.Trace | |
type Unwrapped (Path v n) | |
Defined in Diagrams.Path | |
type Unwrapped (TotalOffset v n) | |
Defined in Diagrams.Segment | |
type Unwrapped (SegTree v n) | |
Defined in Diagrams.Trail | |
type Unwrapped (Trail v n) | |
type Unwrapped (CatchT m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Alt f a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Alt f a) = [AltF f a] | |
type Unwrapped (CoiterT w a) | |
Defined in Control.Lens.Wrapped type Unwrapped (CoiterT w a) = w (a, CoiterT w a) | |
type Unwrapped (IterT m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Point f a) | |
Defined in Linear.Affine | |
type Unwrapped (MaybeApply f a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (WrappedApplicative f a) | |
Defined in Control.Lens.Wrapped type Unwrapped (WrappedApplicative f a) = f a | |
type Unwrapped (MaybeT m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (HashMap k a) | |
Defined in Control.Lens.Wrapped type Unwrapped (HashMap k a) = [(k, a)] | |
type Unwrapped (WrappedArrow a b c) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Kleisli m a b) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Const a x) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Ap f a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Alt f a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Rec1 f p) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Fix p a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Fix p a) = p (Fix p a) a | |
type Unwrapped (Join p a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Join p a) = p a a | |
type Unwrapped (TracedT m w a) | |
Defined in Control.Lens.Wrapped type Unwrapped (TracedT m w a) = w (m -> a) | |
type Unwrapped (Compose f g a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Compose f g a) = f (g a) | |
type Unwrapped (ComposeCF f g a) | |
Defined in Control.Lens.Wrapped type Unwrapped (ComposeCF f g a) = f (g a) | |
type Unwrapped (ComposeFC f g a) | |
Defined in Control.Lens.Wrapped type Unwrapped (ComposeFC f g a) = f (g a) | |
type Unwrapped (Query v n m) | |
Defined in Diagrams.Core.Query | |
type Unwrapped (Trail' Line v n) | |
Defined in Diagrams.Trail | |
type Unwrapped (ApT f g a) | |
Defined in Control.Lens.Wrapped type Unwrapped (ApT f g a) = g (ApF f g a) | |
type Unwrapped (CofreeT f w a) | |
Defined in Control.Lens.Wrapped type Unwrapped (CofreeT f w a) = w (CofreeF f a (CofreeT f w a)) | |
type Unwrapped (FreeT f m a) | |
Defined in Control.Lens.Wrapped type Unwrapped (FreeT f m a) = m (FreeF f a (FreeT f m a)) | |
type Unwrapped (Static f a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Static f a b) = f (a -> b) | |
type Unwrapped (Tagged s a) | |
Defined in Control.Lens.Wrapped type Unwrapped (Tagged s a) = a | |
type Unwrapped (Backwards f a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (ExceptT e m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (IdentityT m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (ReaderT r m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (StateT s m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (StateT s m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (WriterT w m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (WriterT w m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Constant a b) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Reverse f a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (K1 i c p) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (QDiagram b v n m) | |
Defined in Diagrams.Core.Types | |
type Unwrapped (SubMap b v n m) | |
Defined in Diagrams.Core.Types | |
type Unwrapped (Costar f d c) | |
Defined in Control.Lens.Wrapped type Unwrapped (Costar f d c) = f d -> c | |
type Unwrapped (Forget r a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Forget r a b) = a -> r | |
type Unwrapped (Star f d c) | |
Defined in Control.Lens.Wrapped type Unwrapped (Star f d c) = d -> f c | |
type Unwrapped (ContT r m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Compose f g a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped ((f :.: g) p) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (M1 i c f p) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Clown f a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Clown f a b) = f a | |
type Unwrapped (Flip p a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Flip p a b) = p b a | |
type Unwrapped (Joker g a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Joker g a b) = g b | |
type Unwrapped (WrappedBifunctor p a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (WrappedBifunctor p a b) = p a b | |
type Unwrapped (WrappedArrow p a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (WrappedArrow p a b) = p a b | |
type Unwrapped (Semi m a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Semi m a b) = m | |
type Unwrapped (WrappedCategory k3 a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (WrappedCategory k3 a b) = k3 a b | |
type Unwrapped (Dual k3 a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Dual k3 a b) = k3 b a | |
type Unwrapped (RWST r w s m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (RWST r w s m a) | |
Defined in Control.Lens.Wrapped | |
type Unwrapped (Tannen f p a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Tannen f p a b) = f (p a b) | |
type Unwrapped (Cayley f p a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Cayley f p a b) = f (p a b) | |
type Unwrapped (Biff p f g a b) | |
Defined in Control.Lens.Wrapped type Unwrapped (Biff p f g a b) = p (f a) (g b) |
_GWrapped' :: forall s (d :: Meta) (c :: Meta) (s' :: Meta) a. (Generic s, D1 d (C1 c (S1 s' (Rec0 a))) ~ Rep s, Unwrapped s ~ GUnwrapped (Rep s)) => Iso' s (Unwrapped s) #
_Unwrapped :: Rewrapping s t => Iso (Unwrapped t) (Unwrapped s) t s #
_Unwrapped' :: Wrapped s => Iso' (Unwrapped s) s #
_Unwrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso (Unwrapped t) (Unwrapped s) t s #
ala :: (Functor f, Rewrapping s t) => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> f s) -> f (Unwrapped s) #
alaf :: (Functor f, Functor g, Rewrapping s t) => (Unwrapped s -> s) -> (f t -> g s) -> f (Unwrapped t) -> g (Unwrapped s) #
_Point :: forall f1 a g b p f2. (Profunctor p, Functor f2) => p (f1 a) (f2 (g b)) -> p (Point f1 a) (f2 (Point g b)) #
relative :: forall (f :: Type -> Type) a. (Additive f, Num a) => Point f a -> Iso' (Point f a) (f a) #
project :: (Metric v, Fractional a) => v a -> v a -> v a #
(^/) :: (Functor f, Fractional a) => f a -> a -> f a #
basis :: (Additive t, Traversable t, Num a) => [t a] #
basisFor :: (Traversable t, Num a) => t b -> [t a] #
scaled :: (Traversable t, Num a) => t a -> t (t a) #
sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a) #
traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b) #
Instances
Applicative Active | |||||||||
Functor Active | |||||||||
Apply Active | |||||||||
(Monoid a, Semigroup a) => Monoid (Active a) | |||||||||
Semigroup a => Semigroup (Active a) | |||||||||
Wrapped (Active a) | |||||||||
Rewrapped (Active a) (Active b) | |||||||||
Defined in Data.Active | |||||||||
ToResult (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine Associated Types
| |||||||||
type N (Active a) | |||||||||
Defined in Diagrams.Animation.Active | |||||||||
type V (Active a) | |||||||||
Defined in Diagrams.Animation.Active | |||||||||
type Unwrapped (Active a) | |||||||||
Defined in Data.Active | |||||||||
type Args (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine type Args (Animation b v n) = () | |||||||||
type ResultOf (Animation b v n) | |||||||||
Defined in Diagrams.Backend.CmdLine |
Instances
Applicative Duration | |
Functor Duration | |
Additive Duration | |
Defined in Data.Active Methods (^+^) :: Num a => Duration a -> Duration a -> Duration a # (^-^) :: Num a => Duration a -> Duration a -> Duration a # lerp :: Num a => a -> Duration a -> Duration a -> Duration a # liftU2 :: (a -> a -> a) -> Duration a -> Duration a -> Duration a # liftI2 :: (a -> b -> c) -> Duration a -> Duration b -> Duration c # | |
Num n => Monoid (Duration n) | |
Num n => Semigroup (Duration n) | |
Enum n => Enum (Duration n) | |
Defined in Data.Active Methods succ :: Duration n -> Duration n # pred :: Duration n -> Duration n # fromEnum :: Duration n -> Int # enumFrom :: Duration n -> [Duration n] # enumFromThen :: Duration n -> Duration n -> [Duration n] # enumFromTo :: Duration n -> Duration n -> [Duration n] # enumFromThenTo :: Duration n -> Duration n -> Duration n -> [Duration n] # | |
Num n => Num (Duration n) | |
Defined in Data.Active | |
Read n => Read (Duration n) | |
Fractional n => Fractional (Duration n) | |
Real n => Real (Duration n) | |
Defined in Data.Active Methods toRational :: Duration n -> Rational # | |
RealFrac n => RealFrac (Duration n) | |
Show n => Show (Duration n) | |
Eq n => Eq (Duration n) | |
Ord n => Ord (Duration n) | |
Wrapped (Duration a) | |
Rewrapped (Duration a) (Duration b) | |
Defined in Data.Active | |
type Unwrapped (Duration a) | |
Defined in Data.Active |
Instances
Functor Time | |
Affine Time | |
Enum n => Enum (Time n) | |
Defined in Data.Active | |
Num n => Num (Time n) | |
Read n => Read (Time n) | |
Fractional n => Fractional (Time n) | |
Real n => Real (Time n) | |
Defined in Data.Active Methods toRational :: Time n -> Rational # | |
RealFrac n => RealFrac (Time n) | |
Show n => Show (Time n) | |
Eq n => Eq (Time n) | |
Ord n => Ord (Time n) | |
Wrapped (Time a) | |
Rewrapped (Time a) (Time b) | |
Defined in Data.Active | |
type Diff Time | |
Defined in Data.Active | |
type Unwrapped (Time a) | |
Defined in Data.Active |
data AlphaColour a #
Instances
AffineSpace AlphaColour | |
Defined in Data.Colour.Internal Methods affineCombo :: Num a => [(a, AlphaColour a)] -> AlphaColour a -> AlphaColour a | |
ColourOps AlphaColour | |
Defined in Data.Colour.Internal Methods over :: Num a => AlphaColour a -> AlphaColour a -> AlphaColour a darken :: Num a => a -> AlphaColour a -> AlphaColour a # | |
Num a => Monoid (AlphaColour a) | |
Defined in Data.Colour.Internal Methods mempty :: AlphaColour a # mappend :: AlphaColour a -> AlphaColour a -> AlphaColour a # mconcat :: [AlphaColour a] -> AlphaColour a # | |
Num a => Semigroup (AlphaColour a) | |
Defined in Data.Colour.Internal Methods (<>) :: AlphaColour a -> AlphaColour a -> AlphaColour a # sconcat :: NonEmpty (AlphaColour a) -> AlphaColour a # stimes :: Integral b => b -> AlphaColour a -> AlphaColour a # | |
a ~ Double => Color (AlphaColour a) | |
Defined in Diagrams.Attributes Methods toAlphaColour :: AlphaColour a -> AlphaColour Double # fromAlphaColour :: AlphaColour Double -> AlphaColour a # | |
Parseable (AlphaColour Double) | |
Defined in Diagrams.Backend.CmdLine Methods parser :: Parser (AlphaColour Double) | |
Eq a => Eq (AlphaColour a) | |
Defined in Data.Colour.Internal Methods (==) :: AlphaColour a -> AlphaColour a -> Bool # (/=) :: AlphaColour a -> AlphaColour a -> Bool # |
Instances
AffineSpace Colour | |
Defined in Data.Colour.Internal Methods affineCombo :: Num a => [(a, Colour a)] -> Colour a -> Colour a | |
ColourOps Colour | |
Num a => Monoid (Colour a) | |
Num a => Semigroup (Colour a) | |
a ~ Double => Color (Colour a) | |
Defined in Diagrams.Attributes Methods toAlphaColour :: Colour a -> AlphaColour Double # fromAlphaColour :: AlphaColour Double -> Colour a # | |
Parseable (Colour Double) | |
Defined in Diagrams.Backend.CmdLine | |
Eq a => Eq (Colour a) | |
(Ord a, Floating a) => FromColor (Colour a) | |
Defined in Skylighting.Types | |
(RealFrac a, Floating a) => ToColor (Colour a) | |
Defined in Skylighting.Types |
class ColourOps (f :: Type -> Type) where #
Minimal complete definition
over, darken
Instances
ColourOps AlphaColour | |
Defined in Data.Colour.Internal Methods over :: Num a => AlphaColour a -> AlphaColour a -> AlphaColour a darken :: Num a => a -> AlphaColour a -> AlphaColour a # | |
ColourOps Colour | |
Constructors
RGB | |
Fields
|
newtype Envelope (v :: Type -> Type) n #
Instances
Ord n => Monoid (Envelope v n) | |
Ord n => Semigroup (Envelope v n) | |
Show (Envelope v n) | |
(Metric v, OrderedField n) => Enveloped (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
(Metric v, Fractional n) => HasOrigin (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
(Metric v, OrderedField n) => Juxtaposable (Envelope v n) | |
(Metric v, Floating n) => Transformable (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
(Metric v, OrderedField n) => Alignable (Envelope v n) | |
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => (v0 n0 -> Envelope v n -> Point v0 n0) -> v0 n0 -> n0 -> Envelope v n -> Envelope v n # defaultBoundary :: (V (Envelope v n) ~ v0, N (Envelope v n) ~ n0) => v0 n0 -> Envelope v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => v0 n0 -> n0 -> Envelope v n -> Envelope v n # | |
Wrapped (Envelope v n) | |
Rewrapped (Envelope v n) (Envelope v' n') | |
Defined in Diagrams.Core.Envelope | |
type N (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
type V (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
type Unwrapped (Envelope v n) | |
Defined in Diagrams.Core.Envelope |
class (Metric (V a), OrderedField (N a)) => Enveloped a where #
Methods
getEnvelope :: a -> Envelope (V a) (N a) #
Instances
Enveloped b => Enveloped (Set b) | |
Defined in Diagrams.Core.Envelope | |
Enveloped t => Enveloped (TransInv t) | |
Defined in Diagrams.Core.Envelope | |
Enveloped a => Enveloped (Located a) | |
Defined in Diagrams.Located | |
OrderedField n => Enveloped (Box n) | |
Defined in Diagrams.ThreeD.Shapes | |
RealFloat n => Enveloped (CSG n) | |
Defined in Diagrams.ThreeD.Shapes | |
OrderedField n => Enveloped (Ellipsoid n) | |
Defined in Diagrams.ThreeD.Shapes | |
(OrderedField n, RealFloat n) => Enveloped (Frustum n) | |
Defined in Diagrams.ThreeD.Shapes | |
Enveloped b => Enveloped [b] | |
Defined in Diagrams.Core.Envelope Methods getEnvelope :: [b] -> Envelope (V [b]) (N [b]) # | |
Enveloped b => Enveloped (Map k b) | |
Defined in Diagrams.Core.Envelope | |
(Metric v, OrderedField n) => Enveloped (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
(Metric v, Traversable v, OrderedField n) => Enveloped (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods getEnvelope :: BoundingBox v n -> Envelope (V (BoundingBox v n)) (N (BoundingBox v n)) # | |
(Metric v, OrderedField n) => Enveloped (Path v n) | |
Defined in Diagrams.Path | |
(Metric v, OrderedField n) => Enveloped (FixedSegment v n) | |
Defined in Diagrams.Segment Methods getEnvelope :: FixedSegment v n -> Envelope (V (FixedSegment v n)) (N (FixedSegment v n)) # | |
(Metric v, OrderedField n) => Enveloped (Trail v n) | |
Defined in Diagrams.Trail | |
(OrderedField n, Metric v) => Enveloped (Point v n) | |
Defined in Diagrams.Core.Envelope | |
(Enveloped a, Enveloped b, V a ~ V b, N a ~ N b) => Enveloped (a, b) | |
Defined in Diagrams.Core.Envelope Methods getEnvelope :: (a, b) -> Envelope (V (a, b)) (N (a, b)) # | |
(Metric v, OrderedField n) => Enveloped (Segment Closed v n) | |
(Metric v, OrderedField n) => Enveloped (Trail' l v n) | |
Defined in Diagrams.Trail | |
(Metric v, OrderedField n, Monoid' m) => Enveloped (QDiagram b v n m) | |
Defined in Diagrams.Core.Types | |
(OrderedField n, Metric v, Monoid' m) => Enveloped (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods getEnvelope :: Subdiagram b v n m -> Envelope (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) # |
Methods
moveOriginTo :: Point (V t) (N t) -> t -> t #
Instances
(HasOrigin t, Ord t) => HasOrigin (Set t) | |
Defined in Diagrams.Core.HasOrigin | |
HasOrigin (TransInv t) | |
Defined in Diagrams.Core.Transform | |
(Num (N a), Additive (V a)) => HasOrigin (Located a) | |
Defined in Diagrams.Located | |
(V t ~ v, N t ~ n, Additive v, Num n, HasOrigin t) => HasOrigin (ScaleInv t) | |
Defined in Diagrams.Transform.ScaleInv Methods moveOriginTo :: Point (V (ScaleInv t)) (N (ScaleInv t)) -> ScaleInv t -> ScaleInv t # | |
Floating n => HasOrigin (Text n) | |
Defined in Diagrams.TwoD.Text Methods moveOriginTo :: Point (V (Text n)) (N (Text n)) -> Text n -> Text n # | |
HasOrigin t => HasOrigin [t] | |
Defined in Diagrams.Core.HasOrigin Methods moveOriginTo :: Point (V [t]) (N [t]) -> [t] -> [t] # | |
HasOrigin t => HasOrigin (Map k t) | |
Defined in Diagrams.Core.HasOrigin | |
(Metric v, Fractional n) => HasOrigin (Envelope v n) | |
Defined in Diagrams.Core.Envelope | |
HasOrigin t => HasOrigin (Measured n t) | |
Defined in Diagrams.Core.HasOrigin | |
(Additive v, Num n) => HasOrigin (Trace v n) | |
Defined in Diagrams.Core.Trace | |
(Additive v, Num n) => HasOrigin (Transformation v n) | |
Defined in Diagrams.Core.Transform Methods moveOriginTo :: Point (V (Transformation v n)) (N (Transformation v n)) -> Transformation v n -> Transformation v n # | |
(Additive v, Num n) => HasOrigin (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods moveOriginTo :: Point (V (BoundingBox v n)) (N (BoundingBox v n)) -> BoundingBox v n -> BoundingBox v n # | |
(Additive v, Num n) => HasOrigin (Path v n) | |
Defined in Diagrams.Path | |
(Additive v, Num n) => HasOrigin (FixedSegment v n) | |
Defined in Diagrams.Segment Methods moveOriginTo :: Point (V (FixedSegment v n)) (N (FixedSegment v n)) -> FixedSegment v n -> FixedSegment v n # | |
Fractional n => HasOrigin (DImage n a) | |
Defined in Diagrams.TwoD.Image | |
(Additive v, Num n) => HasOrigin (Point v n) | |
Defined in Diagrams.Core.HasOrigin | |
(HasOrigin t, HasOrigin s, SameSpace s t) => HasOrigin (s, t) | |
Defined in Diagrams.Core.HasOrigin Methods moveOriginTo :: Point (V (s, t)) (N (s, t)) -> (s, t) -> (s, t) # | |
(Additive v, Num n) => HasOrigin (Query v n m) | |
Defined in Diagrams.Core.Query | |
(Metric v, OrderedField n, Semigroup m) => HasOrigin (QDiagram b v n m) | |
Defined in Diagrams.Core.Types | |
(OrderedField n, Metric v) => HasOrigin (SubMap b v n m) | |
Defined in Diagrams.Core.Types | |
(Metric v, OrderedField n) => HasOrigin (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods moveOriginTo :: Point (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m # |
class Juxtaposable a where #
Instances
(Enveloped b, HasOrigin b, Ord b) => Juxtaposable (Set b) | |
Enveloped a => Juxtaposable (Located a) | |
(Enveloped b, HasOrigin b) => Juxtaposable [b] | |
Defined in Diagrams.Core.Juxtapose | |
(Enveloped b, HasOrigin b) => Juxtaposable (Map k b) | |
(Metric v, OrderedField n) => Juxtaposable (Envelope v n) | |
Juxtaposable a => Juxtaposable (Measured n a) | |
(Metric v, OrderedField n) => Juxtaposable (Path v n) | |
(Enveloped a, HasOrigin a, Enveloped b, HasOrigin b, V a ~ V b, N a ~ N b) => Juxtaposable (a, b) | |
Defined in Diagrams.Core.Juxtapose | |
Juxtaposable a => Juxtaposable (b -> a) | |
Defined in Diagrams.Core.Juxtapose | |
(Metric v, OrderedField n, Monoid' m) => Juxtaposable (QDiagram b v n m) | |
Instances
Profunctor Measured | |||||
Defined in Diagrams.Core.Measure Methods dimap :: (a -> b) -> (c -> d) -> Measured b c -> Measured a d # lmap :: (a -> b) -> Measured b c -> Measured a c # rmap :: (b -> c) -> Measured a b -> Measured a c # (#.) :: forall a b c q. Coercible c b => q b c -> Measured a b -> Measured a c (.#) :: forall a b c q. Coercible b a => Measured b c -> q a b -> Measured a c | |||||
Representable (Measured n) | |||||
Defined in Diagrams.Core.Measure Associated Types
| |||||
Applicative (Measured n) | |||||
Defined in Diagrams.Core.Measure | |||||
Functor (Measured n) | |||||
Monad (Measured n) | |||||
OrderedField n => Default (LineWidthM n) | |||||
Defined in Diagrams.Attributes | |||||
Num n => Default (FontSizeM n) | |||||
Defined in Diagrams.TwoD.Text | |||||
Distributive (Measured n) | |||||
Defined in Diagrams.Core.Measure | |||||
Additive (Measured n) | |||||
Defined in Diagrams.Core.Measure Methods zero :: Num a => Measured n a # (^+^) :: Num a => Measured n a -> Measured n a -> Measured n a # (^-^) :: Num a => Measured n a -> Measured n a -> Measured n a # lerp :: Num a => a -> Measured n a -> Measured n a -> Measured n a # liftU2 :: (a -> a -> a) -> Measured n a -> Measured n a -> Measured n a # liftI2 :: (a -> b -> c) -> Measured n a -> Measured n b -> Measured n c # | |||||
Monoid a => Monoid (Measured n a) | |||||
Semigroup a => Semigroup (Measured n a) | |||||
Floating a => Floating (Measured n a) | |||||
Defined in Diagrams.Core.Measure Methods exp :: Measured n a -> Measured n a # log :: Measured n a -> Measured n a # sqrt :: Measured n a -> Measured n a # (**) :: Measured n a -> Measured n a -> Measured n a # logBase :: Measured n a -> Measured n a -> Measured n a # sin :: Measured n a -> Measured n a # cos :: Measured n a -> Measured n a # tan :: Measured n a -> Measured n a # asin :: Measured n a -> Measured n a # acos :: Measured n a -> Measured n a # atan :: Measured n a -> Measured n a # sinh :: Measured n a -> Measured n a # cosh :: Measured n a -> Measured n a # tanh :: Measured n a -> Measured n a # asinh :: Measured n a -> Measured n a # acosh :: Measured n a -> Measured n a # atanh :: Measured n a -> Measured n a # log1p :: Measured n a -> Measured n a # expm1 :: Measured n a -> Measured n a # | |||||
Num a => Num (Measured n a) | |||||
Defined in Diagrams.Core.Measure Methods (+) :: Measured n a -> Measured n a -> Measured n a # (-) :: Measured n a -> Measured n a -> Measured n a # (*) :: Measured n a -> Measured n a -> Measured n a # negate :: Measured n a -> Measured n a # abs :: Measured n a -> Measured n a # signum :: Measured n a -> Measured n a # fromInteger :: Integer -> Measured n a # | |||||
Fractional a => Fractional (Measured n a) | |||||
HasOrigin t => HasOrigin (Measured n t) | |||||
Defined in Diagrams.Core.HasOrigin | |||||
Juxtaposable a => Juxtaposable (Measured n a) | |||||
Qualifiable a => Qualifiable (Measured n a) | |||||
HasStyle b => HasStyle (Measured n b) | |||||
Defined in Diagrams.Core.Style | |||||
(InSpace v n t, Transformable t, HasLinearMap v, Floating n) => Transformable (Measured n t) | |||||
Defined in Diagrams.Core.Transform | |||||
MonadReader (n, n, n) (Measured n) | |||||
type Rep (Measured n) | |||||
Defined in Diagrams.Core.Measure type Rep (Measured n) = (n, n, n) | |||||
type N (Measured n a) | |||||
Defined in Diagrams.Core.Measure | |||||
type V (Measured n a) | |||||
Defined in Diagrams.Core.Measure |
class (Typeable a, Ord a, Show a) => IsName a where #
Minimal complete definition
Nothing
Instances
IsName AName | |
Defined in Diagrams.Core.Names | |
IsName Name | |
Defined in Diagrams.Core.Names | |
IsName Integer | |
Defined in Diagrams.Core.Names | |
IsName () | |
Defined in Diagrams.Core.Names | |
IsName Bool | |
Defined in Diagrams.Core.Names | |
IsName Char | |
Defined in Diagrams.Core.Names | |
IsName Double | |
Defined in Diagrams.Core.Names | |
IsName Float | |
Defined in Diagrams.Core.Names | |
IsName Int | |
Defined in Diagrams.Core.Names | |
IsName a => IsName (Maybe a) | |
Defined in Diagrams.Core.Names | |
IsName a => IsName [a] | |
Defined in Diagrams.Core.Names | |
(IsName a, IsName b) => IsName (a, b) | |
Defined in Diagrams.Core.Names | |
(IsName a, IsName b, IsName c) => IsName (a, b, c) | |
Defined in Diagrams.Core.Names |
class Qualifiable q where #
Instances
Qualifiable Name | |
(Ord a, Qualifiable a) => Qualifiable (Set a) | |
Qualifiable a => Qualifiable (TransInv a) | |
Qualifiable a => Qualifiable (Located a) | |
Qualifiable a => Qualifiable [a] | |
Defined in Diagrams.Core.Names | |
Qualifiable a => Qualifiable (Map k a) | |
Qualifiable a => Qualifiable (Measured n a) | |
(Qualifiable a, Qualifiable b) => Qualifiable (a, b) | |
Defined in Diagrams.Core.Names | |
Qualifiable a => Qualifiable (b -> a) | |
Defined in Diagrams.Core.Names | |
(Qualifiable a, Qualifiable b, Qualifiable c) => Qualifiable (a, b, c) | |
Defined in Diagrams.Core.Names | |
(Metric v, OrderedField n, Semigroup m) => Qualifiable (QDiagram b v n m) | |
Qualifiable (SubMap b v n m) | |
newtype Query (v :: Type -> Type) n m #
Instances
Functor v => Closed (Query v) | |||||
Defined in Diagrams.Core.Query | |||||
Functor v => Corepresentable (Query v) | |||||
Defined in Diagrams.Core.Query Associated Types
Methods cotabulate :: (Corep (Query v) d -> c) -> Query v d c | |||||
Functor v => Costrong (Query v) | |||||
Functor v => Profunctor (Query v) | |||||
Defined in Diagrams.Core.Query Methods dimap :: (a -> b) -> (c -> d) -> Query v b c -> Query v a d # lmap :: (a -> b) -> Query v b c -> Query v a c # rmap :: (b -> c) -> Query v a b -> Query v a c # (#.) :: forall a b c q. Coercible c b => q b c -> Query v a b -> Query v a c (.#) :: forall a b c q. Coercible b a => Query v b c -> q a b -> Query v a c | |||||
Functor v => Cosieve (Query v) (Point v) | |||||
Defined in Diagrams.Core.Query | |||||
Representable (Query v n) | |||||
Applicative (Query v n) | |||||
Functor (Query v n) | |||||
Monad (Query v n) | |||||
Distributive (Query v n) | |||||
Monoid m => Monoid (Query v n m) | |||||
Semigroup m => Semigroup (Query v n m) | |||||
(Additive v, Num n) => HasOrigin (Query v n m) | |||||
Defined in Diagrams.Core.Query | |||||
(Additive v, Num n) => Transformable (Query v n m) | |||||
Defined in Diagrams.Core.Query | |||||
Wrapped (Query v n m) | |||||
HasQuery (Query v n m) m | |||||
Rewrapped (Query v a m) (Query v' a' m') | |||||
Defined in Diagrams.Core.Query | |||||
type Corep (Query v) | |||||
Defined in Diagrams.Core.Query | |||||
type Rep (Query v n) | |||||
Defined in Diagrams.Core.Query | |||||
type N (Query v n m) | |||||
Defined in Diagrams.Core.Query | |||||
type V (Query v n m) | |||||
Defined in Diagrams.Core.Query | |||||
type Unwrapped (Query v n m) | |||||
Defined in Diagrams.Core.Query |
class (Typeable a, Semigroup a) => AttributeClass a #
Instances
AttributeClass FillOpacity | |
Defined in Diagrams.Attributes | |
AttributeClass LineCap | |
Defined in Diagrams.Attributes | |
AttributeClass LineJoin | |
Defined in Diagrams.Attributes | |
AttributeClass LineMiterLimit | |
Defined in Diagrams.Attributes | |
AttributeClass Opacity | |
Defined in Diagrams.Attributes | |
AttributeClass StrokeOpacity | |
Defined in Diagrams.Attributes | |
AttributeClass Ambient | |
Defined in Diagrams.ThreeD.Attributes | |
AttributeClass Diffuse | |
Defined in Diagrams.ThreeD.Attributes | |
AttributeClass Highlight | |
Defined in Diagrams.ThreeD.Attributes | |
AttributeClass SurfaceColor | |
Defined in Diagrams.ThreeD.Attributes | |
AttributeClass FillRule | |
Defined in Diagrams.TwoD.Path | |
AttributeClass Font | |
Defined in Diagrams.TwoD.Text | |
AttributeClass FontSlant | |
Defined in Diagrams.TwoD.Text | |
AttributeClass FontWeight | |
Defined in Diagrams.TwoD.Text | |
Typeable n => AttributeClass (Dashing n) | |
Defined in Diagrams.Attributes | |
Typeable n => AttributeClass (LineWidth n) | |
Defined in Diagrams.Attributes | |
Typeable n => AttributeClass (FillTexture n) | |
Defined in Diagrams.TwoD.Attributes | |
Typeable n => AttributeClass (LineTexture n) | |
Defined in Diagrams.TwoD.Attributes | |
Typeable n => AttributeClass (Clip n) | |
Defined in Diagrams.TwoD.Path | |
Typeable n => AttributeClass (FontSize n) | |
Defined in Diagrams.TwoD.Text |
Methods
applyStyle :: Style (V a) (N a) -> a -> a #
Instances
(HasStyle a, Ord a) => HasStyle (Set a) | |
Defined in Diagrams.Core.Style | |
HasStyle a => HasStyle [a] | |
Defined in Diagrams.Core.Style Methods applyStyle :: Style (V [a]) (N [a]) -> [a] -> [a] # | |
HasStyle a => HasStyle (Map k a) | |
Defined in Diagrams.Core.Style | |
HasStyle b => HasStyle (Measured n b) | |
Defined in Diagrams.Core.Style | |
Typeable n => HasStyle (Style v n) | |
Defined in Diagrams.Core.Style | |
(HasStyle a, HasStyle b, V a ~ V b, N a ~ N b) => HasStyle (a, b) | |
Defined in Diagrams.Core.Style Methods applyStyle :: Style (V (a, b)) (N (a, b)) -> (a, b) -> (a, b) # | |
HasStyle b => HasStyle (a -> b) | |
Defined in Diagrams.Core.Style Methods applyStyle :: Style (V (a -> b)) (N (a -> b)) -> (a -> b) -> a -> b # | |
(Metric v, OrderedField n, Semigroup m) => HasStyle (QDiagram b v n m) | |
Defined in Diagrams.Core.Types |
data SortedList a #
Instances
Ord a => Monoid (SortedList a) | |
Defined in Diagrams.Core.Trace Methods mempty :: SortedList a # mappend :: SortedList a -> SortedList a -> SortedList a # mconcat :: [SortedList a] -> SortedList a # | |
Ord a => Semigroup (SortedList a) | |
Defined in Diagrams.Core.Trace Methods (<>) :: SortedList a -> SortedList a -> SortedList a # sconcat :: NonEmpty (SortedList a) -> SortedList a # stimes :: Integral b => b -> SortedList a -> SortedList a # |
newtype Trace (v :: Type -> Type) n #
Constructors
Trace | |
Fields
|
Instances
Ord n => Monoid (Trace v n) | |||||
Ord n => Semigroup (Trace v n) | |||||
Show (Trace v n) | |||||
(Additive v, Num n) => HasOrigin (Trace v n) | |||||
Defined in Diagrams.Core.Trace | |||||
(Additive v, Ord n) => Traced (Trace v n) | |||||
(Additive v, Num n) => Transformable (Trace v n) | |||||
Defined in Diagrams.Core.Trace | |||||
(Metric v, OrderedField n) => Alignable (Trace v n) | |||||
Defined in Diagrams.Align Methods alignBy' :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => (v0 n0 -> Trace v n -> Point v0 n0) -> v0 n0 -> n0 -> Trace v n -> Trace v n # defaultBoundary :: (V (Trace v n) ~ v0, N (Trace v n) ~ n0) => v0 n0 -> Trace v n -> Point v0 n0 # alignBy :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => v0 n0 -> n0 -> Trace v n -> Trace v n # | |||||
Wrapped (Trace v n) | |||||
Defined in Diagrams.Core.Trace Associated Types
| |||||
Rewrapped (Trace v n) (Trace v' n') | |||||
Defined in Diagrams.Core.Trace | |||||
type N (Trace v n) | |||||
Defined in Diagrams.Core.Trace | |||||
type V (Trace v n) | |||||
Defined in Diagrams.Core.Trace | |||||
type Unwrapped (Trace v n) | |||||
Defined in Diagrams.Core.Trace |
class (Additive (V a), Ord (N a)) => Traced a where #
Instances
Traced b => Traced (Set b) | |
Traced t => Traced (TransInv t) | |
(Traced a, Num (N a)) => Traced (Located a) | |
(Fractional n, Ord n) => Traced (Box n) | |
(RealFloat n, Ord n) => Traced (CSG n) | |
OrderedField n => Traced (Ellipsoid n) | |
(RealFloat n, Ord n) => Traced (Frustum n) | |
Traced b => Traced [b] | |
Traced b => Traced (Map k b) | |
(Additive v, Ord n) => Traced (Trace v n) | |
RealFloat n => Traced (BoundingBox V2 n) | |
Defined in Diagrams.BoundingBox Methods getTrace :: BoundingBox V2 n -> Trace (V (BoundingBox V2 n)) (N (BoundingBox V2 n)) # | |
TypeableFloat n => Traced (BoundingBox V3 n) | |
Defined in Diagrams.BoundingBox Methods getTrace :: BoundingBox V3 n -> Trace (V (BoundingBox V3 n)) (N (BoundingBox V3 n)) # | |
(Additive v, Ord n) => Traced (Point v n) | |
(Traced a, Traced b, SameSpace a b) => Traced (a, b) | |
(Metric v, OrderedField n, Semigroup m) => Traced (QDiagram b v n m) | |
(OrderedField n, Metric v, Semigroup m) => Traced (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods getTrace :: Subdiagram b v n m -> Trace (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) # |
type HasLinearMap (v :: Type -> Type) = (HasBasis v, Traversable v) #
Constructors
TransInv t |
Instances
Monoid t => Monoid (TransInv t) | |
Semigroup t => Semigroup (TransInv t) | |
Show t => Show (TransInv t) | |
Enveloped t => Enveloped (TransInv t) | |
Defined in Diagrams.Core.Envelope | |
HasOrigin (TransInv t) | |
Defined in Diagrams.Core.Transform | |
Qualifiable a => Qualifiable (TransInv a) | |
Traced t => Traced (TransInv t) | |
(Num (N t), Additive (V t), Transformable t) => Transformable (TransInv t) | |
Defined in Diagrams.Core.Transform | |
TrailLike t => TrailLike (TransInv t) | |
Eq t => Eq (TransInv t) | |
Ord t => Ord (TransInv t) | |
Defined in Diagrams.Core.Transform | |
Wrapped (TransInv t) | |
Rewrapped (TransInv t) (TransInv t') | |
Defined in Diagrams.Core.Transform | |
type N (TransInv t) | |
Defined in Diagrams.Core.Transform | |
type V (TransInv t) | |
Defined in Diagrams.Core.Transform | |
type Unwrapped (TransInv t) | |
Defined in Diagrams.Core.Transform |
data NullBackend #
Instances
Backend NullBackend v n | |||||||||||||
Defined in Diagrams.Core.Types Associated Types
Methods adjustDia :: (Additive v, Monoid' m, Num n) => NullBackend -> Options NullBackend v n -> QDiagram NullBackend v n m -> (Options NullBackend v n, Transformation v n, QDiagram NullBackend v n m) # renderRTree :: NullBackend -> Options NullBackend v n -> RTree NullBackend v n Annotation -> Result NullBackend v n # | |||||||||||||
Fractional n => Renderable (Box n) NullBackend | |||||||||||||
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Box n -> Render NullBackend (V (Box n)) (N (Box n)) # | |||||||||||||
Fractional n => Renderable (Ellipsoid n) NullBackend | |||||||||||||
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Ellipsoid n -> Render NullBackend (V (Ellipsoid n)) (N (Ellipsoid n)) # | |||||||||||||
Fractional n => Renderable (Frustum n) NullBackend | |||||||||||||
Defined in Diagrams.ThreeD.Shapes Methods render :: NullBackend -> Frustum n -> Render NullBackend (V (Frustum n)) (N (Frustum n)) # | |||||||||||||
Floating n => Renderable (Text n) NullBackend | |||||||||||||
Defined in Diagrams.TwoD.Text Methods render :: NullBackend -> Text n -> Render NullBackend (V (Text n)) (N (Text n)) # | |||||||||||||
(HasLinearMap v, Metric v, OrderedField n) => Renderable (Path v n) NullBackend | |||||||||||||
Defined in Diagrams.Path Methods render :: NullBackend -> Path v n -> Render NullBackend (V (Path v n)) (N (Path v n)) # | |||||||||||||
Num n => Renderable (Camera l n) NullBackend | |||||||||||||
Defined in Diagrams.ThreeD.Camera Methods render :: NullBackend -> Camera l n -> Render NullBackend (V (Camera l n)) (N (Camera l n)) # | |||||||||||||
Fractional n => Renderable (DImage n a) NullBackend | |||||||||||||
Defined in Diagrams.TwoD.Image Methods render :: NullBackend -> DImage n a -> Render NullBackend (V (DImage n a)) (N (DImage n a)) # | |||||||||||||
Monoid (Render NullBackend v n) | |||||||||||||
Defined in Diagrams.Core.Types Methods mempty :: Render NullBackend v n # mappend :: Render NullBackend v n -> Render NullBackend v n -> Render NullBackend v n # mconcat :: [Render NullBackend v n] -> Render NullBackend v n # | |||||||||||||
Semigroup (Render NullBackend v n) | |||||||||||||
Defined in Diagrams.Core.Types Methods (<>) :: Render NullBackend v n -> Render NullBackend v n -> Render NullBackend v n # sconcat :: NonEmpty (Render NullBackend v n) -> Render NullBackend v n # stimes :: Integral b => b -> Render NullBackend v n -> Render NullBackend v n # | |||||||||||||
Renderable (Segment c v n) NullBackend | |||||||||||||
Defined in Diagrams.Segment Methods render :: NullBackend -> Segment c v n -> Render NullBackend (V (Segment c v n)) (N (Segment c v n)) # | |||||||||||||
(HasLinearMap v, Metric v, OrderedField n) => Renderable (Trail' o v n) NullBackend | |||||||||||||
Defined in Diagrams.Trail Methods render :: NullBackend -> Trail' o v n -> Render NullBackend (V (Trail' o v n)) (N (Trail' o v n)) # | |||||||||||||
data Options NullBackend v n | |||||||||||||
Defined in Diagrams.Core.Types | |||||||||||||
data Render NullBackend v n | |||||||||||||
Defined in Diagrams.Core.Types | |||||||||||||
type Result NullBackend v n | |||||||||||||
Defined in Diagrams.Core.Types |
newtype SubMap b (v :: Type -> Type) n m #
Constructors
SubMap (Map Name [Subdiagram b v n m]) |
Instances
Action Name (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types | |||||
Functor (SubMap b v n) | |||||
Monoid (SubMap b v n m) | |||||
Semigroup (SubMap b v n m) | |||||
(OrderedField n, Metric v) => HasOrigin (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types | |||||
Qualifiable (SubMap b v n m) | |||||
Transformable (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types | |||||
Wrapped (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types Associated Types
| |||||
Rewrapped (SubMap b v n m) (SubMap b' v' n' m') | |||||
Defined in Diagrams.Core.Types | |||||
type N (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types | |||||
type V (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types | |||||
type Unwrapped (SubMap b v n m) | |||||
Defined in Diagrams.Core.Types |
data Subdiagram b (v :: Type -> Type) n m #
Constructors
Subdiagram (QDiagram b v n m) (DownAnnots v n) |
Instances
Functor (Subdiagram b v n) | |
Defined in Diagrams.Core.Types Methods fmap :: (a -> b0) -> Subdiagram b v n a -> Subdiagram b v n b0 # (<$) :: a -> Subdiagram b v n b0 -> Subdiagram b v n a # | |
(OrderedField n, Metric v, Monoid' m) => Enveloped (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods getEnvelope :: Subdiagram b v n m -> Envelope (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) # | |
(Metric v, OrderedField n) => HasOrigin (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods moveOriginTo :: Point (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m # | |
(OrderedField n, Metric v, Semigroup m) => Traced (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods getTrace :: Subdiagram b v n m -> Trace (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) # | |
Transformable (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types Methods transform :: Transformation (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m # | |
type N (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types | |
type V (Subdiagram b v n m) | |
Defined in Diagrams.Core.Types |
class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where #
Minimal complete definition
Nothing
Methods
ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m #
ifoldMap' :: Monoid m => (i -> a -> m) -> f a -> m #
ifoldr :: (i -> a -> b -> b) -> b -> f a -> b #
ifoldl :: (i -> b -> a -> b) -> b -> f a -> b #
Instances
FoldableWithIndex () Identity | |
Defined in WithIndex | |
FoldableWithIndex () Par1 | |
FoldableWithIndex () Maybe | |
FoldableWithIndex Int ZipList | |
Defined in WithIndex | |
FoldableWithIndex Int NonEmpty | |
Defined in WithIndex | |
FoldableWithIndex Int IntMap | |
Defined in WithIndex | |
FoldableWithIndex Int Seq | |
FoldableWithIndex Int [] | |
FoldableWithIndex Void (Proxy :: Type -> Type) | |
Defined in WithIndex | |
FoldableWithIndex Void (U1 :: Type -> Type) | |
FoldableWithIndex Void (V1 :: Type -> Type) | |
Ix i => FoldableWithIndex i (Array i) | |
Defined in WithIndex | |
FoldableWithIndex i (Level i) | |
Defined in Control.Lens.Internal.Level | |
FoldableWithIndex k (Map k) | |
FoldableWithIndex k ((,) k) | |
FoldableWithIndex Void (Const e :: Type -> Type) | |
Defined in WithIndex | |
FoldableWithIndex Void (Constant e :: Type -> Type) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => (Void -> a -> m) -> Constant e a -> m # ifoldMap' :: Monoid m => (Void -> a -> m) -> Constant e a -> m # ifoldr :: (Void -> a -> b -> b) -> b -> Constant e a -> b # ifoldl :: (Void -> b -> a -> b) -> b -> Constant e a -> b # ifoldr' :: (Void -> a -> b -> b) -> b -> Constant e a -> b # ifoldl' :: (Void -> b -> a -> b) -> b -> Constant e a -> b # | |
FoldableWithIndex Int (V n) | |
FoldableWithIndex i f => FoldableWithIndex i (Rec1 f) | |
FoldableWithIndex i f => FoldableWithIndex i (Backwards f) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => (i -> a -> m) -> Backwards f a -> m # ifoldMap' :: Monoid m => (i -> a -> m) -> Backwards f a -> m # ifoldr :: (i -> a -> b -> b) -> b -> Backwards f a -> b # ifoldl :: (i -> b -> a -> b) -> b -> Backwards f a -> b # | |
FoldableWithIndex i m => FoldableWithIndex i (IdentityT m) | |
Defined in WithIndex Methods ifoldMap :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 # ifoldMap' :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 # ifoldr :: (i -> a -> b -> b) -> b -> IdentityT m a -> b # ifoldl :: (i -> b -> a -> b) -> b -> IdentityT m a -> b # | |
FoldableWithIndex i f => FoldableWithIndex i (Reverse f) | |
Defined in WithIndex | |
FoldableWithIndex Void (K1 i c :: Type -> Type) | |
Defined in WithIndex | |
FoldableWithIndex i (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods ifoldMap :: Monoid m => (i -> a -> m) -> Magma i t b a -> m # ifoldMap' :: Monoid m => (i -> a -> m) -> Magma i t b a -> m # ifoldr :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # ifoldr' :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl' :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # | |
FoldableWithIndex (E Plucker) Plucker | |
Defined in Linear.Plucker Methods ifoldMap :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m # ifoldMap' :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m # ifoldr :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b # ifoldl :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b # ifoldr' :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b # ifoldl' :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b # | |
FoldableWithIndex (E Quaternion) Quaternion | |
Defined in Linear.Quaternion Methods ifoldMap :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m # ifoldMap' :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m # ifoldr :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b # ifoldl :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b # ifoldr' :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b # ifoldl' :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b # | |
FoldableWithIndex (E V0) V0 | |
FoldableWithIndex (E V1) V1 | |
FoldableWithIndex (E V2) V2 | |
FoldableWithIndex (E V3) V3 | |
FoldableWithIndex (E V4) V4 | |
FoldableWithIndex [Int] Tree | |
Defined in WithIndex | |
FoldableWithIndex i f => FoldableWithIndex [i] (Cofree f) | |
Defined in Control.Comonad.Cofree | |
FoldableWithIndex i f => FoldableWithIndex [i] (Free f) | |
Defined in Control.Monad.Free | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Sum f g) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :*: g) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :+: g) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m # ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m # ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b # ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (Compose f g) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m # ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m # ifoldr :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b # ifoldl :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b # ifoldr' :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b # ifoldl' :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b # | |
(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (f :.: g) | |
Defined in WithIndex Methods ifoldMap :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m # ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m # ifoldr :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b # ifoldl :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b # ifoldr' :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b # ifoldl' :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b # |
class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where #
Minimal complete definition
Nothing
Instances
FunctorWithIndex () Identity | |
FunctorWithIndex () Par1 | |
FunctorWithIndex () Maybe | |
FunctorWithIndex Int ZipList | |
FunctorWithIndex Int NonEmpty | |
FunctorWithIndex Int IntMap | |
FunctorWithIndex Int Seq | |
FunctorWithIndex Int [] | |
FunctorWithIndex Void (Proxy :: Type -> Type) | |
FunctorWithIndex Void (U1 :: Type -> Type) | |
FunctorWithIndex Void (V1 :: Type -> Type) | |
Ix i => FunctorWithIndex i (Array i) | |
FunctorWithIndex i (Level i) | |
Defined in Control.Lens.Internal.Level | |
FunctorWithIndex k (Map k) | |
FunctorWithIndex k ((,) k) | |
FunctorWithIndex Void (Const e :: Type -> Type) | |
FunctorWithIndex Void (Constant e :: Type -> Type) | |
FunctorWithIndex Int (V n) | |
FunctorWithIndex i f => FunctorWithIndex i (Rec1 f) | |
FunctorWithIndex i f => FunctorWithIndex i (Backwards f) | |
FunctorWithIndex i m => FunctorWithIndex i (IdentityT m) | |
FunctorWithIndex i f => FunctorWithIndex i (Reverse f) | |
FunctorWithIndex Void (K1 i c :: Type -> Type) | |
FunctorWithIndex i (Magma i t b) | |
Defined in Control.Lens.Internal.Magma | |
FunctorWithIndex r ((->) r) | |
FunctorWithIndex (E Plucker) Plucker | |
Defined in Linear.Plucker | |
FunctorWithIndex (E Quaternion) Quaternion | |
Defined in Linear.Quaternion | |
FunctorWithIndex (E V0) V0 | |
FunctorWithIndex (E V1) V1 | |
FunctorWithIndex (E V2) V2 | |
FunctorWithIndex (E V3) V3 | |
FunctorWithIndex (E V4) V4 | |
FunctorWithIndex [Int] Tree | |
FunctorWithIndex i f => FunctorWithIndex [i] (Cofree f) | |
Defined in Control.Comonad.Cofree | |
FunctorWithIndex i f => FunctorWithIndex [i] (Free f) | |
Defined in Control.Monad.Free | |
FunctorWithIndex i m => FunctorWithIndex (e, i) (ReaderT e m) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Product f g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Sum f g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :*: g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :+: g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (Compose f g) | |
(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (f :.: g) | |
class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where #
Minimal complete definition
Nothing
Methods
itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) #
Instances
TraversableWithIndex () Identity | |
TraversableWithIndex () Par1 | |
TraversableWithIndex () Maybe | |
TraversableWithIndex Int ZipList | |
TraversableWithIndex Int NonEmpty | |
TraversableWithIndex Int IntMap | |
TraversableWithIndex Int Seq | |
TraversableWithIndex Int [] | |
Defined in WithIndex Methods itraverse :: Applicative f => (Int -> a -> f b) -> [a] -> f [b] # | |
TraversableWithIndex Void (Proxy :: Type -> Type) | |
TraversableWithIndex Void (U1 :: Type -> Type) | |
TraversableWithIndex Void (V1 :: Type -> Type) | |
Ix i => TraversableWithIndex i (Array i) | |
TraversableWithIndex i (Level i) | |
Defined in Control.Lens.Internal.Level Methods itraverse :: Applicative f => (i -> a -> f b) -> Level i a -> f (Level i b) # | |
TraversableWithIndex k (Map k) | |
TraversableWithIndex k ((,) k) | |
Defined in WithIndex Methods itraverse :: Applicative f => (k -> a -> f b) -> (k, a) -> f (k, b) # | |
TraversableWithIndex Void (Const e :: Type -> Type) | |
TraversableWithIndex Void (Constant e :: Type -> Type) | |
TraversableWithIndex Int (V n) | |
Defined in Linear.V Methods itraverse :: Applicative f => (Int -> a -> f b) -> V n a -> f (V n b) # | |
TraversableWithIndex i f => TraversableWithIndex i (Rec1 f) | |
TraversableWithIndex i f => TraversableWithIndex i (Backwards f) | |
TraversableWithIndex i m => TraversableWithIndex i (IdentityT m) | |
TraversableWithIndex i f => TraversableWithIndex i (Reverse f) | |
TraversableWithIndex Void (K1 i c :: Type -> Type) | |
TraversableWithIndex i (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods itraverse :: Applicative f => (i -> a -> f b0) -> Magma i t b a -> f (Magma i t b b0) # | |
TraversableWithIndex (E Plucker) Plucker | |
Defined in Linear.Plucker Methods itraverse :: Applicative f => (E Plucker -> a -> f b) -> Plucker a -> f (Plucker b) # | |
TraversableWithIndex (E Quaternion) Quaternion | |
Defined in Linear.Quaternion Methods itraverse :: Applicative f => (E Quaternion -> a -> f b) -> Quaternion a -> f (Quaternion b) # | |
TraversableWithIndex (E V0) V0 | |
Defined in Linear.V0 Methods itraverse :: Applicative f => (E V0 -> a -> f b) -> V0 a -> f (V0 b) # | |
TraversableWithIndex (E V1) V1 | |
Defined in Linear.V1 Methods itraverse :: Applicative f => (E V1 -> a -> f b) -> V1 a -> f (V1 b) # | |
TraversableWithIndex (E V2) V2 | |
TraversableWithIndex (E V3) V3 | |
TraversableWithIndex (E V4) V4 | |
Defined in Linear.V4 Methods itraverse :: Applicative f => (E V4 -> a -> f b) -> V4 a -> f (V4 b) # | |
TraversableWithIndex [Int] Tree | |
TraversableWithIndex i f => TraversableWithIndex [i] (Cofree f) | |
Defined in Control.Comonad.Cofree Methods itraverse :: Applicative f0 => ([i] -> a -> f0 b) -> Cofree f a -> f0 (Cofree f b) # | |
TraversableWithIndex i f => TraversableWithIndex [i] (Free f) | |
Defined in Control.Monad.Free Methods itraverse :: Applicative f0 => ([i] -> a -> f0 b) -> Free f a -> f0 (Free f b) # | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Product f g) | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Sum f g) | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :*: g) | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :+: g) | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (Compose f g) | |
(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (f :.: g) | |
Minimal complete definition
at
Minimal complete definition
contains
Instances
type Index ByteString | |
Defined in Control.Lens.At | |
type Index ByteString | |
Defined in Control.Lens.At | |
type Index IntSet | |
Defined in Control.Lens.At | |
type Index Text | |
Defined in Control.Lens.At | |
type Index Text | |
Defined in Control.Lens.At | |
type Index (Complex a) | |
Defined in Control.Lens.At | |
type Index (Identity a) | |
Defined in Control.Lens.At | |
type Index (NonEmpty a) | |
Defined in Control.Lens.At | |
type Index (IntMap a) | |
Defined in Control.Lens.At | |
type Index (Seq a) | |
Defined in Control.Lens.At | |
type Index (Set a) | |
Defined in Control.Lens.At | |
type Index (Tree a) | |
Defined in Control.Lens.At | |
type Index (Plucker a) | |
Defined in Linear.Plucker | |
type Index (Quaternion a) | |
Defined in Linear.Quaternion | |
type Index (V0 a) | |
type Index (V1 a) | |
type Index (V2 a) | |
type Index (V3 a) | |
type Index (V4 a) | |
type Index (HashSet a) | |
Defined in Control.Lens.At type Index (HashSet a) = a | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type Index (Maybe a) | |
Defined in Control.Lens.At | |
type Index [a] | |
Defined in Control.Lens.At | |
type Index (UArray i e) | |
Defined in Control.Lens.At | |
type Index (Array i e) | |
Defined in Control.Lens.At | |
type Index (Map k a) | |
Defined in Control.Lens.At | |
type Index (Style v n) | |
Defined in Diagrams.Core.Style | |
type Index (Point f a) | |
Defined in Linear.Affine | |
type Index (HashMap k a) | |
Defined in Control.Lens.At type Index (HashMap k a) = k | |
type Index (a, b) | |
Defined in Control.Lens.At | |
type Index (e -> a) | |
Defined in Control.Lens.At type Index (e -> a) = e | |
type Index (V n a) | |
type Index (a, b, c) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f, g) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f, g, h) | |
Defined in Control.Lens.At | |
type Index (a, b, c, d, e, f, g, h, i) | |
Defined in Control.Lens.At |
Instances
type IxValue ByteString | |
Defined in Control.Lens.At | |
type IxValue ByteString | |
Defined in Control.Lens.At | |
type IxValue IntSet | |
Defined in Control.Lens.At | |
type IxValue Text | |
Defined in Control.Lens.At | |
type IxValue Text | |
Defined in Control.Lens.At | |
type IxValue (Identity a) | |
Defined in Control.Lens.At | |
type IxValue (NonEmpty a) | |
Defined in Control.Lens.At | |
type IxValue (IntMap a) | |
Defined in Control.Lens.At | |
type IxValue (Seq a) | |
Defined in Control.Lens.At | |
type IxValue (Set k) | |
Defined in Control.Lens.At | |
type IxValue (Tree a) | |
Defined in Control.Lens.At | |
type IxValue (Plucker a) | |
Defined in Linear.Plucker type IxValue (Plucker a) = a | |
type IxValue (Quaternion a) | |
Defined in Linear.Quaternion type IxValue (Quaternion a) = a | |
type IxValue (V0 a) | |
type IxValue (V1 a) | |
type IxValue (V2 a) | |
type IxValue (V3 a) | |
type IxValue (V4 a) | |
type IxValue (HashSet k) | |
Defined in Control.Lens.At type IxValue (HashSet k) = () | |
type IxValue (Vector a) | |
Defined in Control.Lens.At type IxValue (Vector a) = a | |
type IxValue (Vector a) | |
Defined in Control.Lens.At type IxValue (Vector a) = a | |
type IxValue (Vector a) | |
Defined in Control.Lens.At type IxValue (Vector a) = a | |
type IxValue (Vector a) | |
Defined in Control.Lens.At type IxValue (Vector a) = a | |
type IxValue (Vector a) | |
Defined in Control.Lens.At | |
type IxValue (Maybe a) | |
Defined in Control.Lens.At | |
type IxValue [a] | |
Defined in Control.Lens.At type IxValue [a] = a | |
type IxValue (UArray i e) | |
Defined in Control.Lens.At | |
type IxValue (Array i e) | |
Defined in Control.Lens.At | |
type IxValue (Map k a) | |
Defined in Control.Lens.At | |
type IxValue (Style v n) | |
Defined in Diagrams.Core.Style | |
type IxValue (Point f a) | |
Defined in Linear.Affine | |
type IxValue (HashMap k a) | |
Defined in Control.Lens.At type IxValue (HashMap k a) = a | |
type IxValue (a, a2) | |
Defined in Control.Lens.At type IxValue (a, a2) = a | |
type IxValue (e -> a) | |
Defined in Control.Lens.At type IxValue (e -> a) = a | |
type IxValue (V n a) | |
type IxValue (a, a2, a3) | |
Defined in Control.Lens.At type IxValue (a, a2, a3) = a | |
type IxValue (a, a2, a3, a4) | |
Defined in Control.Lens.At type IxValue (a, a2, a3, a4) = a | |
type IxValue (a, a2, a3, a4, a5) | |
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5) = a | |
type IxValue (a, a2, a3, a4, a5, a6) | |
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6) = a | |
type IxValue (a, a2, a3, a4, a5, a6, a7) | |
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6, a7) = a | |
type IxValue (a, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6, a7, a8) = a | |
type IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.Lens.At type IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9) = a |
Minimal complete definition
Nothing
Methods
ix :: Index m -> Traversal' m (IxValue m) #
Instances
Ixed ByteString | |
Defined in Control.Lens.At Methods ix :: Index ByteString -> Traversal' ByteString (IxValue ByteString) # | |
Ixed ByteString | |
Defined in Control.Lens.At Methods ix :: Index ByteString -> Traversal' ByteString (IxValue ByteString) # | |
Ixed IntSet | |
Defined in Control.Lens.At | |
Ixed Text | |
Defined in Control.Lens.At | |
Ixed Text | |
Defined in Control.Lens.At | |
Ixed (Identity a) | |
Defined in Control.Lens.At | |
Ixed (NonEmpty a) | |
Defined in Control.Lens.At | |
Ixed (IntMap a) | |
Defined in Control.Lens.At | |
Ixed (Seq a) | |
Defined in Control.Lens.At | |
Ord k => Ixed (Set k) | |
Defined in Control.Lens.At | |
Ixed (Tree a) | |
Defined in Control.Lens.At | |
Ixed (Plucker a) | |
Defined in Linear.Plucker Methods ix :: Index (Plucker a) -> Traversal' (Plucker a) (IxValue (Plucker a)) # | |
Ixed (Quaternion a) | |
Defined in Linear.Quaternion Methods ix :: Index (Quaternion a) -> Traversal' (Quaternion a) (IxValue (Quaternion a)) # | |
Ixed (V0 a) | |
Ixed (V1 a) | |
Ixed (V2 a) | |
Ixed (V3 a) | |
Ixed (V4 a) | |
(Eq k, Hashable k) => Ixed (HashSet k) | |
Defined in Control.Lens.At Methods ix :: Index (HashSet k) -> Traversal' (HashSet k) (IxValue (HashSet k)) # | |
Ixed (Vector a) | |
Defined in Control.Lens.At Methods ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) # | |
Prim a => Ixed (Vector a) | |
Defined in Control.Lens.At Methods ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) # | |
Storable a => Ixed (Vector a) | |
Defined in Control.Lens.At Methods ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) # | |
Ixed (Vector a) | |
Defined in Control.Lens.At Methods ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) # | |
Unbox a => Ixed (Vector a) | |
Defined in Control.Lens.At | |
Ixed (Maybe a) | |
Defined in Control.Lens.At | |
Ixed [a] | |
Defined in Control.Lens.At Methods ix :: Index [a] -> Traversal' [a] (IxValue [a]) # | |
(IArray UArray e, Ix i) => Ixed (UArray i e) | |
Defined in Control.Lens.At | |
Ix i => Ixed (Array i e) | |
Defined in Control.Lens.At | |
Ord k => Ixed (Map k a) | |
Defined in Control.Lens.At | |
Ixed (Style v n) | |
Defined in Diagrams.Core.Style | |
Ixed (f a) => Ixed (Point f a) | |
Defined in Linear.Affine | |
(Eq k, Hashable k) => Ixed (HashMap k a) | |
Defined in Control.Lens.At Methods ix :: Index (HashMap k a) -> Traversal' (HashMap k a) (IxValue (HashMap k a)) # | |
a ~ a2 => Ixed (a, a2) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2) -> Traversal' (a, a2) (IxValue (a, a2)) # | |
Eq e => Ixed (e -> a) | |
Defined in Control.Lens.At Methods ix :: Index (e -> a) -> Traversal' (e -> a) (IxValue (e -> a)) # | |
Ixed (V n a) | |
(a ~ a2, a ~ a3) => Ixed (a, a2, a3) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3) -> Traversal' (a, a2, a3) (IxValue (a, a2, a3)) # | |
(a ~ a2, a ~ a3, a ~ a4) => Ixed (a, a2, a3, a4) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4) -> Traversal' (a, a2, a3, a4) (IxValue (a, a2, a3, a4)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5) => Ixed (a, a2, a3, a4, a5) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5) -> Traversal' (a, a2, a3, a4, a5) (IxValue (a, a2, a3, a4, a5)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6) => Ixed (a, a2, a3, a4, a5, a6) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6) -> Traversal' (a, a2, a3, a4, a5, a6) (IxValue (a, a2, a3, a4, a5, a6)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7) => Ixed (a, a2, a3, a4, a5, a6, a7) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6, a7) -> Traversal' (a, a2, a3, a4, a5, a6, a7) (IxValue (a, a2, a3, a4, a5, a6, a7)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8) => Ixed (a, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6, a7, a8) -> Traversal' (a, a2, a3, a4, a5, a6, a7, a8) (IxValue (a, a2, a3, a4, a5, a6, a7, a8)) # | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, a ~ a9) => Ixed (a, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.Lens.At Methods ix :: Index (a, a2, a3, a4, a5, a6, a7, a8, a9) -> Traversal' (a, a2, a3, a4, a5, a6, a7, a8, a9) (IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9)) # |
class Cons s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Instances
Cons ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Cons :: Prism ByteString ByteString (Word8, ByteString) (Word8, ByteString) # | |
Cons ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Cons :: Prism ByteString ByteString (Word8, ByteString) (Word8, ByteString) # | |
Cons Text Text Char Char | |
Cons Text Text Char Char | |
Cons (ZipList a) (ZipList b) a b | |
Cons (Seq a) (Seq b) a b | |
Cons (Vector a) (Vector b) a b | |
Defined in Control.Lens.Cons | |
(Prim a, Prim b) => Cons (Vector a) (Vector b) a b | |
Defined in Control.Lens.Cons | |
(Storable a, Storable b) => Cons (Vector a) (Vector b) a b | |
Defined in Control.Lens.Cons | |
Cons (Vector a) (Vector b) a b | |
Defined in Control.Lens.Cons | |
(Unbox a, Unbox b) => Cons (Vector a) (Vector b) a b | |
Cons [a] [b] a b | |
Defined in Control.Lens.Cons | |
Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
class Snoc s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Instances
Snoc ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Snoc :: Prism ByteString ByteString (ByteString, Word8) (ByteString, Word8) # | |
Snoc ByteString ByteString Word8 Word8 | |
Defined in Control.Lens.Cons Methods _Snoc :: Prism ByteString ByteString (ByteString, Word8) (ByteString, Word8) # | |
Snoc Text Text Char Char | |
Snoc Text Text Char Char | |
Snoc (ZipList a) (ZipList b) a b | |
Snoc (Seq a) (Seq b) a b | |
Snoc (Vector a) (Vector b) a b | |
Defined in Control.Lens.Cons | |
(Prim a, Prim b) => Snoc (Vector a) (Vector b) a b | |
Defined in Control.Lens.Cons | |
(Storable a, Storable b) => Snoc (Vector a) (Vector b) a b | |
Defined in Control.Lens.Cons | |
(Unbox a, Unbox b) => Snoc (Vector a) (Vector b) a b | |
Snoc [a] [b] a b | |
Defined in Control.Lens.Cons | |
Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') | |
(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') | |
class Each s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
(a ~ Word8, b ~ Word8) => Each ByteString ByteString a b | |
Defined in Control.Lens.Each Methods each :: Traversal ByteString ByteString a b # | |
(a ~ Word8, b ~ Word8) => Each ByteString ByteString a b | |
Defined in Control.Lens.Each Methods each :: Traversal ByteString ByteString a b # | |
Each Name Name AName AName | |
(a ~ Char, b ~ Char) => Each Text Text a b | |
(a ~ Char, b ~ Char) => Each Text Text a b | |
Each (Complex a) (Complex b) a b | |
Each (Identity a) (Identity b) a b | |
Each (NonEmpty a) (NonEmpty b) a b | |
Each (IntMap a) (IntMap b) a b | |
Each (Seq a) (Seq b) a b | |
Each (Tree a) (Tree b) a b | |
Each (Plucker a) (Plucker b) a b | |
Defined in Linear.Plucker | |
Each (Quaternion a) (Quaternion b) a b | |
Defined in Linear.Quaternion | |
Each (V0 a) (V0 b) a b | |
Each (V1 a) (V1 b) a b | |
Each (V2 a) (V2 b) a b | |
Each (V3 a) (V3 b) a b | |
Each (V4 a) (V4 b) a b | |
Each (Maybe a) (Maybe b) a b | |
Defined in Control.Lens.Each | |
Each (Vector a) (Vector b) a b | |
Defined in Control.Lens.Each | |
(Prim a, Prim b) => Each (Vector a) (Vector b) a b | |
Defined in Control.Lens.Each | |
(Storable a, Storable b) => Each (Vector a) (Vector b) a b | |
Defined in Control.Lens.Each | |
Each (Vector a) (Vector b) a b | |
Defined in Control.Lens.Each | |
(Unbox a, Unbox b) => Each (Vector a) (Vector b) a b | |
Each (Maybe a) (Maybe b) a b | |
Each [a] [b] a b | |
Defined in Control.Lens.Each | |
(Ix i, IArray UArray a, IArray UArray b, i ~ j) => Each (UArray i a) (UArray j b) a b | |
(a ~ a', b ~ b') => Each (Either a a') (Either b b') a b | |
(Ix i, i ~ j) => Each (Array i a) (Array j b) a b | |
c ~ d => Each (Map c a) (Map d b) a b | |
Traversable f => Each (Point f a) (Point f b) a b | |
(a ~ a', b ~ b') => Each (Either a a') (Either b b') a b | |
Defined in Control.Lens.Each | |
(a ~ a', b ~ b') => Each (These a a') (These b b') a b | |
Defined in Control.Lens.Each | |
(a ~ a', b ~ b') => Each (Pair a a') (Pair b b') a b | |
Defined in Control.Lens.Each | |
(a ~ a', b ~ b') => Each (These a a') (These b b') a b | |
Defined in Control.Lens.Each | |
c ~ d => Each (HashMap c a) (HashMap d b) a b | |
Defined in Control.Lens.Each | |
(a ~ a', b ~ b') => Each (a, a') (b, b') a b | |
Defined in Control.Lens.Each | |
Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) | |
Each (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') | |
(Additive v', Foldable v', Ord n') => Each (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') | |
Defined in Diagrams.BoundingBox Methods each :: Traversal (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') # | |
Each (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') | |
Defined in Diagrams.Segment Methods each :: Traversal (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') # | |
Each (V n a) (V n b) a b | |
(a ~ a2, a ~ a3, b ~ b2, b ~ b3) => Each (a, a2, a3) (b, b2, b3) a b | |
Defined in Control.Lens.Each | |
Each (Offset c v n) (Offset c v' n') (v n) (v' n') | |
Each (Segment c v n) (Segment c v' n') (v n) (v' n') | |
(a ~ a2, a ~ a3, a ~ a4, b ~ b2, b ~ b3, b ~ b4) => Each (a, a2, a3, a4) (b, b2, b3, b4) a b | |
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, b ~ b2, b ~ b3, b ~ b4, b ~ b5) => Each (a, a2, a3, a4, a5) (b, b2, b3, b4, b5) a b | |
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6) => Each (a, a2, a3, a4, a5, a6) (b, b2, b3, b4, b5, b6) a b | |
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7) => Each (a, a2, a3, a4, a5, a6, a7) (b, b2, b3, b4, b5, b6, b7) a b | |
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7, b ~ b8) => Each (a, a2, a3, a4, a5, a6, a7, a8) (b, b2, b3, b4, b5, b6, b7, b8) a b | |
Defined in Control.Lens.Each | |
(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, a ~ a9, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7, b ~ b8, b ~ b9) => Each (a, a2, a3, a4, a5, a6, a7, a8, a9) (b, b2, b3, b4, b5, b6, b7, b8, b9) a b | |
Defined in Control.Lens.Each |
Minimal complete definition
Nothing
Instances
AsEmpty All | |
Defined in Control.Lens.Empty | |
AsEmpty Any | |
Defined in Control.Lens.Empty | |
AsEmpty Event | |
Defined in Control.Lens.Empty | |
AsEmpty ByteString | |
Defined in Control.Lens.Empty Methods _Empty :: Prism' ByteString () # | |
AsEmpty ByteString | |
Defined in Control.Lens.Empty Methods _Empty :: Prism' ByteString () # | |
AsEmpty IntSet | |
Defined in Control.Lens.Empty | |
AsEmpty Ordering | |
Defined in Control.Lens.Empty | |
AsEmpty Text | |
Defined in Control.Lens.Empty | |
AsEmpty Text | |
Defined in Control.Lens.Empty | |
AsEmpty () | |
Defined in Control.Lens.Empty | |
AsEmpty (ZipList a) | |
Defined in Control.Lens.Empty | |
AsEmpty (First a) | |
Defined in Control.Lens.Empty | |
AsEmpty (Last a) | |
Defined in Control.Lens.Empty | |
AsEmpty a => AsEmpty (Dual a) | |
Defined in Control.Lens.Empty | |
(Eq a, Num a) => AsEmpty (Product a) | |
Defined in Control.Lens.Empty | |
(Eq a, Num a) => AsEmpty (Sum a) | |
Defined in Control.Lens.Empty | |
AsEmpty (IntMap a) | |
Defined in Control.Lens.Empty | |
AsEmpty (Seq a) | |
Defined in Control.Lens.Empty | |
AsEmpty (Set a) | |
Defined in Control.Lens.Empty | |
AsEmpty (Clip n) | |
Defined in Diagrams.TwoD.Path | |
AsEmpty (HashSet a) | |
Defined in Control.Lens.Empty | |
AsEmpty (Vector a) | |
Defined in Control.Lens.Empty | |
Prim a => AsEmpty (Vector a) | |
Defined in Control.Lens.Empty | |
Storable a => AsEmpty (Vector a) | |
Defined in Control.Lens.Empty | |
AsEmpty (Vector a) | |
Defined in Control.Lens.Empty | |
Unbox a => AsEmpty (Vector a) | |
Defined in Control.Lens.Empty | |
AsEmpty (Maybe a) | |
Defined in Control.Lens.Empty | |
AsEmpty [a] | |
Defined in Control.Lens.Empty | |
AsEmpty (Map k a) | |
Defined in Control.Lens.Empty | |
AsEmpty (BoundingBox v n) | |
Defined in Diagrams.BoundingBox Methods _Empty :: Prism' (BoundingBox v n) () # | |
AsEmpty (Path v n) | |
Defined in Diagrams.Path | |
(Metric v, OrderedField n) => AsEmpty (Trail v n) | |
Defined in Diagrams.Trail | |
AsEmpty (HashMap k a) | |
Defined in Control.Lens.Empty | |
(AsEmpty a, AsEmpty b) => AsEmpty (a, b) | |
Defined in Control.Lens.Empty | |
(Metric v, OrderedField n) => AsEmpty (Trail' Line v n) | |
(AsEmpty a, AsEmpty b, AsEmpty c) => AsEmpty (a, b, c) | |
Defined in Control.Lens.Empty |
type AnEquality (s :: k) (t :: k1) (a :: k) (b :: k2) = Identical a (Proxy b) a (Proxy b) -> Identical a (Proxy b) s (Proxy t) #
type AnEquality' (s :: k) (a :: k) = AnEquality s s a a #
type IndexedGetting i m s a = Indexed i a (Const m a) -> s -> Const m s #
newtype Bazaar (p :: Type -> Type -> Type) a b t #
Constructors
Bazaar | |
Fields
|
Instances
Profunctor p => Bizarre p (Bazaar p) | |
Defined in Control.Lens.Internal.Bazaar Methods bazaar :: Applicative f => p a (f b) -> Bazaar p a b t -> f t | |
Corepresentable p => Sellable p (Bazaar p) | |
Defined in Control.Lens.Internal.Bazaar | |
Conjoined p => IndexedComonad (Bazaar p) | |
IndexedFunctor (Bazaar p) | |
Defined in Control.Lens.Internal.Bazaar | |
Applicative (Bazaar p a b) | |
Defined in Control.Lens.Internal.Bazaar Methods pure :: a0 -> Bazaar p a b a0 # (<*>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0 # liftA2 :: (a0 -> b0 -> c) -> Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b c # (*>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0 # (<*) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0 # | |
Functor (Bazaar p a b) | |
(a ~ b, Conjoined p) => Comonad (Bazaar p a b) | |
(a ~ b, Conjoined p) => ComonadApply (Bazaar p a b) | |
Apply (Bazaar p a b) | |
Defined in Control.Lens.Internal.Bazaar |
newtype Bazaar1 (p :: Type -> Type -> Type) a b t #
Constructors
Bazaar1 | |
Fields
|
Instances
Profunctor p => Bizarre1 p (Bazaar1 p) | |
Defined in Control.Lens.Internal.Bazaar | |
Corepresentable p => Sellable p (Bazaar1 p) | |
Defined in Control.Lens.Internal.Bazaar | |
Conjoined p => IndexedComonad (Bazaar1 p) | |
IndexedFunctor (Bazaar1 p) | |
Defined in Control.Lens.Internal.Bazaar | |
Functor (Bazaar1 p a b) | |
(a ~ b, Conjoined p) => Comonad (Bazaar1 p a b) | |
(a ~ b, Conjoined p) => ComonadApply (Bazaar1 p a b) | |
Apply (Bazaar1 p a b) | |
Defined in Control.Lens.Internal.Bazaar |
Constructors
Context (b -> t) a |
Instances
IndexedComonad Context | |
IndexedComonadStore Context | |
IndexedFunctor Context | |
Defined in Control.Lens.Internal.Context | |
a ~ b => ComonadStore a (Context a b) | |
Defined in Control.Lens.Internal.Context | |
Functor (Context a b) | |
a ~ b => Comonad (Context a b) | |
Sellable (->) Context | |
Defined in Control.Lens.Internal.Context |
Constructors
TopName Name | |
MethodName Name Name |
data Traversed a (f :: Type -> Type) #
Instances
Applicative f => Monoid (Traversed a f) | |
Applicative f => Semigroup (Traversed a f) | |
class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p, Closed p) => Conjoined (p :: Type -> Type -> Type) where #
Minimal complete definition
Nothing
Methods
distrib :: Functor f => p a b -> p (f a) (f b) #
conjoined :: (p ~ (->) => q (a -> b) r) -> q (p a b) r -> q (p a b) r #
Instances
Conjoined ReifiedGetter | |
Defined in Control.Lens.Reified Methods distrib :: Functor f => ReifiedGetter a b -> ReifiedGetter (f a) (f b) # conjoined :: (ReifiedGetter ~ (->) => q (a -> b) r) -> q (ReifiedGetter a b) r -> q (ReifiedGetter a b) r # | |
Conjoined (Indexed i) | |
Conjoined (->) | |
class Conjoined p => Indexable i (p :: Type -> Type -> Type) #
Minimal complete definition
indexed
Instances
i ~ j => Indexable i (Indexed j) | |
Defined in Control.Lens.Internal.Indexed | |
Indexable i (->) | |
Defined in Control.Lens.Internal.Indexed Methods indexed :: (a -> b) -> i -> a -> b |
Constructors
Indexed | |
Fields
|
Instances
Category (Indexed i :: Type -> Type -> Type) | |||||
i ~ j => Indexable i (Indexed j) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
Arrow (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
ArrowApply (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
ArrowChoice (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
ArrowLoop (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
Conjoined (Indexed i) | |||||
Choice (Indexed i) | |||||
Closed (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
Corepresentable (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed Associated Types
Methods cotabulate :: (Corep (Indexed i) d -> c) -> Indexed i d c | |||||
Representable (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed Associated Types
| |||||
Costrong (Indexed i) | |||||
Strong (Indexed i) | |||||
Profunctor (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed Methods dimap :: (a -> b) -> (c -> d) -> Indexed i b c -> Indexed i a d # lmap :: (a -> b) -> Indexed i b c -> Indexed i a c # rmap :: (b -> c) -> Indexed i a b -> Indexed i a c # (#.) :: forall a b c q. Coercible c b => q b c -> Indexed i a b -> Indexed i a c (.#) :: forall a b c q. Coercible b a => Indexed i b c -> q a b -> Indexed i a c | |||||
Bizarre (Indexed Int) Mafic | |||||
Defined in Control.Lens.Internal.Magma Methods bazaar :: Applicative f => Indexed Int a (f b) -> Mafic a b t -> f t | |||||
Bizarre (Indexed i) (Molten i) | |||||
Defined in Control.Lens.Internal.Magma Methods bazaar :: Applicative f => Indexed i a (f b) -> Molten i a b t -> f t | |||||
Sellable (Indexed i) (Molten i) | |||||
Defined in Control.Lens.Internal.Magma | |||||
Cosieve (Indexed i) ((,) i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
Sieve (Indexed i) ((->) i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
MonadFix (Indexed i a) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
Applicative (Indexed i a) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
Functor (Indexed i a) | |||||
Monad (Indexed i a) | |||||
Apply (Indexed i a) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
Bind (Indexed i a) | |||||
type Corep (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed | |||||
type Rep (Indexed i) | |||||
Defined in Control.Lens.Internal.Indexed type Rep (Indexed i) = (->) i |
Instances
Reversing ByteString | |
Defined in Control.Lens.Internal.Iso Methods reversing :: ByteString -> ByteString # | |
Reversing ByteString | |
Defined in Control.Lens.Internal.Iso Methods reversing :: ByteString -> ByteString # | |
Reversing Text | |
Defined in Control.Lens.Internal.Iso | |
Reversing Text | |
Defined in Control.Lens.Internal.Iso | |
Reversing (NonEmpty a) | |
Defined in Control.Lens.Internal.Iso | |
Reversing (Seq a) | |
Defined in Control.Lens.Internal.Iso | |
(Metric v, OrderedField n) => Reversing (Located (Trail v n)) | |
(Metric v, OrderedField n) => Reversing (Located (Trail' l v n)) | |
Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Prim a => Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Storable a => Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Unbox a => Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Reversing [a] | |
Defined in Control.Lens.Internal.Iso | |
(Metric v, OrderedField n) => Reversing (Path v n) | |
Defined in Diagrams.Path | |
Reversing (FixedSegment v n) | |
Defined in Diagrams.Segment Methods reversing :: FixedSegment v n -> FixedSegment v n # | |
(Metric v, OrderedField n) => Reversing (Trail v n) | |
Defined in Diagrams.Trail | |
(Additive v, Num n) => Reversing (Offset c v n) | |
Defined in Diagrams.Segment | |
(Additive v, Num n) => Reversing (Segment Closed v n) | |
(Metric v, OrderedField n) => Reversing (Trail' l v n) | |
Defined in Diagrams.Trail |
Instances
FoldableWithIndex i (Level i) | |
Defined in Control.Lens.Internal.Level | |
FunctorWithIndex i (Level i) | |
Defined in Control.Lens.Internal.Level | |
TraversableWithIndex i (Level i) | |
Defined in Control.Lens.Internal.Level Methods itraverse :: Applicative f => (i -> a -> f b) -> Level i a -> f (Level i b) # | |
Foldable (Level i) | |
Defined in Control.Lens.Internal.Level Methods fold :: Monoid m => Level i m -> m # foldMap :: Monoid m => (a -> m) -> Level i a -> m # foldMap' :: Monoid m => (a -> m) -> Level i a -> m # foldr :: (a -> b -> b) -> b -> Level i a -> b # foldr' :: (a -> b -> b) -> b -> Level i a -> b # foldl :: (b -> a -> b) -> b -> Level i a -> b # foldl' :: (b -> a -> b) -> b -> Level i a -> b # foldr1 :: (a -> a -> a) -> Level i a -> a # foldl1 :: (a -> a -> a) -> Level i a -> a # elem :: Eq a => a -> Level i a -> Bool # maximum :: Ord a => Level i a -> a # minimum :: Ord a => Level i a -> a # | |
Traversable (Level i) | |
Functor (Level i) | |
(Read i, Read a) => Read (Level i a) | |
(Show i, Show a) => Show (Level i a) | |
(Eq i, Eq a) => Eq (Level i a) | |
(Ord i, Ord a) => Ord (Level i a) | |
Instances
FoldableWithIndex i (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods ifoldMap :: Monoid m => (i -> a -> m) -> Magma i t b a -> m # ifoldMap' :: Monoid m => (i -> a -> m) -> Magma i t b a -> m # ifoldr :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # ifoldr' :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # ifoldl' :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # | |
FunctorWithIndex i (Magma i t b) | |
Defined in Control.Lens.Internal.Magma | |
TraversableWithIndex i (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods itraverse :: Applicative f => (i -> a -> f b0) -> Magma i t b a -> f (Magma i t b b0) # | |
Foldable (Magma i t b) | |
Defined in Control.Lens.Internal.Magma Methods fold :: Monoid m => Magma i t b m -> m # foldMap :: Monoid m => (a -> m) -> Magma i t b a -> m # foldMap' :: Monoid m => (a -> m) -> Magma i t b a -> m # foldr :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldr' :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 # foldl :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldl' :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 # foldr1 :: (a -> a -> a) -> Magma i t b a -> a # foldl1 :: (a -> a -> a) -> Magma i t b a -> a # toList :: Magma i t b a -> [a] # null :: Magma i t b a -> Bool # length :: Magma i t b a -> Int # elem :: Eq a => a -> Magma i t b a -> Bool # maximum :: Ord a => Magma i t b a -> a # minimum :: Ord a => Magma i t b a -> a # | |
Traversable (Magma i t b) | |
Defined in Control.Lens.Internal.Magma | |
Functor (Magma i t b) | |
(Show i, Show a) => Show (Magma i t b a) | |
class (Profunctor p, Bifunctor p) => Reviewable (p :: Type -> Type -> Type) #
Instances
(Profunctor p, Bifunctor p) => Reviewable p | |
Defined in Control.Lens.Internal.Review |
class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type) #
Minimal complete definition
untainted
Instances
Settable Identity | |
Defined in Control.Lens.Internal.Setter Methods untaintedDot :: Profunctor p => p a (Identity b) -> p a b taintedDot :: Profunctor p => p a b -> p a (Identity b) | |
Settable f => Settable (Backwards f) | |
Defined in Control.Lens.Internal.Setter Methods untainted :: Backwards f a -> a untaintedDot :: Profunctor p => p a (Backwards f b) -> p a b taintedDot :: Profunctor p => p a b -> p a (Backwards f b) | |
(Settable f, Settable g) => Settable (Compose f g) | |
Defined in Control.Lens.Internal.Setter Methods untainted :: Compose f g a -> a untaintedDot :: Profunctor p => p a (Compose f g b) -> p a b taintedDot :: Profunctor p => p a b -> p a (Compose f g b) |
type AnIndexedLens i s t a b = Optical (Indexed i) (->) (Pretext (Indexed i) a b) s t a b #
type AnIndexedLens' i s a = AnIndexedLens i s s a a #
class GPlated a (g :: k -> Type) #
Minimal complete definition
gplate'
Instances
GPlated a (U1 :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' (U1 p) a | |
GPlated a (V1 :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' (V1 p) a | |
GPlated a (URec b :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' (URec b p) a | |
(GPlated a f, GPlated a g) => GPlated a (f :*: g :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' ((f :*: g) p) a | |
(GPlated a f, GPlated a g) => GPlated a (f :+: g :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' ((f :+: g) p) a | |
GPlated a (K1 i a :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' (K1 i a p) a | |
GPlated a (K1 i b :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' (K1 i b p) a | |
GPlated a f => GPlated a (M1 i c f :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate' :: forall (p :: k). Traversal' (M1 i c f p) a |
class GPlated1 (f :: k -> Type) (g :: k -> Type) #
Minimal complete definition
gplate1'
Instances
GPlated1 (f :: Type -> Type) Par1 | |
Defined in Control.Lens.Plated Methods gplate1' :: Traversal' (Par1 a) (f a) | |
GPlated1 (f :: k -> Type) (U1 :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k). Traversal' (U1 a) (f a) | |
GPlated1 (f :: k -> Type) (V1 :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k). Traversal' (V1 a) (f a) | |
GPlated1 (f :: k -> Type) (Rec1 f :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k). Traversal' (Rec1 f a) (f a) | |
GPlated1 (f :: k -> Type) (Rec1 g :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k). Traversal' (Rec1 g a) (f a) | |
GPlated1 (f :: k -> Type) (URec a :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a0 :: k). Traversal' (URec a a0) (f a0) | |
(GPlated1 f g, GPlated1 f h) => GPlated1 (f :: k -> Type) (g :*: h :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k). Traversal' ((g :*: h) a) (f a) | |
(GPlated1 f g, GPlated1 f h) => GPlated1 (f :: k -> Type) (g :+: h :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k). Traversal' ((g :+: h) a) (f a) | |
GPlated1 (f :: k -> Type) (K1 i a :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a0 :: k). Traversal' (K1 i a a0) (f a0) | |
GPlated1 f g => GPlated1 (f :: k -> Type) (M1 i c g :: k -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k). Traversal' (M1 i c g a) (f a) | |
(Traversable t, GPlated1 f g) => GPlated1 (f :: k1 -> Type) (t :.: g :: k1 -> Type) | |
Defined in Control.Lens.Plated Methods gplate1' :: forall (a :: k1). Traversal' ((t :.: g) a) (f a) |
Minimal complete definition
Nothing
Methods
plate :: Traversal' a a #
Instances
Plated Con | |
Defined in Control.Lens.Plated Methods plate :: Traversal' Con Con # | |
Plated Dec | |
Defined in Control.Lens.Plated Methods plate :: Traversal' Dec Dec # | |
Plated Exp | |
Defined in Control.Lens.Plated Methods plate :: Traversal' Exp Exp # | |
Plated Pat | |
Defined in Control.Lens.Plated Methods plate :: Traversal' Pat Pat # | |
Plated Stmt | |
Defined in Control.Lens.Plated Methods plate :: Traversal' Stmt Stmt # | |
Plated Type | |
Defined in Control.Lens.Plated Methods plate :: Traversal' Type Type # | |
Plated (Tree a) | |
Defined in Control.Lens.Plated Methods plate :: Traversal' (Tree a) (Tree a) # | |
Plated [a] | |
Defined in Control.Lens.Plated Methods plate :: Traversal' [a] [a] # | |
Traversable f => Plated (Cofree f a) | |
Defined in Control.Lens.Plated Methods plate :: Traversal' (Cofree f a) (Cofree f a) # | |
Traversable f => Plated (Free f a) | |
Defined in Control.Lens.Plated Methods plate :: Traversal' (Free f a) (Free f a) # | |
Traversable f => Plated (F f a) | |
Defined in Control.Lens.Plated Methods plate :: Traversal' (F f a) (F f a) # | |
(Traversable f, Traversable w) => Plated (CofreeT f w a) | |
Defined in Control.Lens.Plated Methods plate :: Traversal' (CofreeT f w a) (CofreeT f w a) # | |
(Traversable f, Traversable m) => Plated (FreeT f m a) | |
Defined in Control.Lens.Plated Methods plate :: Traversal' (FreeT f m a) (FreeT f m a) # |
Instances
Prefixed ByteString | |
Defined in Control.Lens.Prism Methods | |
Prefixed ByteString | |
Defined in Control.Lens.Prism Methods | |
Prefixed Text | |
Prefixed Text | |
Eq a => Prefixed [a] | |
Defined in Control.Lens.Prism |
Instances
Suffixed ByteString | |
Defined in Control.Lens.Prism Methods | |
Suffixed ByteString | |
Defined in Control.Lens.Prism Methods | |
Suffixed Text | |
Suffixed Text | |
Eq a => Suffixed [a] | |
Defined in Control.Lens.Prism |
newtype ReifiedFold s a #
Instances
Arrow ReifiedFold | |||||
Defined in Control.Lens.Reified Methods arr :: (b -> c) -> ReifiedFold b c # first :: ReifiedFold b c -> ReifiedFold (b, d) (c, d) # second :: ReifiedFold b c -> ReifiedFold (d, b) (d, c) # (***) :: ReifiedFold b c -> ReifiedFold b' c' -> ReifiedFold (b, b') (c, c') # (&&&) :: ReifiedFold b c -> ReifiedFold b c' -> ReifiedFold b (c, c') # | |||||
ArrowApply ReifiedFold | |||||
Defined in Control.Lens.Reified Methods app :: ReifiedFold (ReifiedFold b c, b) c # | |||||
ArrowChoice ReifiedFold | |||||
Defined in Control.Lens.Reified Methods left :: ReifiedFold b c -> ReifiedFold (Either b d) (Either c d) # right :: ReifiedFold b c -> ReifiedFold (Either d b) (Either d c) # (+++) :: ReifiedFold b c -> ReifiedFold b' c' -> ReifiedFold (Either b b') (Either c c') # (|||) :: ReifiedFold b d -> ReifiedFold c d -> ReifiedFold (Either b c) d # | |||||
Choice ReifiedFold | |||||
Defined in Control.Lens.Reified Methods left' :: ReifiedFold a b -> ReifiedFold (Either a c) (Either b c) # right' :: ReifiedFold a b -> ReifiedFold (Either c a) (Either c b) # | |||||
Representable ReifiedFold | |||||
Defined in Control.Lens.Reified Associated Types
Methods tabulate :: (d -> Rep ReifiedFold c) -> ReifiedFold d c | |||||
Strong ReifiedFold | |||||
Defined in Control.Lens.Reified Methods first' :: ReifiedFold a b -> ReifiedFold (a, c) (b, c) second' :: ReifiedFold a b -> ReifiedFold (c, a) (c, b) | |||||
Profunctor ReifiedFold | |||||
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedFold b c -> ReifiedFold a d # lmap :: (a -> b) -> ReifiedFold b c -> ReifiedFold a c # rmap :: (b -> c) -> ReifiedFold a b -> ReifiedFold a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedFold a b -> ReifiedFold a c (.#) :: forall a b c q. Coercible b a => ReifiedFold b c -> q a b -> ReifiedFold a c | |||||
Category ReifiedFold | |||||
Defined in Control.Lens.Reified | |||||
Sieve ReifiedFold [] | |||||
Defined in Control.Lens.Reified Methods sieve :: ReifiedFold a b -> a -> [b] | |||||
MonadReader s (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods ask :: ReifiedFold s s # local :: (s -> s) -> ReifiedFold s a -> ReifiedFold s a # reader :: (s -> a) -> ReifiedFold s a # | |||||
Alternative (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods empty :: ReifiedFold s a # (<|>) :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a # some :: ReifiedFold s a -> ReifiedFold s [a] # many :: ReifiedFold s a -> ReifiedFold s [a] # | |||||
Applicative (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods pure :: a -> ReifiedFold s a # (<*>) :: ReifiedFold s (a -> b) -> ReifiedFold s a -> ReifiedFold s b # liftA2 :: (a -> b -> c) -> ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s c # (*>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b # (<*) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s a # | |||||
Functor (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods fmap :: (a -> b) -> ReifiedFold s a -> ReifiedFold s b # (<$) :: a -> ReifiedFold s b -> ReifiedFold s a # | |||||
Monad (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedFold s a -> (a -> ReifiedFold s b) -> ReifiedFold s b # (>>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b # return :: a -> ReifiedFold s a # | |||||
MonadPlus (ReifiedFold s) | |||||
Defined in Control.Lens.Reified | |||||
Alt (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods (<!>) :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a some :: Applicative (ReifiedFold s) => ReifiedFold s a -> ReifiedFold s [a] many :: Applicative (ReifiedFold s) => ReifiedFold s a -> ReifiedFold s [a] | |||||
Apply (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods (<.>) :: ReifiedFold s (a -> b) -> ReifiedFold s a -> ReifiedFold s b (.>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b (<.) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s a liftF2 :: (a -> b -> c) -> ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s c | |||||
Bind (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods (>>-) :: ReifiedFold s a -> (a -> ReifiedFold s b) -> ReifiedFold s b join :: ReifiedFold s (ReifiedFold s a) -> ReifiedFold s a | |||||
Plus (ReifiedFold s) | |||||
Defined in Control.Lens.Reified Methods zero :: ReifiedFold s a | |||||
Monoid (ReifiedFold s a) | |||||
Defined in Control.Lens.Reified Methods mempty :: ReifiedFold s a # mappend :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a # mconcat :: [ReifiedFold s a] -> ReifiedFold s a # | |||||
Semigroup (ReifiedFold s a) | |||||
Defined in Control.Lens.Reified Methods (<>) :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a # sconcat :: NonEmpty (ReifiedFold s a) -> ReifiedFold s a # stimes :: Integral b => b -> ReifiedFold s a -> ReifiedFold s a # | |||||
type Rep ReifiedFold | |||||
Defined in Control.Lens.Reified |
type Fold s a = forall (f :: Type -> Type). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s #
newtype ReifiedGetter s a #
Instances
Arrow ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods arr :: (b -> c) -> ReifiedGetter b c # first :: ReifiedGetter b c -> ReifiedGetter (b, d) (c, d) # second :: ReifiedGetter b c -> ReifiedGetter (d, b) (d, c) # (***) :: ReifiedGetter b c -> ReifiedGetter b' c' -> ReifiedGetter (b, b') (c, c') # (&&&) :: ReifiedGetter b c -> ReifiedGetter b c' -> ReifiedGetter b (c, c') # | |||||
ArrowApply ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods app :: ReifiedGetter (ReifiedGetter b c, b) c # | |||||
ArrowChoice ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods left :: ReifiedGetter b c -> ReifiedGetter (Either b d) (Either c d) # right :: ReifiedGetter b c -> ReifiedGetter (Either d b) (Either d c) # (+++) :: ReifiedGetter b c -> ReifiedGetter b' c' -> ReifiedGetter (Either b b') (Either c c') # (|||) :: ReifiedGetter b d -> ReifiedGetter c d -> ReifiedGetter (Either b c) d # | |||||
ArrowLoop ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods loop :: ReifiedGetter (b, d) (c, d) -> ReifiedGetter b c # | |||||
Conjoined ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods distrib :: Functor f => ReifiedGetter a b -> ReifiedGetter (f a) (f b) # conjoined :: (ReifiedGetter ~ (->) => q (a -> b) r) -> q (ReifiedGetter a b) r -> q (ReifiedGetter a b) r # | |||||
Choice ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods left' :: ReifiedGetter a b -> ReifiedGetter (Either a c) (Either b c) # right' :: ReifiedGetter a b -> ReifiedGetter (Either c a) (Either c b) # | |||||
Closed ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods closed :: ReifiedGetter a b -> ReifiedGetter (x -> a) (x -> b) | |||||
Corepresentable ReifiedGetter | |||||
Defined in Control.Lens.Reified Associated Types
Methods cotabulate :: (Corep ReifiedGetter d -> c) -> ReifiedGetter d c | |||||
Representable ReifiedGetter | |||||
Defined in Control.Lens.Reified Associated Types
Methods tabulate :: (d -> Rep ReifiedGetter c) -> ReifiedGetter d c | |||||
Costrong ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods unfirst :: ReifiedGetter (a, d) (b, d) -> ReifiedGetter a b unsecond :: ReifiedGetter (d, a) (d, b) -> ReifiedGetter a b | |||||
Strong ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods first' :: ReifiedGetter a b -> ReifiedGetter (a, c) (b, c) second' :: ReifiedGetter a b -> ReifiedGetter (c, a) (c, b) | |||||
Profunctor ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedGetter b c -> ReifiedGetter a d # lmap :: (a -> b) -> ReifiedGetter b c -> ReifiedGetter a c # rmap :: (b -> c) -> ReifiedGetter a b -> ReifiedGetter a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedGetter a b -> ReifiedGetter a c (.#) :: forall a b c q. Coercible b a => ReifiedGetter b c -> q a b -> ReifiedGetter a c | |||||
Category ReifiedGetter | |||||
Defined in Control.Lens.Reified Methods id :: ReifiedGetter a a # (.) :: ReifiedGetter b c -> ReifiedGetter a b -> ReifiedGetter a c # | |||||
Cosieve ReifiedGetter Identity | |||||
Defined in Control.Lens.Reified Methods cosieve :: ReifiedGetter a b -> Identity a -> b | |||||
Sieve ReifiedGetter Identity | |||||
Defined in Control.Lens.Reified Methods sieve :: ReifiedGetter a b -> a -> Identity b | |||||
MonadReader s (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods ask :: ReifiedGetter s s # local :: (s -> s) -> ReifiedGetter s a -> ReifiedGetter s a # reader :: (s -> a) -> ReifiedGetter s a # | |||||
Applicative (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods pure :: a -> ReifiedGetter s a # (<*>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b # liftA2 :: (a -> b -> c) -> ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s c # (*>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b # (<*) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a # | |||||
Functor (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods fmap :: (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b # (<$) :: a -> ReifiedGetter s b -> ReifiedGetter s a # | |||||
Monad (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods (>>=) :: ReifiedGetter s a -> (a -> ReifiedGetter s b) -> ReifiedGetter s b # (>>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b # return :: a -> ReifiedGetter s a # | |||||
Monoid s => Comonad (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods extract :: ReifiedGetter s a -> a duplicate :: ReifiedGetter s a -> ReifiedGetter s (ReifiedGetter s a) extend :: (ReifiedGetter s a -> b) -> ReifiedGetter s a -> ReifiedGetter s b | |||||
Monoid s => ComonadApply (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods (<@>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b (@>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b (<@) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a | |||||
Distributive (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods distribute :: Functor f => f (ReifiedGetter s a) -> ReifiedGetter s (f a) collect :: Functor f => (a -> ReifiedGetter s b) -> f a -> ReifiedGetter s (f b) distributeM :: Monad m => m (ReifiedGetter s a) -> ReifiedGetter s (m a) collectM :: Monad m => (a -> ReifiedGetter s b) -> m a -> ReifiedGetter s (m b) | |||||
Apply (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods (<.>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b (.>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b (<.) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a liftF2 :: (a -> b -> c) -> ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s c | |||||
Bind (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods (>>-) :: ReifiedGetter s a -> (a -> ReifiedGetter s b) -> ReifiedGetter s b join :: ReifiedGetter s (ReifiedGetter s a) -> ReifiedGetter s a | |||||
Semigroup s => Extend (ReifiedGetter s) | |||||
Defined in Control.Lens.Reified Methods duplicated :: ReifiedGetter s a -> ReifiedGetter s (ReifiedGetter s a) extended :: (ReifiedGetter s a -> b) -> ReifiedGetter s a -> ReifiedGetter s b | |||||
type Corep ReifiedGetter | |||||
Defined in Control.Lens.Reified | |||||
type Rep ReifiedGetter | |||||
Defined in Control.Lens.Reified |
type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s #
newtype ReifiedIndexedFold i s a #
Constructors
IndexedFold | |
Fields
|
Instances
Representable (ReifiedIndexedFold i) | |||||
Defined in Control.Lens.Reified Associated Types
Methods tabulate :: (d -> Rep (ReifiedIndexedFold i) c) -> ReifiedIndexedFold i d c | |||||
Strong (ReifiedIndexedFold i) | |||||
Defined in Control.Lens.Reified Methods first' :: ReifiedIndexedFold i a b -> ReifiedIndexedFold i (a, c) (b, c) second' :: ReifiedIndexedFold i a b -> ReifiedIndexedFold i (c, a) (c, b) | |||||
Profunctor (ReifiedIndexedFold i) | |||||
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a d # lmap :: (a -> b) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a c # rmap :: (b -> c) -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c (.#) :: forall a b c q. Coercible b a => ReifiedIndexedFold i b c -> q a b -> ReifiedIndexedFold i a c | |||||
Sieve (ReifiedIndexedFold i) (Compose [] ((,) i)) | |||||
Defined in Control.Lens.Reified Methods sieve :: ReifiedIndexedFold i a b -> a -> Compose [] ((,) i) b | |||||
Functor (ReifiedIndexedFold i s) | |||||
Defined in Control.Lens.Reified Methods fmap :: (a -> b) -> ReifiedIndexedFold i s a -> ReifiedIndexedFold i s b # (<$) :: a -> ReifiedIndexedFold i s b -> ReifiedIndexedFold i s a # | |||||
Alt (ReifiedIndexedFold i s) | |||||
Defined in Control.Lens.Reified Methods (<!>) :: ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a some :: Applicative (ReifiedIndexedFold i s) => ReifiedIndexedFold i s a -> ReifiedIndexedFold i s [a] many :: Applicative (ReifiedIndexedFold i s) => ReifiedIndexedFold i s a -> ReifiedIndexedFold i s [a] | |||||
Plus (ReifiedIndexedFold i s) | |||||
Defined in Control.Lens.Reified Methods zero :: ReifiedIndexedFold i s a | |||||
Monoid (ReifiedIndexedFold i s a) | |||||
Defined in Control.Lens.Reified Methods mempty :: ReifiedIndexedFold i s a # mappend :: ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a # mconcat :: [ReifiedIndexedFold i s a] -> ReifiedIndexedFold i s a # | |||||
Semigroup (ReifiedIndexedFold i s a) | |||||
Defined in Control.Lens.Reified Methods (<>) :: ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a # sconcat :: NonEmpty (ReifiedIndexedFold i s a) -> ReifiedIndexedFold i s a # stimes :: Integral b => b -> ReifiedIndexedFold i s a -> ReifiedIndexedFold i s a # | |||||
type Rep (ReifiedIndexedFold i) | |||||
Defined in Control.Lens.Reified |
type IndexedFold i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s #
newtype ReifiedIndexedGetter i s a #
Constructors
IndexedGetter | |
Fields
|
Instances
Representable (ReifiedIndexedGetter i) | |||||
Defined in Control.Lens.Reified Associated Types
Methods tabulate :: (d -> Rep (ReifiedIndexedGetter i) c) -> ReifiedIndexedGetter i d c | |||||
Strong (ReifiedIndexedGetter i) | |||||
Defined in Control.Lens.Reified Methods first' :: ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i (a, c) (b, c) second' :: ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i (c, a) (c, b) | |||||
Profunctor (ReifiedIndexedGetter i) | |||||
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a d # lmap :: (a -> b) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a c # rmap :: (b -> c) -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c (.#) :: forall a b c q. Coercible b a => ReifiedIndexedGetter i b c -> q a b -> ReifiedIndexedGetter i a c | |||||
Sieve (ReifiedIndexedGetter i) ((,) i) | |||||
Defined in Control.Lens.Reified Methods sieve :: ReifiedIndexedGetter i a b -> a -> (i, b) | |||||
Functor (ReifiedIndexedGetter i s) | |||||
Defined in Control.Lens.Reified Methods fmap :: (a -> b) -> ReifiedIndexedGetter i s a -> ReifiedIndexedGetter i s b # (<$) :: a -> ReifiedIndexedGetter i s b -> ReifiedIndexedGetter i s a # | |||||
Semigroup i => Apply (ReifiedIndexedGetter i s) | |||||
Defined in Control.Lens.Reified Methods (<.>) :: ReifiedIndexedGetter i s (a -> b) -> ReifiedIndexedGetter i s a -> ReifiedIndexedGetter i s b (.>) :: ReifiedIndexedGetter i s a -> ReifiedIndexedGetter i s b -> ReifiedIndexedGetter i s b (<.) :: ReifiedIndexedGetter i s a -> ReifiedIndexedGetter i s b -> ReifiedIndexedGetter i s a liftF2 :: (a -> b -> c) -> ReifiedIndexedGetter i s a -> ReifiedIndexedGetter i s b -> ReifiedIndexedGetter i s c | |||||
type Rep (ReifiedIndexedGetter i) | |||||
Defined in Control.Lens.Reified |
type IndexedGetter i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s #
newtype ReifiedIndexedLens i s t a b #
Constructors
IndexedLens | |
Fields
|
type IndexedLens i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Functor f) => p a (f b) -> s -> f t #
type ReifiedIndexedLens' i s a = ReifiedIndexedLens i s s a a #
newtype ReifiedIndexedSetter i s t a b #
Constructors
IndexedSetter | |
Fields
|
type IndexedSetter i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Settable f) => p a (f b) -> s -> f t #
type ReifiedIndexedSetter' i s a = ReifiedIndexedSetter i s s a a #
newtype ReifiedIndexedTraversal i s t a b #
Constructors
IndexedTraversal | |
Fields
|
type IndexedTraversal i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Applicative f) => p a (f b) -> s -> f t #
type ReifiedIndexedTraversal' i s a = ReifiedIndexedTraversal i s s a a #
newtype ReifiedIso s t a b #
type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t) #
type ReifiedIso' s a = ReifiedIso s s a a #
newtype ReifiedLens s t a b #
type ReifiedLens' s a = ReifiedLens s s a a #
newtype ReifiedPrism s t a b #
type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t) #
type ReifiedPrism' s a = ReifiedPrism s s a a #
newtype ReifiedSetter s t a b #
type ReifiedSetter' s a = ReifiedSetter s s a a #
newtype ReifiedTraversal s t a b #
Constructors
Traversal | |
Fields
|
type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t #
type ReifiedTraversal' s a = ReifiedTraversal s s a a #
type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t #
type AnIndexedSetter' i s a = AnIndexedSetter i s s a a #
type ATraversal s t a b = LensLike (Bazaar (->) a b) s t a b #
type ATraversal' s a = ATraversal s s a a #
type ATraversal1 s t a b = LensLike (Bazaar1 (->) a b) s t a b #
type ATraversal1' s a = ATraversal1 s s a a #
type AnIndexedTraversal' i s a = AnIndexedTraversal i s s a a #
type AnIndexedTraversal1' i s a = AnIndexedTraversal1 i s s a a #
class Ord k => TraverseMax k (m :: Type -> Type) | m -> k where #
Methods
traverseMax :: IndexedTraversal' k (m v) v #
Instances
TraverseMax Int IntMap | |
Defined in Control.Lens.Traversal Methods traverseMax :: IndexedTraversal' Int (IntMap v) v # | |
Ord k => TraverseMax k (Map k) | |
Defined in Control.Lens.Traversal Methods traverseMax :: IndexedTraversal' k (Map k v) v # |
class Ord k => TraverseMin k (m :: Type -> Type) | m -> k where #
Methods
traverseMin :: IndexedTraversal' k (m v) v #
Instances
TraverseMin Int IntMap | |
Defined in Control.Lens.Traversal Methods traverseMin :: IndexedTraversal' Int (IntMap v) v # | |
Ord k => TraverseMin k (Map k) | |
Defined in Control.Lens.Traversal Methods traverseMin :: IndexedTraversal' k (Map k v) v # |
type Traversing (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT p f a b) s t a b #
type Traversing' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing p f s s a a #
type Traversing1 (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT1 p f a b) s t a b #
type Traversing1' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing1 p f s s a a #
class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
Field1 (Identity a) (Identity b) a b | |
Field1 (Plucker a) (Plucker a) a a | |
Defined in Linear.Plucker | |
Field1 (Quaternion a) (Quaternion a) a a | |
Defined in Linear.Quaternion | |
Field1 (V1 a) (V1 b) a b | |
Field1 (V2 a) (V2 a) a a | |
Field1 (V3 a) (V3 a) a a | |
Field1 (V4 a) (V4 a) a a | |
Field1 (Pair a b) (Pair a' b) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b) (a', b) a a' | |
Defined in Control.Lens.Tuple | |
1 <= n => Field1 (V n a) (V n a) a a | |
Field1 (a, b, c) (a', b, c) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d) (a', b, c, d) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (Product f g a) (Product f' g a) (f a) (f' a) | |
Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) | |
Field1 (a, b, c, d, e) (a', b, c, d, e) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f) (a', b, c, d, e, f) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j) (a', b, c, d, e, f, g, h, i, j) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk) (a', b, c, d, e, f, g, h, i, j, kk) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l) (a', b, c, d, e, f, g, h, i, j, kk, l) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a', b, c, d, e, f, g, h, i, j, kk, l, m) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) a a' | |
Defined in Control.Lens.Tuple | |
Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) a a' | |
Defined in Control.Lens.Tuple |
class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
10 <= n => Field10 (V n a) (V n a) a a | |
Field10 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i, j') j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j', kk) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j', kk, l) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j', kk, l, m) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r) j j' | |
Defined in Control.Lens.Tuple | |
Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s) j j' | |
Defined in Control.Lens.Tuple |
class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
11 <= n => Field11 (V n a) (V n a) a a | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j, kk') kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk', l) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk', l, m) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r) kk kk' | |
Defined in Control.Lens.Tuple | |
Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s) kk kk' | |
Defined in Control.Lens.Tuple |
class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
12 <= n => Field12 (V n a) (V n a) a a | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk, l') l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l', m) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r) l l' | |
Defined in Control.Lens.Tuple | |
Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s) l l' | |
Defined in Control.Lens.Tuple |
class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
13 <= n => Field13 (V n a) (V n a) a a | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l, m') m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r) m m' | |
Defined in Control.Lens.Tuple | |
Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s) m m' | |
Defined in Control.Lens.Tuple |
class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
14 <= n => Field14 (V n a) (V n a) a a | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n') n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r) n n' | |
Defined in Control.Lens.Tuple | |
Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s) n n' | |
Defined in Control.Lens.Tuple |
class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
15 <= n => Field15 (V n a) (V n a) a a | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o') o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p) o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q) o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r) o o' | |
Defined in Control.Lens.Tuple | |
Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s) o o' | |
Defined in Control.Lens.Tuple |
class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
16 <= n => Field16 (V n a) (V n a) a a | |
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p') p p' | |
Defined in Control.Lens.Tuple | |
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q) p p' | |
Defined in Control.Lens.Tuple | |
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r) p p' | |
Defined in Control.Lens.Tuple | |
Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s) p p' | |
Defined in Control.Lens.Tuple |
class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
17 <= n => Field17 (V n a) (V n a) a a | |
Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q') q q' | |
Defined in Control.Lens.Tuple | |
Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r) q q' | |
Defined in Control.Lens.Tuple | |
Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s) q q' | |
Defined in Control.Lens.Tuple |
class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
18 <= n => Field18 (V n a) (V n a) a a | |
Field18 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r') r r' | |
Defined in Control.Lens.Tuple | |
Field18 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s) r r' | |
Defined in Control.Lens.Tuple |
class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
19 <= n => Field19 (V n a) (V n a) a a | |
Field19 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s') s s' | |
Defined in Control.Lens.Tuple |
class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
Field2 (Plucker a) (Plucker a) a a | |
Defined in Linear.Plucker | |
Field2 (Quaternion a) (Quaternion a) a a | |
Defined in Linear.Quaternion | |
Field2 (V2 a) (V2 a) a a | |
Field2 (V3 a) (V3 a) a a | |
Field2 (V4 a) (V4 a) a a | |
Field2 (Pair a b) (Pair a b') b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b) (a, b') b b' | |
Defined in Control.Lens.Tuple | |
2 <= n => Field2 (V n a) (V n a) a a | |
Field2 (a, b, c) (a, b', c) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d) (a, b', c, d) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (Product f g a) (Product f g' a) (g a) (g' a) | |
Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) | |
Field2 (a, b, c, d, e) (a, b', c, d, e) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f) (a, b', c, d, e, f) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j) (a, b', c, d, e, f, g, h, i, j) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk) (a, b', c, d, e, f, g, h, i, j, kk) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b', c, d, e, f, g, h, i, j, kk, l) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b', c, d, e, f, g, h, i, j, kk, l, m) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) b b' | |
Defined in Control.Lens.Tuple | |
Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) b b' | |
Defined in Control.Lens.Tuple |
class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
Field3 (Plucker a) (Plucker a) a a | |
Defined in Linear.Plucker | |
Field3 (Quaternion a) (Quaternion a) a a | |
Defined in Linear.Quaternion | |
Field3 (V3 a) (V3 a) a a | |
Field3 (V4 a) (V4 a) a a | |
3 <= n => Field3 (V n a) (V n a) a a | |
Field3 (a, b, c) (a, b, c') c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d) (a, b, c', d) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e) (a, b, c', d, e) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f) (a, b, c', d, e, f) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j) (a, b, c', d, e, f, g, h, i, j) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c', d, e, f, g, h, i, j, kk) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c', d, e, f, g, h, i, j, kk, l) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c', d, e, f, g, h, i, j, kk, l, m) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) c c' | |
Defined in Control.Lens.Tuple | |
Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) c c' | |
Defined in Control.Lens.Tuple |
class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
Field4 (Plucker a) (Plucker a) a a | |
Defined in Linear.Plucker | |
Field4 (Quaternion a) (Quaternion a) a a | |
Defined in Linear.Quaternion | |
Field4 (V4 a) (V4 a) a a | |
4 <= n => Field4 (V n a) (V n a) a a | |
Field4 (a, b, c, d) (a, b, c, d') d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e) (a, b, c, d', e) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f) (a, b, c, d', e, f) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d', e, f, g, h, i, j) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d', e, f, g, h, i, j, kk) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d', e, f, g, h, i, j, kk, l) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d', e, f, g, h, i, j, kk, l, m) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r) d d' | |
Defined in Control.Lens.Tuple | |
Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) d d' | |
Defined in Control.Lens.Tuple |
class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
Field5 (Plucker a) (Plucker a) a a | |
Defined in Linear.Plucker | |
5 <= n => Field5 (V n a) (V n a) a a | |
Field5 (a, b, c, d, e) (a, b, c, d, e') e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f) (a, b, c, d, e', f) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e', f, g, h, i, j) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e', f, g, h, i, j, kk) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e', f, g, h, i, j, kk, l) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e', f, g, h, i, j, kk, l, m) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r) e e' | |
Defined in Control.Lens.Tuple | |
Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s) e e' | |
Defined in Control.Lens.Tuple |
class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
Field6 (Plucker a) (Plucker a) a a | |
Defined in Linear.Plucker | |
6 <= n => Field6 (V n a) (V n a) a a | |
Field6 (a, b, c, d, e, f) (a, b, c, d, e, f') f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f', g, h, i, j) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f', g, h, i, j, kk) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f', g, h, i, j, kk, l) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f', g, h, i, j, kk, l, m) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r) f f' | |
Defined in Control.Lens.Tuple | |
Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s) f f' | |
Defined in Control.Lens.Tuple |
class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
7 <= n => Field7 (V n a) (V n a) a a | |
Field7 (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g', h, i, j) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g', h, i, j, kk) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g', h, i, j, kk, l) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g', h, i, j, kk, l, m) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r) g g' | |
Defined in Control.Lens.Tuple | |
Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s) g g' | |
Defined in Control.Lens.Tuple |
class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
8 <= n => Field8 (V n a) (V n a) a a | |
Field8 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h', i, j) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h', i, j, kk) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h', i, j, kk, l) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h', i, j, kk, l, m) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r) h h' | |
Defined in Control.Lens.Tuple | |
Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s) h h' | |
Defined in Control.Lens.Tuple |
class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where #
Minimal complete definition
Nothing
Instances
9 <= n => Field9 (V n a) (V n a) a a | |
Field9 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i', j) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i', j, kk) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i', j, kk, l) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i', j, kk, l, m) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r) i i' | |
Defined in Control.Lens.Tuple | |
Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s) i i' | |
Defined in Control.Lens.Tuple |
type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3). p a (f b) -> p s (f t) #
type Fold1 s a = forall (f :: Type -> Type). (Contravariant f, Apply f) => (a -> f a) -> s -> f s #
type IndexPreservingFold s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s) #
type IndexPreservingFold1 s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s) #
type IndexPreservingGetter s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s) #
type IndexPreservingLens s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Functor f) => p a (f b) -> p s (f t) #
type IndexPreservingLens' s a = IndexPreservingLens s s a a #
type IndexPreservingSetter s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Settable f) => p a (f b) -> p s (f t) #
type IndexPreservingSetter' s a = IndexPreservingSetter s s a a #
type IndexPreservingTraversal s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Applicative f) => p a (f b) -> p s (f t) #
type IndexPreservingTraversal' s a = IndexPreservingTraversal s s a a #
type IndexPreservingTraversal1 s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Apply f) => p a (f b) -> p s (f t) #
type IndexPreservingTraversal1' s a = IndexPreservingTraversal1 s s a a #
type IndexedFold1 i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s #
type IndexedLens' i s a = IndexedLens i s s a a #
type IndexedLensLike i (f :: k -> Type) s (t :: k) a (b :: k) = forall (p :: Type -> Type -> Type). Indexable i p => p a (f b) -> s -> f t #
type IndexedLensLike' i (f :: Type -> Type) s a = IndexedLensLike i f s s a a #
type IndexedSetter' i s a = IndexedSetter i s s a a #
type IndexedTraversal' i s a = IndexedTraversal i s s a a #
type IndexedTraversal1 i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Apply f) => p a (f b) -> s -> f t #
type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a #
type Optic (p :: k -> k1 -> Type) (f :: k2 -> k1) (s :: k) (t :: k2) (a :: k) (b :: k2) = p a (f b) -> p s (f t) #
type Optical (p :: k -> k1 -> Type) (q :: k2 -> k1 -> Type) (f :: k3 -> k1) (s :: k2) (t :: k3) (a :: k) (b :: k3) = p a (f b) -> q s (f t) #
type Optical' (p :: k -> k1 -> Type) (q :: k -> k1 -> Type) (f :: k -> k1) (s :: k) (a :: k) = Optical p q f s s a a #
type Over (p :: k -> Type -> Type) (f :: k1 -> Type) s (t :: k1) (a :: k) (b :: k1) = p a (f b) -> s -> f t #
type Review t b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Bifunctor p, Settable f) => Optic' p f t b #
type Traversal' s a = Traversal s s a a #
type Traversal1 s t a b = forall (f :: Type -> Type). Apply f => (a -> f b) -> s -> f t #
type Traversal1' s a = Traversal1 s s a a #
class Wrapped s => Rewrapped s t #
Instances
t ~ NoMethodError => Rewrapped NoMethodError t | |
Defined in Control.Lens.Wrapped | |
t ~ PatternMatchFail => Rewrapped PatternMatchFail t | |
Defined in Control.Lens.Wrapped | |
t ~ RecConError => Rewrapped RecConError t | |
Defined in Control.Lens.Wrapped | |
t ~ RecSelError => Rewrapped RecSelError t | |
Defined in Control.Lens.Wrapped | |
t ~ RecUpdError => Rewrapped RecUpdError t | |
Defined in Control.Lens.Wrapped | |
t ~ TypeError => Rewrapped TypeError t | |
Defined in Control.Lens.Wrapped | |
t ~ All => Rewrapped All t | |
Defined in Control.Lens.Wrapped | |
t ~ Any => Rewrapped Any t | |
Defined in Control.Lens.Wrapped | |
Rewrapped Errno t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CBool t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CChar t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CClock t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CDouble t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CFloat t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CInt t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CIntMax t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CIntPtr t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CLLong t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CLong t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CPtrdiff t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CSChar t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CSUSeconds t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CShort t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CSigAtomic t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CSize t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CTime t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CUChar t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CUInt t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CUIntMax t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CUIntPtr t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CULLong t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CULong t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CUSeconds t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CUShort t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CWchar t | |
Defined in Control.Lens.Wrapped | |
t ~ ErrorCall => Rewrapped ErrorCall t | |
Defined in Control.Lens.Wrapped | |
t ~ AssertionFailed => Rewrapped AssertionFailed t | |
Defined in Control.Lens.Wrapped | |
t ~ CompactionFailed => Rewrapped CompactionFailed t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CBlkCnt t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CBlkSize t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CCc t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CClockId t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CDev t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CFsBlkCnt t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CFsFilCnt t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CGid t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CId t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CIno t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CKey t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CMode t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CNlink t | |
Defined in Control.Lens.Wrapped | |
Rewrapped COff t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CPid t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CRLim t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CSpeed t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CSsize t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CTcflag t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CTimer t | |
Defined in Control.Lens.Wrapped | |
Rewrapped CUid t | |
Defined in Control.Lens.Wrapped | |
Rewrapped Fd t | |
Defined in Control.Lens.Wrapped | |
t ~ IntSet => Rewrapped IntSet t | |
Defined in Control.Lens.Wrapped | |
Rewrapped Name Name | |
Defined in Diagrams.Core.Names | |
Rewrapped SegCount SegCount | |
Defined in Diagrams.Segment | |
t ~ ZipList b => Rewrapped (ZipList a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Comparison b => Rewrapped (Comparison a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Equivalence b => Rewrapped (Equivalence a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Predicate b => Rewrapped (Predicate a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Identity b => Rewrapped (Identity a) t | |
Defined in Control.Lens.Wrapped | |
t ~ First b => Rewrapped (First a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Last b => Rewrapped (Last a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Down b => Rewrapped (Down a) t | |
Defined in Control.Lens.Wrapped | |
t ~ First b => Rewrapped (First a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Last b => Rewrapped (Last a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Max b => Rewrapped (Max a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Min b => Rewrapped (Min a) t | |
Defined in Control.Lens.Wrapped | |
t ~ WrappedMonoid b => Rewrapped (WrappedMonoid a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Dual b => Rewrapped (Dual a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Endo b => Rewrapped (Endo a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Product b => Rewrapped (Product a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Sum b => Rewrapped (Sum a) t | |
Defined in Control.Lens.Wrapped | |
t ~ NonEmpty b => Rewrapped (NonEmpty a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Par1 p' => Rewrapped (Par1 p) t | |
Defined in Control.Lens.Wrapped | |
t ~ IntMap a' => Rewrapped (IntMap a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Seq a' => Rewrapped (Seq a) t | |
Defined in Control.Lens.Wrapped | |
(t ~ Set a', Ord a) => Rewrapped (Set a) t | |
Defined in Control.Lens.Wrapped | |
Clip n1 ~ t => Rewrapped (Clip n2) t | |
Defined in Diagrams.TwoD.Path | |
(t ~ HashSet a', Hashable a, Eq a) => Rewrapped (HashSet a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Vector a' => Rewrapped (Vector a) t | |
Defined in Control.Lens.Wrapped | |
(Prim a, t ~ Vector a') => Rewrapped (Vector a) t | |
Defined in Control.Lens.Wrapped | |
(Storable a, t ~ Vector a') => Rewrapped (Vector a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Vector a' => Rewrapped (Vector a) t | |
Defined in Control.Lens.Wrapped | |
(Unbox a, t ~ Vector a') => Rewrapped (Vector a) t | |
Defined in Control.Lens.Wrapped | |
Rewrapped (Active a) (Active b) | |
Defined in Data.Active | |
Rewrapped (Duration a) (Duration b) | |
Defined in Data.Active | |
Rewrapped (Time a) (Time b) | |
Defined in Data.Active | |
Rewrapped (TransInv t) (TransInv t') | |
Defined in Diagrams.Core.Transform | |
Rewrapped (ArcLength n) (ArcLength n') | |
Defined in Diagrams.Segment | |
t ~ WrappedMonad m' a' => Rewrapped (WrappedMonad m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ ArrowMonad m' a' => Rewrapped (ArrowMonad m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Op a' b' => Rewrapped (Op a b) t | |
Defined in Control.Lens.Wrapped | |
(t ~ Map k' a', Ord k) => Rewrapped (Map k a) t | |
Defined in Control.Lens.Wrapped | |
t ~ CatchT m' a' => Rewrapped (CatchT m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Alt f' a' => Rewrapped (Alt f a) t | |
Defined in Control.Lens.Wrapped | |
t ~ CoiterT w' a' => Rewrapped (CoiterT w a) t | |
Defined in Control.Lens.Wrapped | |
t ~ IterT m' a' => Rewrapped (IterT m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Point g b => Rewrapped (Point f a) t | |
Defined in Linear.Affine | |
t ~ MaybeApply f' a' => Rewrapped (MaybeApply f a) t | |
Defined in Control.Lens.Wrapped | |
t ~ WrappedApplicative f' a' => Rewrapped (WrappedApplicative f a) t | |
Defined in Control.Lens.Wrapped | |
t ~ MaybeT n b => Rewrapped (MaybeT m a) t | |
Defined in Control.Lens.Wrapped | |
(t ~ HashMap k' a', Hashable k, Eq k) => Rewrapped (HashMap k a) t | |
Defined in Control.Lens.Wrapped | |
Rewrapped (Envelope v n) (Envelope v' n') | |
Defined in Diagrams.Core.Envelope | |
Rewrapped (Style v n) (Style v' n') | |
Defined in Diagrams.Core.Style | |
Rewrapped (Trace v n) (Trace v' n') | |
Defined in Diagrams.Core.Trace | |
Rewrapped (Path v n) (Path v' n') | |
Defined in Diagrams.Path | |
Rewrapped (TotalOffset v n) (TotalOffset v' n') | |
Defined in Diagrams.Segment | |
Rewrapped (SegTree v n) (SegTree v' n') | |
Defined in Diagrams.Trail | |
Rewrapped (Trail v n) (Trail v' n') | |
Defined in Diagrams.Trail | |
t ~ WrappedArrow a' b' c' => Rewrapped (WrappedArrow a b c) t | |
Defined in Control.Lens.Wrapped | |
t ~ Kleisli m' a' b' => Rewrapped (Kleisli m a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Const a' x' => Rewrapped (Const a x) t | |
Defined in Control.Lens.Wrapped | |
t ~ Ap g b => Rewrapped (Ap f a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Alt g b => Rewrapped (Alt f a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Rec1 f' p' => Rewrapped (Rec1 f p) t | |
Defined in Control.Lens.Wrapped | |
t ~ Fix p' a' => Rewrapped (Fix p a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Join p' a' => Rewrapped (Join p a) t | |
Defined in Control.Lens.Wrapped | |
t ~ TracedT m' w' a' => Rewrapped (TracedT m w a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Compose f' g' a' => Rewrapped (Compose f g a) t | |
Defined in Control.Lens.Wrapped | |
t ~ ComposeCF f' g' a' => Rewrapped (ComposeCF f g a) t | |
Defined in Control.Lens.Wrapped | |
t ~ ComposeFC f' g' a' => Rewrapped (ComposeFC f g a) t | |
Defined in Control.Lens.Wrapped | |
t ~ ApT f' g' a' => Rewrapped (ApT f g a) t | |
Defined in Control.Lens.Wrapped | |
t ~ CofreeT f' w' a' => Rewrapped (CofreeT f w a) t | |
Defined in Control.Lens.Wrapped | |
t ~ FreeT f' m' a' => Rewrapped (FreeT f m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Static f' a' b' => Rewrapped (Static f a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Tagged s' a' => Rewrapped (Tagged s a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Backwards g b => Rewrapped (Backwards f a) t | |
Defined in Control.Lens.Wrapped | |
t ~ ExceptT e' m' a' => Rewrapped (ExceptT e m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ IdentityT n b => Rewrapped (IdentityT m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ ReaderT s n b => Rewrapped (ReaderT r m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ StateT s' m' a' => Rewrapped (StateT s m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ StateT s' m' a' => Rewrapped (StateT s m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ WriterT w' m' a' => Rewrapped (WriterT w m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ WriterT w' m' a' => Rewrapped (WriterT w m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Constant a' b' => Rewrapped (Constant a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Reverse g b => Rewrapped (Reverse f a) t | |
Defined in Control.Lens.Wrapped | |
Rewrapped (Query v a m) (Query v' a' m') | |
Defined in Diagrams.Core.Query | |
Rewrapped (Trail' Line v n) (Trail' Line v' n') | |
Defined in Diagrams.Trail | |
t ~ K1 i' c' p' => Rewrapped (K1 i c p) t | |
Defined in Control.Lens.Wrapped | |
t ~ Costar f' d' c' => Rewrapped (Costar f d c) t | |
Defined in Control.Lens.Wrapped | |
t ~ Forget r' a' b' => Rewrapped (Forget r a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Star f' d' c' => Rewrapped (Star f d c) t | |
Defined in Control.Lens.Wrapped | |
t ~ ContT r' m' a' => Rewrapped (ContT r m a) t | |
Defined in Control.Lens.Wrapped | |
Rewrapped (QDiagram b v n m) (QDiagram b' v' n' m') | |
Defined in Diagrams.Core.Types | |
Rewrapped (SubMap b v n m) (SubMap b' v' n' m') | |
Defined in Diagrams.Core.Types | |
t ~ Compose f' g' a' => Rewrapped (Compose f g a) t | |
Defined in Control.Lens.Wrapped | |
t ~ (f' :.: g') p' => Rewrapped ((f :.: g) p) t | |
Defined in Control.Lens.Wrapped | |
t ~ M1 i' c' f' p' => Rewrapped (M1 i c f p) t | |
Defined in Control.Lens.Wrapped | |
t ~ Clown f' a' b' => Rewrapped (Clown f a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Flip p' a' b' => Rewrapped (Flip p a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Joker g' a' b' => Rewrapped (Joker g a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ WrappedBifunctor p' a' b' => Rewrapped (WrappedBifunctor p a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ WrappedArrow p' a' b' => Rewrapped (WrappedArrow p a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Semi m' a' b' => Rewrapped (Semi m a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ WrappedCategory k' a' b' => Rewrapped (WrappedCategory k6 a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Dual k' a' b' => Rewrapped (Dual k6 a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ RWST r' w' s' m' a' => Rewrapped (RWST r w s m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ RWST r' w' s' m' a' => Rewrapped (RWST r w s m a) t | |
Defined in Control.Lens.Wrapped | |
t ~ Tannen f' p' a' b' => Rewrapped (Tannen f p a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Cayley f' p' a' b' => Rewrapped (Cayley f p a b) t | |
Defined in Control.Lens.Wrapped | |
t ~ Biff p' f' g' a' b' => Rewrapped (Biff p f g a b) t | |
Defined in Control.Lens.Wrapped |
class (Rewrapped s t, Rewrapped t s) => Rewrapping s t #
Instances
(Rewrapped s t, Rewrapped t s) => Rewrapping s t | |
Defined in Control.Lens.Wrapped |
type family Magnified (m :: Type -> Type) :: Type -> Type -> Type #
Instances
type Magnified (IdentityT m) | |
Defined in Control.Lens.Zoom | |
type Magnified (ReaderT b m) | |
Defined in Control.Lens.Zoom | |
type Magnified ((->) b) | |
type Magnified (RWST a w s m) | |
Defined in Control.Lens.Zoom | |
type Magnified (RWST a w s m) | |
Defined in Control.Lens.Zoom | |
type Magnified (RWST a w s m) | |
Defined in Control.Lens.Zoom |
class (Magnified m ~ Magnified n, MonadReader b m, MonadReader a n) => Magnify (m :: Type -> Type) (n :: Type -> Type) b a | m -> b, n -> a, m a -> n, n b -> m where #
Methods
magnify :: ((Functor (Magnified m c), Contravariant (Magnified m c)) => LensLike' (Magnified m c) a b) -> m c -> n c #
Instances
Magnify m n b a => Magnify (IdentityT m) (IdentityT n) b a | |
Monad m => Magnify (ReaderT b m) (ReaderT a m) b a | |
Magnify ((->) b) ((->) a) b a | |
Defined in Control.Lens.Zoom | |
(Monad m, Monoid w, MonadReader b (RWST b w s m)) => Magnify (RWST b w s m) (RWST a w s m) b a | |
(Monad m, Monoid w) => Magnify (RWST b w s m) (RWST a w s m) b a | |
(Monad m, Monoid w) => Magnify (RWST b w s m) (RWST a w s m) b a | |
class (MonadState s m, MonadState t n) => Zoom (m :: Type -> Type) (n :: Type -> Type) s t | m -> s, n -> t, m t -> n, n s -> m where #
Instances
Zoom m n s t => Zoom (MaybeT m) (MaybeT n) s t | |
(Functor f, Zoom m n s t) => Zoom (FreeT f m) (FreeT f n) s t | |
Defined in Control.Lens.Zoom | |
Zoom m n s t => Zoom (ExceptT e m) (ExceptT e n) s t | |
Zoom m n s t => Zoom (IdentityT m) (IdentityT n) s t | |
Zoom m n s t => Zoom (ReaderT e m) (ReaderT e n) s t | |
Monad z => Zoom (StateT s z) (StateT t z) s t | |
Monad z => Zoom (StateT s z) (StateT t z) s t | |
(Monoid w, Zoom m n s t) => Zoom (WriterT w m) (WriterT w n) s t | |
(Monoid w, Zoom m n s t) => Zoom (WriterT w m) (WriterT w n) s t | |
(Monoid w, Monad z) => Zoom (RWST r w s z) (RWST r w t z) s t | |
(Monoid w, Monad z) => Zoom (RWST r w s z) (RWST r w t z) s t | |
type family Zoomed (m :: Type -> Type) :: Type -> Type -> Type #
Instances
type Zoomed (MaybeT m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (FreeT f m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (ExceptT e m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (IdentityT m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (ReaderT e m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (StateT s z) | |
Defined in Control.Lens.Zoom | |
type Zoomed (StateT s z) | |
Defined in Control.Lens.Zoom | |
type Zoomed (WriterT w m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (WriterT w m) | |
Defined in Control.Lens.Zoom | |
type Zoomed (RWST r w s z) | |
Defined in Control.Lens.Zoom | |
type Zoomed (RWST r w s z) | |
Defined in Control.Lens.Zoom |
class Additive (Diff p) => Affine (p :: Type -> Type) where #
Instances
Affine Time | |||||
Affine ZipList | |||||
Defined in Linear.Affine | |||||
Affine Complex | |||||
Defined in Linear.Affine | |||||
Affine Identity | |||||
Defined in Linear.Affine | |||||
Affine IntMap | |||||
Affine Plucker | |||||
Defined in Linear.Affine Associated Types
| |||||
Affine Quaternion | |||||
Defined in Linear.Affine Associated Types
| |||||
Affine V0 | |||||
Affine V1 | |||||
Affine V2 | |||||
Affine V3 | |||||
Affine V4 | |||||
Affine Vector | |||||
Affine Maybe | |||||
Affine [] | |||||
Ord k => Affine (Map k) | |||||
Additive f => Affine (Point f) | |||||
Defined in Linear.Affine Associated Types
| |||||
(Eq k, Hashable k) => Affine (HashMap k) | |||||
Defined in Linear.Affine Associated Types
| |||||
Dim n => Affine (V n) | |||||
(Affine f, Affine g) => Affine (Product f g) | |||||
Defined in Linear.Affine | |||||
Affine ((->) b) | |||||
type family Diff (p :: Type -> Type) :: Type -> Type #
Instances
type Diff Time | |
Defined in Data.Active | |
type Diff ZipList | |
Defined in Linear.Affine | |
type Diff Complex | |
Defined in Linear.Affine | |
type Diff Identity | |
Defined in Linear.Affine | |
type Diff IntMap | |
Defined in Linear.Affine | |
type Diff Plucker | |
Defined in Linear.Affine type Diff Plucker = Plucker | |
type Diff Quaternion | |
Defined in Linear.Affine type Diff Quaternion = Quaternion | |
type Diff V0 | |
Defined in Linear.Affine type Diff V0 = V0 | |
type Diff V1 | |
Defined in Linear.Affine type Diff V1 = V1 | |
type Diff V2 | |
Defined in Linear.Affine | |
type Diff V3 | |
Defined in Linear.Affine | |
type Diff V4 | |
Defined in Linear.Affine type Diff V4 = V4 | |
type Diff Vector | |
Defined in Linear.Affine type Diff Vector = Vector | |
type Diff Maybe | |
Defined in Linear.Affine | |
type Diff [] | |
Defined in Linear.Affine | |
type Diff (Map k) | |
Defined in Linear.Affine | |
type Diff (Point f) | |
Defined in Linear.Affine | |
type Diff (HashMap k) | |
Defined in Linear.Affine type Diff (HashMap k) = HashMap k | |
type Diff (V n) | |
Defined in Linear.Affine type Diff (V n) = V n | |
type Diff (Product f g) | |
type Diff ((->) b) | |
Defined in Linear.Affine type Diff ((->) b) = (->) b |
class R1 t => R2 (t :: Type -> Type) where #
Minimal complete definition
Constructors
V3 !a !a !a |
Instances
Representable V3 | |||||||||||||
MonadFix V3 | |||||||||||||
MonadZip V3 | |||||||||||||
Foldable V3 | |||||||||||||
Defined in Linear.V3 Methods fold :: Monoid m => V3 m -> m # foldMap :: Monoid m => (a -> m) -> V3 a -> m # foldMap' :: Monoid m => (a -> m) -> V3 a -> m # foldr :: (a -> b -> b) -> b -> V3 a -> b # foldr' :: (a -> b -> b) -> b -> V3 a -> b # foldl :: (b -> a -> b) -> b -> V3 a -> b # foldl' :: (b -> a -> b) -> b -> V3 a -> b # foldr1 :: (a -> a -> a) -> V3 a -> a # foldl1 :: (a -> a -> a) -> V3 a -> a # elem :: Eq a => a -> V3 a -> Bool # maximum :: Ord a => V3 a -> a # | |||||||||||||
Foldable1 V3 | |||||||||||||
Defined in Linear.V3 Methods fold1 :: Semigroup m => V3 m -> m # foldMap1 :: Semigroup m => (a -> m) -> V3 a -> m # foldMap1' :: Semigroup m => (a -> m) -> V3 a -> m # toNonEmpty :: V3 a -> NonEmpty a # maximum :: Ord a => V3 a -> a # minimum :: Ord a => V3 a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> V3 a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> V3 a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> V3 a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> V3 a -> b # | |||||||||||||
Eq1 V3 | |||||||||||||
Ord1 V3 | |||||||||||||
Read1 V3 | |||||||||||||
Show1 V3 | |||||||||||||
Traversable V3 | |||||||||||||
Applicative V3 | |||||||||||||
Functor V3 | |||||||||||||
Monad V3 | |||||||||||||
Serial1 V3 | |||||||||||||
Defined in Linear.V3 Methods serializeWith :: MonadPut m => (a -> m ()) -> V3 a -> m () deserializeWith :: MonadGet m => m a -> m (V3 a) | |||||||||||||
Distributive V3 | |||||||||||||
Hashable1 V3 | |||||||||||||
Affine V3 | |||||||||||||
Metric V3 | |||||||||||||
Finite V3 | |||||||||||||
R1 V3 | |||||||||||||
R2 V3 | |||||||||||||
R3 V3 | |||||||||||||
Additive V3 | |||||||||||||
Apply V3 | |||||||||||||
Bind V3 | |||||||||||||
Traversable1 V3 | |||||||||||||
Generic1 V3 | |||||||||||||
Defined in Linear.V3 Associated Types
| |||||||||||||
Lift a => Lift (V3 a :: Type) | |||||||||||||
Unbox a => Vector Vector (V3 a) | |||||||||||||
Defined in Linear.V3 Methods basicUnsafeFreeze :: Mutable Vector s (V3 a) -> ST s (Vector (V3 a)) basicUnsafeThaw :: Vector (V3 a) -> ST s (Mutable Vector s (V3 a)) basicLength :: Vector (V3 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V3 a) -> Vector (V3 a) basicUnsafeIndexM :: Vector (V3 a) -> Int -> Box (V3 a) basicUnsafeCopy :: Mutable Vector s (V3 a) -> Vector (V3 a) -> ST s () | |||||||||||||
Unbox a => MVector MVector (V3 a) | |||||||||||||
Defined in Linear.V3 Methods basicLength :: MVector s (V3 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V3 a) -> MVector s (V3 a) basicOverlaps :: MVector s (V3 a) -> MVector s (V3 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V3 a)) basicInitialize :: MVector s (V3 a) -> ST s () basicUnsafeReplicate :: Int -> V3 a -> ST s (MVector s (V3 a)) basicUnsafeRead :: MVector s (V3 a) -> Int -> ST s (V3 a) basicUnsafeWrite :: MVector s (V3 a) -> Int -> V3 a -> ST s () basicClear :: MVector s (V3 a) -> ST s () basicSet :: MVector s (V3 a) -> V3 a -> ST s () basicUnsafeCopy :: MVector s (V3 a) -> MVector s (V3 a) -> ST s () basicUnsafeMove :: MVector s (V3 a) -> MVector s (V3 a) -> ST s () basicUnsafeGrow :: MVector s (V3 a) -> Int -> ST s (MVector s (V3 a)) | |||||||||||||
Data a => Data (V3 a) | |||||||||||||
Defined in Linear.V3 Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V3 a -> c (V3 a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V3 a) # dataTypeOf :: V3 a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V3 a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V3 a)) # gmapT :: (forall b. Data b => b -> b) -> V3 a -> V3 a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r # gmapQ :: (forall d. Data d => d -> u) -> V3 a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V3 a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) # | |||||||||||||
Storable a => Storable (V3 a) | |||||||||||||
Monoid a => Monoid (V3 a) | |||||||||||||
Semigroup a => Semigroup (V3 a) | |||||||||||||
Bounded a => Bounded (V3 a) | |||||||||||||
Floating a => Floating (V3 a) | |||||||||||||
Generic (V3 a) | |||||||||||||
Defined in Linear.V3 Associated Types
| |||||||||||||
Ix a => Ix (V3 a) | |||||||||||||
Num a => Num (V3 a) | |||||||||||||
Read a => Read (V3 a) | |||||||||||||
Fractional a => Fractional (V3 a) | |||||||||||||
Show a => Show (V3 a) | |||||||||||||
Binary a => Binary (V3 a) | |||||||||||||
Serial a => Serial (V3 a) | |||||||||||||
Defined in Linear.V3 | |||||||||||||
Serialize a => Serialize (V3 a) | |||||||||||||
NFData a => NFData (V3 a) | |||||||||||||
Coordinates (V3 n) | |||||||||||||
Defined in Diagrams.Coordinates Associated Types
| |||||||||||||
Eq a => Eq (V3 a) | |||||||||||||
Ord a => Ord (V3 a) | |||||||||||||
Hashable a => Hashable (V3 a) | |||||||||||||
Ixed (V3 a) | |||||||||||||
Epsilon a => Epsilon (V3 a) | |||||||||||||
Random a => Random (V3 a) | |||||||||||||
Uniform a => Uniform (V3 a) | |||||||||||||
UniformRange a => UniformRange (V3 a) | |||||||||||||
Unbox a => Unbox (V3 a) | |||||||||||||
Defined in Linear.V3 | |||||||||||||
FoldableWithIndex (E V3) V3 | |||||||||||||
FunctorWithIndex (E V3) V3 | |||||||||||||
TraversableWithIndex (E V3) V3 | |||||||||||||
Each (V3 a) (V3 b) a b | |||||||||||||
Field1 (V3 a) (V3 a) a a | |||||||||||||
Field2 (V3 a) (V3 a) a a | |||||||||||||
Field3 (V3 a) (V3 a) a a | |||||||||||||
TypeableFloat n => Traced (BoundingBox V3 n) | |||||||||||||
Defined in Diagrams.BoundingBox Methods getTrace :: BoundingBox V3 n -> Trace (V (BoundingBox V3 n)) (N (BoundingBox V3 n)) # | |||||||||||||
type Rep V3 | |||||||||||||
type Diff V3 | |||||||||||||
Defined in Linear.Affine | |||||||||||||
type Size V3 | |||||||||||||
type Rep1 V3 | |||||||||||||
Defined in Linear.V3 type Rep1 V3 = D1 ('MetaData "V3" "Linear.V3" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V3" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1 :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1))) | |||||||||||||
data MVector s (V3 a) | |||||||||||||
type Rep (V3 a) | |||||||||||||
Defined in Linear.V3 type Rep (V3 a) = D1 ('MetaData "V3" "Linear.V3" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V3" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a)))) | |||||||||||||
type N (V3 n) | |||||||||||||
Defined in Diagrams.ThreeD.Types | |||||||||||||
type V (V3 n) | |||||||||||||
Defined in Diagrams.ThreeD.Types | |||||||||||||
type Decomposition (V3 n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type FinalCoord (V3 n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type PrevDim (V3 n) | |||||||||||||
Defined in Diagrams.Coordinates | |||||||||||||
type Index (V3 a) | |||||||||||||
type IxValue (V3 a) | |||||||||||||
data Vector (V3 a) | |||||||||||||
class Profunctor p => Choice (p :: Type -> Type -> Type) where #
Instances
Choice ReifiedFold | |
Defined in Control.Lens.Reified Methods left' :: ReifiedFold a b -> ReifiedFold (Either a c) (Either b c) # right' :: ReifiedFold a b -> ReifiedFold (Either c a) (Either c b) # | |
Choice ReifiedGetter | |
Defined in Control.Lens.Reified Methods left' :: ReifiedGetter a b -> ReifiedGetter (Either a c) (Either b c) # right' :: ReifiedGetter a b -> ReifiedGetter (Either c a) (Either c b) # | |
Monad m => Choice (Kleisli m) | |
Choice (Indexed i) | |
Choice (PastroSum p) | |
Profunctor p => Choice (TambaraSum p) | |
Choice p => Choice (Tambara p) | |
Choice (Tagged :: Type -> Type -> Type) | |
Comonad w => Choice (Cokleisli w) | |
Monoid r => Choice (Forget r :: Type -> Type -> Type) | |
Applicative f => Choice (Star f) | |
Choice (->) | |
Functor f => Choice (Joker f :: Type -> Type -> Type) | |
ArrowChoice p => Choice (WrappedArrow p) | |
(Choice p, Choice q) => Choice (Product p q) | |
(Choice p, Choice q) => Choice (Sum p q) | |
(Functor f, Choice p) => Choice (Tannen f p) | |
(Choice p, Choice q) => Choice (Procompose p q) | |
class Profunctor (p :: Type -> Type -> Type) where #
Instances
Profunctor Measured | |
Defined in Diagrams.Core.Measure Methods dimap :: (a -> b) -> (c -> d) -> Measured b c -> Measured a d # lmap :: (a -> b) -> Measured b c -> Measured a c # rmap :: (b -> c) -> Measured a b -> Measured a c # (#.) :: forall a b c q. Coercible c b => q b c -> Measured a b -> Measured a c (.#) :: forall a b c q. Coercible b a => Measured b c -> q a b -> Measured a c | |
Profunctor ReifiedFold | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedFold b c -> ReifiedFold a d # lmap :: (a -> b) -> ReifiedFold b c -> ReifiedFold a c # rmap :: (b -> c) -> ReifiedFold a b -> ReifiedFold a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedFold a b -> ReifiedFold a c (.#) :: forall a b c q. Coercible b a => ReifiedFold b c -> q a b -> ReifiedFold a c | |
Profunctor ReifiedGetter | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedGetter b c -> ReifiedGetter a d # lmap :: (a -> b) -> ReifiedGetter b c -> ReifiedGetter a c # rmap :: (b -> c) -> ReifiedGetter a b -> ReifiedGetter a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedGetter a b -> ReifiedGetter a c (.#) :: forall a b c q. Coercible b a => ReifiedGetter b c -> q a b -> ReifiedGetter a c | |
Monad m => Profunctor (Kleisli m) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Kleisli m b c -> Kleisli m a d # lmap :: (a -> b) -> Kleisli m b c -> Kleisli m a c # rmap :: (b -> c) -> Kleisli m a b -> Kleisli m a c # (#.) :: forall a b c q. Coercible c b => q b c -> Kleisli m a b -> Kleisli m a c (.#) :: forall a b c q. Coercible b a => Kleisli m b c -> q a b -> Kleisli m a c | |
Functor v => Profunctor (Query v) | |
Defined in Diagrams.Core.Query Methods dimap :: (a -> b) -> (c -> d) -> Query v b c -> Query v a d # lmap :: (a -> b) -> Query v b c -> Query v a c # rmap :: (b -> c) -> Query v a b -> Query v a c # (#.) :: forall a b c q. Coercible c b => q b c -> Query v a b -> Query v a c (.#) :: forall a b c q. Coercible b a => Query v b c -> q a b -> Query v a c | |
Profunctor (Indexed i) | |
Defined in Control.Lens.Internal.Indexed Methods dimap :: (a -> b) -> (c -> d) -> Indexed i b c -> Indexed i a d # lmap :: (a -> b) -> Indexed i b c -> Indexed i a c # rmap :: (b -> c) -> Indexed i a b -> Indexed i a c # (#.) :: forall a b c q. Coercible c b => q b c -> Indexed i a b -> Indexed i a c (.#) :: forall a b c q. Coercible b a => Indexed i b c -> q a b -> Indexed i a c | |
Profunctor (ReifiedIndexedFold i) | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a d # lmap :: (a -> b) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a c # rmap :: (b -> c) -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c (.#) :: forall a b c q. Coercible b a => ReifiedIndexedFold i b c -> q a b -> ReifiedIndexedFold i a c | |
Profunctor (ReifiedIndexedGetter i) | |
Defined in Control.Lens.Reified Methods dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a d # lmap :: (a -> b) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a c # rmap :: (b -> c) -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c # (#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c (.#) :: forall a b c q. Coercible b a => ReifiedIndexedGetter i b c -> q a b -> ReifiedIndexedGetter i a c | |
Profunctor (CopastroSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> CopastroSum p b c -> CopastroSum p a d # lmap :: (a -> b) -> CopastroSum p b c -> CopastroSum p a c # rmap :: (b -> c) -> CopastroSum p a b -> CopastroSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> CopastroSum p a b -> CopastroSum p a c (.#) :: forall a b c q. Coercible b a => CopastroSum p b c -> q a b -> CopastroSum p a c | |
Profunctor (CotambaraSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> CotambaraSum p b c -> CotambaraSum p a d # lmap :: (a -> b) -> CotambaraSum p b c -> CotambaraSum p a c # rmap :: (b -> c) -> CotambaraSum p a b -> CotambaraSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> CotambaraSum p a b -> CotambaraSum p a c (.#) :: forall a b c q. Coercible b a => CotambaraSum p b c -> q a b -> CotambaraSum p a c | |
Profunctor (PastroSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> PastroSum p b c -> PastroSum p a d # lmap :: (a -> b) -> PastroSum p b c -> PastroSum p a c # rmap :: (b -> c) -> PastroSum p a b -> PastroSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> PastroSum p a b -> PastroSum p a c (.#) :: forall a b c q. Coercible b a => PastroSum p b c -> q a b -> PastroSum p a c | |
Profunctor p => Profunctor (TambaraSum p) | |
Defined in Data.Profunctor.Choice Methods dimap :: (a -> b) -> (c -> d) -> TambaraSum p b c -> TambaraSum p a d # lmap :: (a -> b) -> TambaraSum p b c -> TambaraSum p a c # rmap :: (b -> c) -> TambaraSum p a b -> TambaraSum p a c # (#.) :: forall a b c q. Coercible c b => q b c -> TambaraSum p a b -> TambaraSum p a c (.#) :: forall a b c q. Coercible b a => TambaraSum p b c -> q a b -> TambaraSum p a c | |
Profunctor (Copastro p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Copastro p b c -> Copastro p a d # lmap :: (a -> b) -> Copastro p b c -> Copastro p a c # rmap :: (b -> c) -> Copastro p a b -> Copastro p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Copastro p a b -> Copastro p a c (.#) :: forall a b c q. Coercible b a => Copastro p b c -> q a b -> Copastro p a c | |
Profunctor (Cotambara p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Cotambara p b c -> Cotambara p a d # lmap :: (a -> b) -> Cotambara p b c -> Cotambara p a c # rmap :: (b -> c) -> Cotambara p a b -> Cotambara p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Cotambara p a b -> Cotambara p a c (.#) :: forall a b c q. Coercible b a => Cotambara p b c -> q a b -> Cotambara p a c | |
Profunctor (Pastro p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Pastro p b c -> Pastro p a d # lmap :: (a -> b) -> Pastro p b c -> Pastro p a c # rmap :: (b -> c) -> Pastro p a b -> Pastro p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Pastro p a b -> Pastro p a c (.#) :: forall a b c q. Coercible b a => Pastro p b c -> q a b -> Pastro p a c | |
Profunctor p => Profunctor (Tambara p) | |
Defined in Data.Profunctor.Strong Methods dimap :: (a -> b) -> (c -> d) -> Tambara p b c -> Tambara p a d # lmap :: (a -> b) -> Tambara p b c -> Tambara p a c # rmap :: (b -> c) -> Tambara p a b -> Tambara p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Tambara p a b -> Tambara p a c (.#) :: forall a b c q. Coercible b a => Tambara p b c -> q a b -> Tambara p a c | |
Profunctor (Tagged :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Tagged b c -> Tagged a d # lmap :: (a -> b) -> Tagged b c -> Tagged a c # rmap :: (b -> c) -> Tagged a b -> Tagged a c # (#.) :: forall a b c q. Coercible c b => q b c -> Tagged a b -> Tagged a c (.#) :: forall a b c q. Coercible b a => Tagged b c -> q a b -> Tagged a c | |
Functor w => Profunctor (Cokleisli w) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Cokleisli w b c -> Cokleisli w a d # lmap :: (a -> b) -> Cokleisli w b c -> Cokleisli w a c # rmap :: (b -> c) -> Cokleisli w a b -> Cokleisli w a c # (#.) :: forall a b c q. Coercible c b => q b c -> Cokleisli w a b -> Cokleisli w a c (.#) :: forall a b c q. Coercible b a => Cokleisli w b c -> q a b -> Cokleisli w a c | |
Profunctor (Exchange a b) | |
Defined in Control.Lens.Internal.Iso Methods dimap :: (a0 -> b0) -> (c -> d) -> Exchange a b b0 c -> Exchange a b a0 d # lmap :: (a0 -> b0) -> Exchange a b b0 c -> Exchange a b a0 c # rmap :: (b0 -> c) -> Exchange a b a0 b0 -> Exchange a b a0 c # (#.) :: forall a0 b0 c q. Coercible c b0 => q b0 c -> Exchange a b a0 b0 -> Exchange a b a0 c (.#) :: forall a0 b0 c q. Coercible b0 a0 => Exchange a b b0 c -> q a0 b0 -> Exchange a b a0 c | |
Functor f => Profunctor (Costar f) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> Costar f b c -> Costar f a d # lmap :: (a -> b) -> Costar f b c -> Costar f a c # rmap :: (b -> c) -> Costar f a b -> Costar f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Costar f a b -> Costar f a c (.#) :: forall a b c q. Coercible b a => Costar f b c -> q a b -> Costar f a c | |
Profunctor (Forget r :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> Forget r b c -> Forget r a d # lmap :: (a -> b) -> Forget r b c -> Forget r a c # rmap :: (b -> c) -> Forget r a b -> Forget r a c # (#.) :: forall a b c q. Coercible c b => q b c -> Forget r a b -> Forget r a c (.#) :: forall a b c q. Coercible b a => Forget r b c -> q a b -> Forget r a c | |
Functor f => Profunctor (Star f) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> Star f b c -> Star f a d # lmap :: (a -> b) -> Star f b c -> Star f a c # rmap :: (b -> c) -> Star f a b -> Star f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Star f a b -> Star f a c (.#) :: forall a b c q. Coercible b a => Star f b c -> q a b -> Star f a c | |
Profunctor (->) | |
Defined in Data.Profunctor.Unsafe | |
Contravariant f => Profunctor (Clown f :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Clown f b c -> Clown f a d # lmap :: (a -> b) -> Clown f b c -> Clown f a c # rmap :: (b -> c) -> Clown f a b -> Clown f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Clown f a b -> Clown f a c (.#) :: forall a b c q. Coercible b a => Clown f b c -> q a b -> Clown f a c | |
Functor f => Profunctor (Joker f :: Type -> Type -> Type) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Joker f b c -> Joker f a d # lmap :: (a -> b) -> Joker f b c -> Joker f a c # rmap :: (b -> c) -> Joker f a b -> Joker f a c # (#.) :: forall a b c q. Coercible c b => q b c -> Joker f a b -> Joker f a c (.#) :: forall a b c q. Coercible b a => Joker f b c -> q a b -> Joker f a c | |
Arrow p => Profunctor (WrappedArrow p) | |
Defined in Data.Profunctor.Types Methods dimap :: (a -> b) -> (c -> d) -> WrappedArrow p b c -> WrappedArrow p a d # lmap :: (a -> b) -> WrappedArrow p b c -> WrappedArrow p a c # rmap :: (b -> c) -> WrappedArrow p a b -> WrappedArrow p a c # (#.) :: forall a b c q. Coercible c b => q b c -> WrappedArrow p a b -> WrappedArrow p a c (.#) :: forall a b c q. Coercible b a => WrappedArrow p b c -> q a b -> WrappedArrow p a c | |
(Profunctor p, Profunctor q) => Profunctor (Product p q) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Product p q b c -> Product p q a d # lmap :: (a -> b) -> Product p q b c -> Product p q a c # rmap :: (b -> c) -> Product p q a b -> Product p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Product p q a b -> Product p q a c (.#) :: forall a b c q0. Coercible b a => Product p q b c -> q0 a b -> Product p q a c | |
(Profunctor p, Profunctor q) => Profunctor (Sum p q) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Sum p q b c -> Sum p q a d # lmap :: (a -> b) -> Sum p q b c -> Sum p q a c # rmap :: (b -> c) -> Sum p q a b -> Sum p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Sum p q a b -> Sum p q a c (.#) :: forall a b c q0. Coercible b a => Sum p q b c -> q0 a b -> Sum p q a c | |
(Functor f, Profunctor p) => Profunctor (Tannen f p) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Tannen f p b c -> Tannen f p a d # lmap :: (a -> b) -> Tannen f p b c -> Tannen f p a c # rmap :: (b -> c) -> Tannen f p a b -> Tannen f p a c # (#.) :: forall a b c q. Coercible c b => q b c -> Tannen f p a b -> Tannen f p a c (.#) :: forall a b c q. Coercible b a => Tannen f p b c -> q a b -> Tannen f p a c | |
(Profunctor p, Profunctor q) => Profunctor (Procompose p q) | |
Defined in Data.Profunctor.Composition Methods dimap :: (a -> b) -> (c -> d) -> Procompose p q b c -> Procompose p q a d # lmap :: (a -> b) -> Procompose p q b c -> Procompose p q a c # rmap :: (b -> c) -> Procompose p q a b -> Procompose p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Procompose p q a b -> Procompose p q a c (.#) :: forall a b c q0. Coercible b a => Procompose p q b c -> q0 a b -> Procompose p q a c | |
(Profunctor p, Profunctor q) => Profunctor (Rift p q) | |
Defined in Data.Profunctor.Composition Methods dimap :: (a -> b) -> (c -> d) -> Rift p q b c -> Rift p q a d # lmap :: (a -> b) -> Rift p q b c -> Rift p q a c # rmap :: (b -> c) -> Rift p q a b -> Rift p q a c # (#.) :: forall a b c q0. Coercible c b => q0 b c -> Rift p q a b -> Rift p q a c (.#) :: forall a b c q0. Coercible b a => Rift p q b c -> q0 a b -> Rift p q a c | |
(Profunctor p, Functor f, Functor g) => Profunctor (Biff p f g) | |
Defined in Data.Profunctor.Unsafe Methods dimap :: (a -> b) -> (c -> d) -> Biff p f g b c -> Biff p f g a d # lmap :: (a -> b) -> Biff p f g b c -> Biff p f g a c # rmap :: (b -> c) -> Biff p f g a b -> Biff p f g a c # (#.) :: forall a b c q. Coercible c b => q b c -> Biff p f g a b -> Biff p f g a c (.#) :: forall a b c q. Coercible b a => Biff p f g b c -> q a b -> Biff p f g a c |
class (Foldable1 t, Traversable t) => Traversable1 (t :: Type -> Type) where #
Minimal complete definition
traverse1 | sequence1
Instances
Traversable1 Complex | |
Traversable1 Identity | |
Traversable1 First | |
Traversable1 Last | |
Traversable1 Max | |
Traversable1 Min | |
Traversable1 Dual | |
Traversable1 Product | |
Traversable1 Sum | |
Traversable1 NonEmpty | |
Traversable1 Par1 | |
Traversable1 Tree | |
Traversable1 Plucker | |
Defined in Linear.Plucker | |
Traversable1 V1 | |
Traversable1 V2 | |
Traversable1 V3 | |
Traversable1 V4 | |
Traversable1 (V1 :: Type -> Type) | |
Traversable1 f => Traversable1 (Cofree f) | |
Defined in Control.Comonad.Cofree | |
Traversable1 f => Traversable1 (Free f) | |
Defined in Control.Monad.Free | |
Traversable1 f => Traversable1 (Yoneda f) | |
Defined in Data.Functor.Yoneda | |
Traversable1 f => Traversable1 (Lift f) | |
Traversable1 ((,) a) | |
Defined in Data.Semigroup.Traversable.Class | |
Traversable1 f => Traversable1 (Alt f) | |
Traversable1 f => Traversable1 (Rec1 f) | |
Bitraversable1 p => Traversable1 (Join p) | |
Defined in Data.Semigroup.Traversable.Class | |
Traversable1 f => Traversable1 (AlongsideLeft f b) | |
Defined in Control.Lens.Internal.Getter | |
Traversable1 f => Traversable1 (AlongsideRight f a) | |
Defined in Control.Lens.Internal.Getter | |
Traversable1 (Tagged a) | |
Defined in Data.Semigroup.Traversable.Class | |
Traversable1 f => Traversable1 (Backwards f) | |
Traversable1 f => Traversable1 (IdentityT f) | |
Traversable1 f => Traversable1 (Reverse f) | |
(Traversable1 f, Traversable1 g) => Traversable1 (Product f g) | |
(Traversable1 f, Traversable1 g) => Traversable1 (Sum f g) | |
(Traversable1 f, Traversable1 g) => Traversable1 (f :*: g) | |
(Traversable1 f, Traversable1 g) => Traversable1 (f :+: g) | |
(Traversable1 f, Traversable1 g) => Traversable1 (Compose f g) | |
(Traversable1 f, Traversable1 g) => Traversable1 (f :.: g) | |
Traversable1 f => Traversable1 (M1 i c f) | |
Traversable1 g => Traversable1 (Joker g a) | |
Defined in Data.Semigroup.Traversable.Class |
Instances
MVector MVector All | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s All -> Int basicUnsafeSlice :: Int -> Int -> MVector s All -> MVector s All basicOverlaps :: MVector s All -> MVector s All -> Bool basicUnsafeNew :: Int -> ST s (MVector s All) basicInitialize :: MVector s All -> ST s () basicUnsafeReplicate :: Int -> All -> ST s (MVector s All) basicUnsafeRead :: MVector s All -> Int -> ST s All basicUnsafeWrite :: MVector s All -> Int -> All -> ST s () basicClear :: MVector s All -> ST s () basicSet :: MVector s All -> All -> ST s () basicUnsafeCopy :: MVector s All -> MVector s All -> ST s () basicUnsafeMove :: MVector s All -> MVector s All -> ST s () basicUnsafeGrow :: MVector s All -> Int -> ST s (MVector s All) | |
MVector MVector Any | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Any -> Int basicUnsafeSlice :: Int -> Int -> MVector s Any -> MVector s Any basicOverlaps :: MVector s Any -> MVector s Any -> Bool basicUnsafeNew :: Int -> ST s (MVector s Any) basicInitialize :: MVector s Any -> ST s () basicUnsafeReplicate :: Int -> Any -> ST s (MVector s Any) basicUnsafeRead :: MVector s Any -> Int -> ST s Any basicUnsafeWrite :: MVector s Any -> Int -> Any -> ST s () basicClear :: MVector s Any -> ST s () basicSet :: MVector s Any -> Any -> ST s () basicUnsafeCopy :: MVector s Any -> MVector s Any -> ST s () basicUnsafeMove :: MVector s Any -> MVector s Any -> ST s () basicUnsafeGrow :: MVector s Any -> Int -> ST s (MVector s Any) | |
MVector MVector Int16 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int16 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Int16 -> MVector s Int16 basicOverlaps :: MVector s Int16 -> MVector s Int16 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Int16) basicInitialize :: MVector s Int16 -> ST s () basicUnsafeReplicate :: Int -> Int16 -> ST s (MVector s Int16) basicUnsafeRead :: MVector s Int16 -> Int -> ST s Int16 basicUnsafeWrite :: MVector s Int16 -> Int -> Int16 -> ST s () basicClear :: MVector s Int16 -> ST s () basicSet :: MVector s Int16 -> Int16 -> ST s () basicUnsafeCopy :: MVector s Int16 -> MVector s Int16 -> ST s () basicUnsafeMove :: MVector s Int16 -> MVector s Int16 -> ST s () basicUnsafeGrow :: MVector s Int16 -> Int -> ST s (MVector s Int16) | |
MVector MVector Int32 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int32 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Int32 -> MVector s Int32 basicOverlaps :: MVector s Int32 -> MVector s Int32 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Int32) basicInitialize :: MVector s Int32 -> ST s () basicUnsafeReplicate :: Int -> Int32 -> ST s (MVector s Int32) basicUnsafeRead :: MVector s Int32 -> Int -> ST s Int32 basicUnsafeWrite :: MVector s Int32 -> Int -> Int32 -> ST s () basicClear :: MVector s Int32 -> ST s () basicSet :: MVector s Int32 -> Int32 -> ST s () basicUnsafeCopy :: MVector s Int32 -> MVector s Int32 -> ST s () basicUnsafeMove :: MVector s Int32 -> MVector s Int32 -> ST s () basicUnsafeGrow :: MVector s Int32 -> Int -> ST s (MVector s Int32) | |
MVector MVector Int64 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int64 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Int64 -> MVector s Int64 basicOverlaps :: MVector s Int64 -> MVector s Int64 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Int64) basicInitialize :: MVector s Int64 -> ST s () basicUnsafeReplicate :: Int -> Int64 -> ST s (MVector s Int64) basicUnsafeRead :: MVector s Int64 -> Int -> ST s Int64 basicUnsafeWrite :: MVector s Int64 -> Int -> Int64 -> ST s () basicClear :: MVector s Int64 -> ST s () basicSet :: MVector s Int64 -> Int64 -> ST s () basicUnsafeCopy :: MVector s Int64 -> MVector s Int64 -> ST s () basicUnsafeMove :: MVector s Int64 -> MVector s Int64 -> ST s () basicUnsafeGrow :: MVector s Int64 -> Int -> ST s (MVector s Int64) | |
MVector MVector Int8 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int8 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Int8 -> MVector s Int8 basicOverlaps :: MVector s Int8 -> MVector s Int8 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Int8) basicInitialize :: MVector s Int8 -> ST s () basicUnsafeReplicate :: Int -> Int8 -> ST s (MVector s Int8) basicUnsafeRead :: MVector s Int8 -> Int -> ST s Int8 basicUnsafeWrite :: MVector s Int8 -> Int -> Int8 -> ST s () basicClear :: MVector s Int8 -> ST s () basicSet :: MVector s Int8 -> Int8 -> ST s () basicUnsafeCopy :: MVector s Int8 -> MVector s Int8 -> ST s () basicUnsafeMove :: MVector s Int8 -> MVector s Int8 -> ST s () basicUnsafeGrow :: MVector s Int8 -> Int -> ST s (MVector s Int8) | |
MVector MVector Word16 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word16 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Word16 -> MVector s Word16 basicOverlaps :: MVector s Word16 -> MVector s Word16 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Word16) basicInitialize :: MVector s Word16 -> ST s () basicUnsafeReplicate :: Int -> Word16 -> ST s (MVector s Word16) basicUnsafeRead :: MVector s Word16 -> Int -> ST s Word16 basicUnsafeWrite :: MVector s Word16 -> Int -> Word16 -> ST s () basicClear :: MVector s Word16 -> ST s () basicSet :: MVector s Word16 -> Word16 -> ST s () basicUnsafeCopy :: MVector s Word16 -> MVector s Word16 -> ST s () basicUnsafeMove :: MVector s Word16 -> MVector s Word16 -> ST s () basicUnsafeGrow :: MVector s Word16 -> Int -> ST s (MVector s Word16) | |
MVector MVector Word32 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word32 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Word32 -> MVector s Word32 basicOverlaps :: MVector s Word32 -> MVector s Word32 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Word32) basicInitialize :: MVector s Word32 -> ST s () basicUnsafeReplicate :: Int -> Word32 -> ST s (MVector s Word32) basicUnsafeRead :: MVector s Word32 -> Int -> ST s Word32 basicUnsafeWrite :: MVector s Word32 -> Int -> Word32 -> ST s () basicClear :: MVector s Word32 -> ST s () basicSet :: MVector s Word32 -> Word32 -> ST s () basicUnsafeCopy :: MVector s Word32 -> MVector s Word32 -> ST s () basicUnsafeMove :: MVector s Word32 -> MVector s Word32 -> ST s () basicUnsafeGrow :: MVector s Word32 -> Int -> ST s (MVector s Word32) | |
MVector MVector Word64 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word64 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Word64 -> MVector s Word64 basicOverlaps :: MVector s Word64 -> MVector s Word64 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Word64) basicInitialize :: MVector s Word64 -> ST s () basicUnsafeReplicate :: Int -> Word64 -> ST s (MVector s Word64) basicUnsafeRead :: MVector s Word64 -> Int -> ST s Word64 basicUnsafeWrite :: MVector s Word64 -> Int -> Word64 -> ST s () basicClear :: MVector s Word64 -> ST s () basicSet :: MVector s Word64 -> Word64 -> ST s () basicUnsafeCopy :: MVector s Word64 -> MVector s Word64 -> ST s () basicUnsafeMove :: MVector s Word64 -> MVector s Word64 -> ST s () basicUnsafeGrow :: MVector s Word64 -> Int -> ST s (MVector s Word64) | |
MVector MVector Word8 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word8 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Word8 -> MVector s Word8 basicOverlaps :: MVector s Word8 -> MVector s Word8 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Word8) basicInitialize :: MVector s Word8 -> ST s () basicUnsafeReplicate :: Int -> Word8 -> ST s (MVector s Word8) basicUnsafeRead :: MVector s Word8 -> Int -> ST s Word8 basicUnsafeWrite :: MVector s Word8 -> Int -> Word8 -> ST s () basicClear :: MVector s Word8 -> ST s () basicSet :: MVector s Word8 -> Word8 -> ST s () basicUnsafeCopy :: MVector s Word8 -> MVector s Word8 -> ST s () basicUnsafeMove :: MVector s Word8 -> MVector s Word8 -> ST s () basicUnsafeGrow :: MVector s Word8 -> Int -> ST s (MVector s Word8) | |
MVector MVector () | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s () -> Int basicUnsafeSlice :: Int -> Int -> MVector s () -> MVector s () basicOverlaps :: MVector s () -> MVector s () -> Bool basicUnsafeNew :: Int -> ST s (MVector s ()) basicInitialize :: MVector s () -> ST s () basicUnsafeReplicate :: Int -> () -> ST s (MVector s ()) basicUnsafeRead :: MVector s () -> Int -> ST s () basicUnsafeWrite :: MVector s () -> Int -> () -> ST s () basicClear :: MVector s () -> ST s () basicSet :: MVector s () -> () -> ST s () basicUnsafeCopy :: MVector s () -> MVector s () -> ST s () basicUnsafeMove :: MVector s () -> MVector s () -> ST s () basicUnsafeGrow :: MVector s () -> Int -> ST s (MVector s ()) | |
MVector MVector Bool | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Bool -> Int basicUnsafeSlice :: Int -> Int -> MVector s Bool -> MVector s Bool basicOverlaps :: MVector s Bool -> MVector s Bool -> Bool basicUnsafeNew :: Int -> ST s (MVector s Bool) basicInitialize :: MVector s Bool -> ST s () basicUnsafeReplicate :: Int -> Bool -> ST s (MVector s Bool) basicUnsafeRead :: MVector s Bool -> Int -> ST s Bool basicUnsafeWrite :: MVector s Bool -> Int -> Bool -> ST s () basicClear :: MVector s Bool -> ST s () basicSet :: MVector s Bool -> Bool -> ST s () basicUnsafeCopy :: MVector s Bool -> MVector s Bool -> ST s () basicUnsafeMove :: MVector s Bool -> MVector s Bool -> ST s () basicUnsafeGrow :: MVector s Bool -> Int -> ST s (MVector s Bool) | |
MVector MVector Char | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Char -> Int basicUnsafeSlice :: Int -> Int -> MVector s Char -> MVector s Char basicOverlaps :: MVector s Char -> MVector s Char -> Bool basicUnsafeNew :: Int -> ST s (MVector s Char) basicInitialize :: MVector s Char -> ST s () basicUnsafeReplicate :: Int -> Char -> ST s (MVector s Char) basicUnsafeRead :: MVector s Char -> Int -> ST s Char basicUnsafeWrite :: MVector s Char -> Int -> Char -> ST s () basicClear :: MVector s Char -> ST s () basicSet :: MVector s Char -> Char -> ST s () basicUnsafeCopy :: MVector s Char -> MVector s Char -> ST s () basicUnsafeMove :: MVector s Char -> MVector s Char -> ST s () basicUnsafeGrow :: MVector s Char -> Int -> ST s (MVector s Char) | |
MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Double -> Int basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double basicOverlaps :: MVector s Double -> MVector s Double -> Bool basicUnsafeNew :: Int -> ST s (MVector s Double) basicInitialize :: MVector s Double -> ST s () basicUnsafeReplicate :: Int -> Double -> ST s (MVector s Double) basicUnsafeRead :: MVector s Double -> Int -> ST s Double basicUnsafeWrite :: MVector s Double -> Int -> Double -> ST s () basicClear :: MVector s Double -> ST s () basicSet :: MVector s Double -> Double -> ST s () basicUnsafeCopy :: MVector s Double -> MVector s Double -> ST s () basicUnsafeMove :: MVector s Double -> MVector s Double -> ST s () basicUnsafeGrow :: MVector s Double -> Int -> ST s (MVector s Double) | |
MVector MVector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Float -> Int basicUnsafeSlice :: Int -> Int -> MVector s Float -> MVector s Float basicOverlaps :: MVector s Float -> MVector s Float -> Bool basicUnsafeNew :: Int -> ST s (MVector s Float) basicInitialize :: MVector s Float -> ST s () basicUnsafeReplicate :: Int -> Float -> ST s (MVector s Float) basicUnsafeRead :: MVector s Float -> Int -> ST s Float basicUnsafeWrite :: MVector s Float -> Int -> Float -> ST s () basicClear :: MVector s Float -> ST s () basicSet :: MVector s Float -> Float -> ST s () basicUnsafeCopy :: MVector s Float -> MVector s Float -> ST s () basicUnsafeMove :: MVector s Float -> MVector s Float -> ST s () basicUnsafeGrow :: MVector s Float -> Int -> ST s (MVector s Float) | |
MVector MVector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int -> Int basicUnsafeSlice :: Int -> Int -> MVector s Int -> MVector s Int basicOverlaps :: MVector s Int -> MVector s Int -> Bool basicUnsafeNew :: Int -> ST s (MVector s Int) basicInitialize :: MVector s Int -> ST s () basicUnsafeReplicate :: Int -> Int -> ST s (MVector s Int) basicUnsafeRead :: MVector s Int -> Int -> ST s Int basicUnsafeWrite :: MVector s Int -> Int -> Int -> ST s () basicClear :: MVector s Int -> ST s () basicSet :: MVector s Int -> Int -> ST s () basicUnsafeCopy :: MVector s Int -> MVector s Int -> ST s () basicUnsafeMove :: MVector s Int -> MVector s Int -> ST s () basicUnsafeGrow :: MVector s Int -> Int -> ST s (MVector s Int) | |
MVector MVector Word | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word -> Int basicUnsafeSlice :: Int -> Int -> MVector s Word -> MVector s Word basicOverlaps :: MVector s Word -> MVector s Word -> Bool basicUnsafeNew :: Int -> ST s (MVector s Word) basicInitialize :: MVector s Word -> ST s () basicUnsafeReplicate :: Int -> Word -> ST s (MVector s Word) basicUnsafeRead :: MVector s Word -> Int -> ST s Word basicUnsafeWrite :: MVector s Word -> Int -> Word -> ST s () basicClear :: MVector s Word -> ST s () basicSet :: MVector s Word -> Word -> ST s () basicUnsafeCopy :: MVector s Word -> MVector s Word -> ST s () basicUnsafeMove :: MVector s Word -> MVector s Word -> ST s () basicUnsafeGrow :: MVector s Word -> Int -> ST s (MVector s Word) | |
Unbox a => MVector MVector (Complex a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Complex a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Complex a) -> MVector s (Complex a) basicOverlaps :: MVector s (Complex a) -> MVector s (Complex a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Complex a)) basicInitialize :: MVector s (Complex a) -> ST s () basicUnsafeReplicate :: Int -> Complex a -> ST s (MVector s (Complex a)) basicUnsafeRead :: MVector s (Complex a) -> Int -> ST s (Complex a) basicUnsafeWrite :: MVector s (Complex a) -> Int -> Complex a -> ST s () basicClear :: MVector s (Complex a) -> ST s () basicSet :: MVector s (Complex a) -> Complex a -> ST s () basicUnsafeCopy :: MVector s (Complex a) -> MVector s (Complex a) -> ST s () basicUnsafeMove :: MVector s (Complex a) -> MVector s (Complex a) -> ST s () basicUnsafeGrow :: MVector s (Complex a) -> Int -> ST s (MVector s (Complex a)) | |
Unbox a => MVector MVector (Identity a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Identity a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Identity a) -> MVector s (Identity a) basicOverlaps :: MVector s (Identity a) -> MVector s (Identity a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Identity a)) basicInitialize :: MVector s (Identity a) -> ST s () basicUnsafeReplicate :: Int -> Identity a -> ST s (MVector s (Identity a)) basicUnsafeRead :: MVector s (Identity a) -> Int -> ST s (Identity a) basicUnsafeWrite :: MVector s (Identity a) -> Int -> Identity a -> ST s () basicClear :: MVector s (Identity a) -> ST s () basicSet :: MVector s (Identity a) -> Identity a -> ST s () basicUnsafeCopy :: MVector s (Identity a) -> MVector s (Identity a) -> ST s () basicUnsafeMove :: MVector s (Identity a) -> MVector s (Identity a) -> ST s () basicUnsafeGrow :: MVector s (Identity a) -> Int -> ST s (MVector s (Identity a)) | |
Unbox a => MVector MVector (Down a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Down a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Down a) -> MVector s (Down a) basicOverlaps :: MVector s (Down a) -> MVector s (Down a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Down a)) basicInitialize :: MVector s (Down a) -> ST s () basicUnsafeReplicate :: Int -> Down a -> ST s (MVector s (Down a)) basicUnsafeRead :: MVector s (Down a) -> Int -> ST s (Down a) basicUnsafeWrite :: MVector s (Down a) -> Int -> Down a -> ST s () basicClear :: MVector s (Down a) -> ST s () basicSet :: MVector s (Down a) -> Down a -> ST s () basicUnsafeCopy :: MVector s (Down a) -> MVector s (Down a) -> ST s () basicUnsafeMove :: MVector s (Down a) -> MVector s (Down a) -> ST s () basicUnsafeGrow :: MVector s (Down a) -> Int -> ST s (MVector s (Down a)) | |
Unbox a => MVector MVector (First a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (First a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (First a) -> MVector s (First a) basicOverlaps :: MVector s (First a) -> MVector s (First a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (First a)) basicInitialize :: MVector s (First a) -> ST s () basicUnsafeReplicate :: Int -> First a -> ST s (MVector s (First a)) basicUnsafeRead :: MVector s (First a) -> Int -> ST s (First a) basicUnsafeWrite :: MVector s (First a) -> Int -> First a -> ST s () basicClear :: MVector s (First a) -> ST s () basicSet :: MVector s (First a) -> First a -> ST s () basicUnsafeCopy :: MVector s (First a) -> MVector s (First a) -> ST s () basicUnsafeMove :: MVector s (First a) -> MVector s (First a) -> ST s () basicUnsafeGrow :: MVector s (First a) -> Int -> ST s (MVector s (First a)) | |
Unbox a => MVector MVector (Last a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Last a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Last a) -> MVector s (Last a) basicOverlaps :: MVector s (Last a) -> MVector s (Last a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Last a)) basicInitialize :: MVector s (Last a) -> ST s () basicUnsafeReplicate :: Int -> Last a -> ST s (MVector s (Last a)) basicUnsafeRead :: MVector s (Last a) -> Int -> ST s (Last a) basicUnsafeWrite :: MVector s (Last a) -> Int -> Last a -> ST s () basicClear :: MVector s (Last a) -> ST s () basicSet :: MVector s (Last a) -> Last a -> ST s () basicUnsafeCopy :: MVector s (Last a) -> MVector s (Last a) -> ST s () basicUnsafeMove :: MVector s (Last a) -> MVector s (Last a) -> ST s () basicUnsafeGrow :: MVector s (Last a) -> Int -> ST s (MVector s (Last a)) | |
Unbox a => MVector MVector (Max a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Max a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Max a) -> MVector s (Max a) basicOverlaps :: MVector s (Max a) -> MVector s (Max a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Max a)) basicInitialize :: MVector s (Max a) -> ST s () basicUnsafeReplicate :: Int -> Max a -> ST s (MVector s (Max a)) basicUnsafeRead :: MVector s (Max a) -> Int -> ST s (Max a) basicUnsafeWrite :: MVector s (Max a) -> Int -> Max a -> ST s () basicClear :: MVector s (Max a) -> ST s () basicSet :: MVector s (Max a) -> Max a -> ST s () basicUnsafeCopy :: MVector s (Max a) -> MVector s (Max a) -> ST s () basicUnsafeMove :: MVector s (Max a) -> MVector s (Max a) -> ST s () basicUnsafeGrow :: MVector s (Max a) -> Int -> ST s (MVector s (Max a)) | |
Unbox a => MVector MVector (Min a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Min a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Min a) -> MVector s (Min a) basicOverlaps :: MVector s (Min a) -> MVector s (Min a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Min a)) basicInitialize :: MVector s (Min a) -> ST s () basicUnsafeReplicate :: Int -> Min a -> ST s (MVector s (Min a)) basicUnsafeRead :: MVector s (Min a) -> Int -> ST s (Min a) basicUnsafeWrite :: MVector s (Min a) -> Int -> Min a -> ST s () basicClear :: MVector s (Min a) -> ST s () basicSet :: MVector s (Min a) -> Min a -> ST s () basicUnsafeCopy :: MVector s (Min a) -> MVector s (Min a) -> ST s () basicUnsafeMove :: MVector s (Min a) -> MVector s (Min a) -> ST s () basicUnsafeGrow :: MVector s (Min a) -> Int -> ST s (MVector s (Min a)) | |
Unbox a => MVector MVector (WrappedMonoid a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (WrappedMonoid a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) basicOverlaps :: MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (WrappedMonoid a)) basicInitialize :: MVector s (WrappedMonoid a) -> ST s () basicUnsafeReplicate :: Int -> WrappedMonoid a -> ST s (MVector s (WrappedMonoid a)) basicUnsafeRead :: MVector s (WrappedMonoid a) -> Int -> ST s (WrappedMonoid a) basicUnsafeWrite :: MVector s (WrappedMonoid a) -> Int -> WrappedMonoid a -> ST s () basicClear :: MVector s (WrappedMonoid a) -> ST s () basicSet :: MVector s (WrappedMonoid a) -> WrappedMonoid a -> ST s () basicUnsafeCopy :: MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) -> ST s () basicUnsafeMove :: MVector s (WrappedMonoid a) -> MVector s (WrappedMonoid a) -> ST s () basicUnsafeGrow :: MVector s (WrappedMonoid a) -> Int -> ST s (MVector s (WrappedMonoid a)) | |
Unbox a => MVector MVector (Dual a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Dual a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Dual a) -> MVector s (Dual a) basicOverlaps :: MVector s (Dual a) -> MVector s (Dual a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Dual a)) basicInitialize :: MVector s (Dual a) -> ST s () basicUnsafeReplicate :: Int -> Dual a -> ST s (MVector s (Dual a)) basicUnsafeRead :: MVector s (Dual a) -> Int -> ST s (Dual a) basicUnsafeWrite :: MVector s (Dual a) -> Int -> Dual a -> ST s () basicClear :: MVector s (Dual a) -> ST s () basicSet :: MVector s (Dual a) -> Dual a -> ST s () basicUnsafeCopy :: MVector s (Dual a) -> MVector s (Dual a) -> ST s () basicUnsafeMove :: MVector s (Dual a) -> MVector s (Dual a) -> ST s () basicUnsafeGrow :: MVector s (Dual a) -> Int -> ST s (MVector s (Dual a)) | |
Unbox a => MVector MVector (Product a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Product a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Product a) -> MVector s (Product a) basicOverlaps :: MVector s (Product a) -> MVector s (Product a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Product a)) basicInitialize :: MVector s (Product a) -> ST s () basicUnsafeReplicate :: Int -> Product a -> ST s (MVector s (Product a)) basicUnsafeRead :: MVector s (Product a) -> Int -> ST s (Product a) basicUnsafeWrite :: MVector s (Product a) -> Int -> Product a -> ST s () basicClear :: MVector s (Product a) -> ST s () basicSet :: MVector s (Product a) -> Product a -> ST s () basicUnsafeCopy :: MVector s (Product a) -> MVector s (Product a) -> ST s () basicUnsafeMove :: MVector s (Product a) -> MVector s (Product a) -> ST s () basicUnsafeGrow :: MVector s (Product a) -> Int -> ST s (MVector s (Product a)) | |
Unbox a => MVector MVector (Sum a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Sum a) -> MVector s (Sum a) basicOverlaps :: MVector s (Sum a) -> MVector s (Sum a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Sum a)) basicInitialize :: MVector s (Sum a) -> ST s () basicUnsafeReplicate :: Int -> Sum a -> ST s (MVector s (Sum a)) basicUnsafeRead :: MVector s (Sum a) -> Int -> ST s (Sum a) basicUnsafeWrite :: MVector s (Sum a) -> Int -> Sum a -> ST s () basicClear :: MVector s (Sum a) -> ST s () basicSet :: MVector s (Sum a) -> Sum a -> ST s () basicUnsafeCopy :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () basicUnsafeMove :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () basicUnsafeGrow :: MVector s (Sum a) -> Int -> ST s (MVector s (Sum a)) | |
Unbox a => MVector MVector (Plucker a) | |
Defined in Linear.Plucker Methods basicLength :: MVector s (Plucker a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Plucker a) -> MVector s (Plucker a) basicOverlaps :: MVector s (Plucker a) -> MVector s (Plucker a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Plucker a)) basicInitialize :: MVector s (Plucker a) -> ST s () basicUnsafeReplicate :: Int -> Plucker a -> ST s (MVector s (Plucker a)) basicUnsafeRead :: MVector s (Plucker a) -> Int -> ST s (Plucker a) basicUnsafeWrite :: MVector s (Plucker a) -> Int -> Plucker a -> ST s () basicClear :: MVector s (Plucker a) -> ST s () basicSet :: MVector s (Plucker a) -> Plucker a -> ST s () basicUnsafeCopy :: MVector s (Plucker a) -> MVector s (Plucker a) -> ST s () basicUnsafeMove :: MVector s (Plucker a) -> MVector s (Plucker a) -> ST s () basicUnsafeGrow :: MVector s (Plucker a) -> Int -> ST s (MVector s (Plucker a)) | |
Unbox a => MVector MVector (Quaternion a) | |
Defined in Linear.Quaternion Methods basicLength :: MVector s (Quaternion a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Quaternion a) -> MVector s (Quaternion a) basicOverlaps :: MVector s (Quaternion a) -> MVector s (Quaternion a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Quaternion a)) basicInitialize :: MVector s (Quaternion a) -> ST s () basicUnsafeReplicate :: Int -> Quaternion a -> ST s (MVector s (Quaternion a)) basicUnsafeRead :: MVector s (Quaternion a) -> Int -> ST s (Quaternion a) basicUnsafeWrite :: MVector s (Quaternion a) -> Int -> Quaternion a -> ST s () basicClear :: MVector s (Quaternion a) -> ST s () basicSet :: MVector s (Quaternion a) -> Quaternion a -> ST s () basicUnsafeCopy :: MVector s (Quaternion a) -> MVector s (Quaternion a) -> ST s () basicUnsafeMove :: MVector s (Quaternion a) -> MVector s (Quaternion a) -> ST s () basicUnsafeGrow :: MVector s (Quaternion a) -> Int -> ST s (MVector s (Quaternion a)) | |
MVector MVector (V0 a) | |
Defined in Linear.V0 Methods basicLength :: MVector s (V0 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V0 a) -> MVector s (V0 a) basicOverlaps :: MVector s (V0 a) -> MVector s (V0 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V0 a)) basicInitialize :: MVector s (V0 a) -> ST s () basicUnsafeReplicate :: Int -> V0 a -> ST s (MVector s (V0 a)) basicUnsafeRead :: MVector s (V0 a) -> Int -> ST s (V0 a) basicUnsafeWrite :: MVector s (V0 a) -> Int -> V0 a -> ST s () basicClear :: MVector s (V0 a) -> ST s () basicSet :: MVector s (V0 a) -> V0 a -> ST s () basicUnsafeCopy :: MVector s (V0 a) -> MVector s (V0 a) -> ST s () basicUnsafeMove :: MVector s (V0 a) -> MVector s (V0 a) -> ST s () basicUnsafeGrow :: MVector s (V0 a) -> Int -> ST s (MVector s (V0 a)) | |
Unbox a => MVector MVector (V1 a) | |
Defined in Linear.V1 Methods basicLength :: MVector s (V1 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V1 a) -> MVector s (V1 a) basicOverlaps :: MVector s (V1 a) -> MVector s (V1 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V1 a)) basicInitialize :: MVector s (V1 a) -> ST s () basicUnsafeReplicate :: Int -> V1 a -> ST s (MVector s (V1 a)) basicUnsafeRead :: MVector s (V1 a) -> Int -> ST s (V1 a) basicUnsafeWrite :: MVector s (V1 a) -> Int -> V1 a -> ST s () basicClear :: MVector s (V1 a) -> ST s () basicSet :: MVector s (V1 a) -> V1 a -> ST s () basicUnsafeCopy :: MVector s (V1 a) -> MVector s (V1 a) -> ST s () basicUnsafeMove :: MVector s (V1 a) -> MVector s (V1 a) -> ST s () basicUnsafeGrow :: MVector s (V1 a) -> Int -> ST s (MVector s (V1 a)) | |
Unbox a => MVector MVector (V2 a) | |
Defined in Linear.V2 Methods basicLength :: MVector s (V2 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V2 a) -> MVector s (V2 a) basicOverlaps :: MVector s (V2 a) -> MVector s (V2 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V2 a)) basicInitialize :: MVector s (V2 a) -> ST s () basicUnsafeReplicate :: Int -> V2 a -> ST s (MVector s (V2 a)) basicUnsafeRead :: MVector s (V2 a) -> Int -> ST s (V2 a) basicUnsafeWrite :: MVector s (V2 a) -> Int -> V2 a -> ST s () basicClear :: MVector s (V2 a) -> ST s () basicSet :: MVector s (V2 a) -> V2 a -> ST s () basicUnsafeCopy :: MVector s (V2 a) -> MVector s (V2 a) -> ST s () basicUnsafeMove :: MVector s (V2 a) -> MVector s (V2 a) -> ST s () basicUnsafeGrow :: MVector s (V2 a) -> Int -> ST s (MVector s (V2 a)) | |
Unbox a => MVector MVector (V3 a) | |
Defined in Linear.V3 Methods basicLength :: MVector s (V3 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V3 a) -> MVector s (V3 a) basicOverlaps :: MVector s (V3 a) -> MVector s (V3 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V3 a)) basicInitialize :: MVector s (V3 a) -> ST s () basicUnsafeReplicate :: Int -> V3 a -> ST s (MVector s (V3 a)) basicUnsafeRead :: MVector s (V3 a) -> Int -> ST s (V3 a) basicUnsafeWrite :: MVector s (V3 a) -> Int -> V3 a -> ST s () basicClear :: MVector s (V3 a) -> ST s () basicSet :: MVector s (V3 a) -> V3 a -> ST s () basicUnsafeCopy :: MVector s (V3 a) -> MVector s (V3 a) -> ST s () basicUnsafeMove :: MVector s (V3 a) -> MVector s (V3 a) -> ST s () basicUnsafeGrow :: MVector s (V3 a) -> Int -> ST s (MVector s (V3 a)) | |
Unbox a => MVector MVector (V4 a) | |
Defined in Linear.V4 Methods basicLength :: MVector s (V4 a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V4 a) -> MVector s (V4 a) basicOverlaps :: MVector s (V4 a) -> MVector s (V4 a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V4 a)) basicInitialize :: MVector s (V4 a) -> ST s () basicUnsafeReplicate :: Int -> V4 a -> ST s (MVector s (V4 a)) basicUnsafeRead :: MVector s (V4 a) -> Int -> ST s (V4 a) basicUnsafeWrite :: MVector s (V4 a) -> Int -> V4 a -> ST s () basicClear :: MVector s (V4 a) -> ST s () basicSet :: MVector s (V4 a) -> V4 a -> ST s () basicUnsafeCopy :: MVector s (V4 a) -> MVector s (V4 a) -> ST s () basicUnsafeMove :: MVector s (V4 a) -> MVector s (V4 a) -> ST s () basicUnsafeGrow :: MVector s (V4 a) -> Int -> ST s (MVector s (V4 a)) | |
MVector MVector (DoNotUnboxLazy a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (DoNotUnboxLazy a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a) basicOverlaps :: MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (DoNotUnboxLazy a)) basicInitialize :: MVector s (DoNotUnboxLazy a) -> ST s () basicUnsafeReplicate :: Int -> DoNotUnboxLazy a -> ST s (MVector s (DoNotUnboxLazy a)) basicUnsafeRead :: MVector s (DoNotUnboxLazy a) -> Int -> ST s (DoNotUnboxLazy a) basicUnsafeWrite :: MVector s (DoNotUnboxLazy a) -> Int -> DoNotUnboxLazy a -> ST s () basicClear :: MVector s (DoNotUnboxLazy a) -> ST s () basicSet :: MVector s (DoNotUnboxLazy a) -> DoNotUnboxLazy a -> ST s () basicUnsafeCopy :: MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a) -> ST s () basicUnsafeMove :: MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a) -> ST s () basicUnsafeGrow :: MVector s (DoNotUnboxLazy a) -> Int -> ST s (MVector s (DoNotUnboxLazy a)) | |
NFData a => MVector MVector (DoNotUnboxNormalForm a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (DoNotUnboxNormalForm a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a) basicOverlaps :: MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (DoNotUnboxNormalForm a)) basicInitialize :: MVector s (DoNotUnboxNormalForm a) -> ST s () basicUnsafeReplicate :: Int -> DoNotUnboxNormalForm a -> ST s (MVector s (DoNotUnboxNormalForm a)) basicUnsafeRead :: MVector s (DoNotUnboxNormalForm a) -> Int -> ST s (DoNotUnboxNormalForm a) basicUnsafeWrite :: MVector s (DoNotUnboxNormalForm a) -> Int -> DoNotUnboxNormalForm a -> ST s () basicClear :: MVector s (DoNotUnboxNormalForm a) -> ST s () basicSet :: MVector s (DoNotUnboxNormalForm a) -> DoNotUnboxNormalForm a -> ST s () basicUnsafeCopy :: MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a) -> ST s () basicUnsafeMove :: MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a) -> ST s () basicUnsafeGrow :: MVector s (DoNotUnboxNormalForm a) -> Int -> ST s (MVector s (DoNotUnboxNormalForm a)) | |
MVector MVector (DoNotUnboxStrict a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (DoNotUnboxStrict a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a) basicOverlaps :: MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (DoNotUnboxStrict a)) basicInitialize :: MVector s (DoNotUnboxStrict a) -> ST s () basicUnsafeReplicate :: Int -> DoNotUnboxStrict a -> ST s (MVector s (DoNotUnboxStrict a)) basicUnsafeRead :: MVector s (DoNotUnboxStrict a) -> Int -> ST s (DoNotUnboxStrict a) basicUnsafeWrite :: MVector s (DoNotUnboxStrict a) -> Int -> DoNotUnboxStrict a -> ST s () basicClear :: MVector s (DoNotUnboxStrict a) -> ST s () basicSet :: MVector s (DoNotUnboxStrict a) -> DoNotUnboxStrict a -> ST s () basicUnsafeCopy :: MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a) -> ST s () basicUnsafeMove :: MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a) -> ST s () basicUnsafeGrow :: MVector s (DoNotUnboxStrict a) -> Int -> ST s (MVector s (DoNotUnboxStrict a)) | |
Prim a => MVector MVector (UnboxViaPrim a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (UnboxViaPrim a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a) basicOverlaps :: MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (UnboxViaPrim a)) basicInitialize :: MVector s (UnboxViaPrim a) -> ST s () basicUnsafeReplicate :: Int -> UnboxViaPrim a -> ST s (MVector s (UnboxViaPrim a)) basicUnsafeRead :: MVector s (UnboxViaPrim a) -> Int -> ST s (UnboxViaPrim a) basicUnsafeWrite :: MVector s (UnboxViaPrim a) -> Int -> UnboxViaPrim a -> ST s () basicClear :: MVector s (UnboxViaPrim a) -> ST s () basicSet :: MVector s (UnboxViaPrim a) -> UnboxViaPrim a -> ST s () basicUnsafeCopy :: MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a) -> ST s () basicUnsafeMove :: MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a) -> ST s () basicUnsafeGrow :: MVector s (UnboxViaPrim a) -> Int -> ST s (MVector s (UnboxViaPrim a)) | |
(Unbox a, Unbox b) => MVector MVector (Arg a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Arg a b) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Arg a b) -> MVector s (Arg a b) basicOverlaps :: MVector s (Arg a b) -> MVector s (Arg a b) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Arg a b)) basicInitialize :: MVector s (Arg a b) -> ST s () basicUnsafeReplicate :: Int -> Arg a b -> ST s (MVector s (Arg a b)) basicUnsafeRead :: MVector s (Arg a b) -> Int -> ST s (Arg a b) basicUnsafeWrite :: MVector s (Arg a b) -> Int -> Arg a b -> ST s () basicClear :: MVector s (Arg a b) -> ST s () basicSet :: MVector s (Arg a b) -> Arg a b -> ST s () basicUnsafeCopy :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s () basicUnsafeMove :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s () basicUnsafeGrow :: MVector s (Arg a b) -> Int -> ST s (MVector s (Arg a b)) | |
Unbox (f a) => MVector MVector (Point f a) | |
Defined in Linear.Affine Methods basicLength :: MVector s (Point f a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Point f a) -> MVector s (Point f a) basicOverlaps :: MVector s (Point f a) -> MVector s (Point f a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Point f a)) basicInitialize :: MVector s (Point f a) -> ST s () basicUnsafeReplicate :: Int -> Point f a -> ST s (MVector s (Point f a)) basicUnsafeRead :: MVector s (Point f a) -> Int -> ST s (Point f a) basicUnsafeWrite :: MVector s (Point f a) -> Int -> Point f a -> ST s () basicClear :: MVector s (Point f a) -> ST s () basicSet :: MVector s (Point f a) -> Point f a -> ST s () basicUnsafeCopy :: MVector s (Point f a) -> MVector s (Point f a) -> ST s () basicUnsafeMove :: MVector s (Point f a) -> MVector s (Point f a) -> ST s () basicUnsafeGrow :: MVector s (Point f a) -> Int -> ST s (MVector s (Point f a)) | |
(IsoUnbox a b, Unbox b) => MVector MVector (As a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (As a b) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (As a b) -> MVector s (As a b) basicOverlaps :: MVector s (As a b) -> MVector s (As a b) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (As a b)) basicInitialize :: MVector s (As a b) -> ST s () basicUnsafeReplicate :: Int -> As a b -> ST s (MVector s (As a b)) basicUnsafeRead :: MVector s (As a b) -> Int -> ST s (As a b) basicUnsafeWrite :: MVector s (As a b) -> Int -> As a b -> ST s () basicClear :: MVector s (As a b) -> ST s () basicSet :: MVector s (As a b) -> As a b -> ST s () basicUnsafeCopy :: MVector s (As a b) -> MVector s (As a b) -> ST s () basicUnsafeMove :: MVector s (As a b) -> MVector s (As a b) -> ST s () basicUnsafeGrow :: MVector s (As a b) -> Int -> ST s (MVector s (As a b)) | |
(Unbox a, Unbox b) => MVector MVector (a, b) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (a, b) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (a, b) -> MVector s (a, b) basicOverlaps :: MVector s (a, b) -> MVector s (a, b) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (a, b)) basicInitialize :: MVector s (a, b) -> ST s () basicUnsafeReplicate :: Int -> (a, b) -> ST s (MVector s (a, b)) basicUnsafeRead :: MVector s (a, b) -> Int -> ST s (a, b) basicUnsafeWrite :: MVector s (a, b) -> Int -> (a, b) -> ST s () basicClear :: MVector s (a, b) -> ST s () basicSet :: MVector s (a, b) -> (a, b) -> ST s () basicUnsafeCopy :: MVector s (a, b) -> MVector s (a, b) -> ST s () basicUnsafeMove :: MVector s (a, b) -> MVector s (a, b) -> ST s () basicUnsafeGrow :: MVector s (a, b) -> Int -> ST s (MVector s (a, b)) | |
Unbox a => MVector MVector (Const a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Const a b) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b) basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Const a b)) basicInitialize :: MVector s (Const a b) -> ST s () basicUnsafeReplicate :: Int -> Const a b -> ST s (MVector s (Const a b)) basicUnsafeRead :: MVector s (Const a b) -> Int -> ST s (Const a b) basicUnsafeWrite :: MVector s (Const a b) -> Int -> Const a b -> ST s () basicClear :: MVector s (Const a b) -> ST s () basicSet :: MVector s (Const a b) -> Const a b -> ST s () basicUnsafeCopy :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () basicUnsafeMove :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () basicUnsafeGrow :: MVector s (Const a b) -> Int -> ST s (MVector s (Const a b)) | |
Unbox (f a) => MVector MVector (Alt f a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Alt f a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Alt f a) -> MVector s (Alt f a) basicOverlaps :: MVector s (Alt f a) -> MVector s (Alt f a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Alt f a)) basicInitialize :: MVector s (Alt f a) -> ST s () basicUnsafeReplicate :: Int -> Alt f a -> ST s (MVector s (Alt f a)) basicUnsafeRead :: MVector s (Alt f a) -> Int -> ST s (Alt f a) basicUnsafeWrite :: MVector s (Alt f a) -> Int -> Alt f a -> ST s () basicClear :: MVector s (Alt f a) -> ST s () basicSet :: MVector s (Alt f a) -> Alt f a -> ST s () basicUnsafeCopy :: MVector s (Alt f a) -> MVector s (Alt f a) -> ST s () basicUnsafeMove :: MVector s (Alt f a) -> MVector s (Alt f a) -> ST s () basicUnsafeGrow :: MVector s (Alt f a) -> Int -> ST s (MVector s (Alt f a)) | |
(Dim n, Unbox a) => MVector MVector (V n a) | |
Defined in Linear.V Methods basicLength :: MVector s (V n a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (V n a) -> MVector s (V n a) basicOverlaps :: MVector s (V n a) -> MVector s (V n a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (V n a)) basicInitialize :: MVector s (V n a) -> ST s () basicUnsafeReplicate :: Int -> V n a -> ST s (MVector s (V n a)) basicUnsafeRead :: MVector s (V n a) -> Int -> ST s (V n a) basicUnsafeWrite :: MVector s (V n a) -> Int -> V n a -> ST s () basicClear :: MVector s (V n a) -> ST s () basicSet :: MVector s (V n a) -> V n a -> ST s () basicUnsafeCopy :: MVector s (V n a) -> MVector s (V n a) -> ST s () basicUnsafeMove :: MVector s (V n a) -> MVector s (V n a) -> ST s () basicUnsafeGrow :: MVector s (V n a) -> Int -> ST s (MVector s (V n a)) | |
(Unbox a, Unbox b, Unbox c) => MVector MVector (a, b, c) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (a, b, c) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c) -> MVector s (a, b, c) basicOverlaps :: MVector s (a, b, c) -> MVector s (a, b, c) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (a, b, c)) basicInitialize :: MVector s (a, b, c) -> ST s () basicUnsafeReplicate :: Int -> (a, b, c) -> ST s (MVector s (a, b, c)) basicUnsafeRead :: MVector s (a, b, c) -> Int -> ST s (a, b, c) basicUnsafeWrite :: MVector s (a, b, c) -> Int -> (a, b, c) -> ST s () basicClear :: MVector s (a, b, c) -> ST s () basicSet :: MVector s (a, b, c) -> (a, b, c) -> ST s () basicUnsafeCopy :: MVector s (a, b, c) -> MVector s (a, b, c) -> ST s () basicUnsafeMove :: MVector s (a, b, c) -> MVector s (a, b, c) -> ST s () basicUnsafeGrow :: MVector s (a, b, c) -> Int -> ST s (MVector s (a, b, c)) | |
(Unbox a, Unbox b, Unbox c, Unbox d) => MVector MVector (a, b, c, d) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (a, b, c, d) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d) -> MVector s (a, b, c, d) basicOverlaps :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d)) basicInitialize :: MVector s (a, b, c, d) -> ST s () basicUnsafeReplicate :: Int -> (a, b, c, d) -> ST s (MVector s (a, b, c, d)) basicUnsafeRead :: MVector s (a, b, c, d) -> Int -> ST s (a, b, c, d) basicUnsafeWrite :: MVector s (a, b, c, d) -> Int -> (a, b, c, d) -> ST s () basicClear :: MVector s (a, b, c, d) -> ST s () basicSet :: MVector s (a, b, c, d) -> (a, b, c, d) -> ST s () basicUnsafeCopy :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> ST s () basicUnsafeMove :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> ST s () basicUnsafeGrow :: MVector s (a, b, c, d) -> Int -> ST s (MVector s (a, b, c, d)) | |
Unbox (f (g a)) => MVector MVector (Compose f g a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Compose f g a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Compose f g a) -> MVector s (Compose f g a) basicOverlaps :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Compose f g a)) basicInitialize :: MVector s (Compose f g a) -> ST s () basicUnsafeReplicate :: Int -> Compose f g a -> ST s (MVector s (Compose f g a)) basicUnsafeRead :: MVector s (Compose f g a) -> Int -> ST s (Compose f g a) basicUnsafeWrite :: MVector s (Compose f g a) -> Int -> Compose f g a -> ST s () basicClear :: MVector s (Compose f g a) -> ST s () basicSet :: MVector s (Compose f g a) -> Compose f g a -> ST s () basicUnsafeCopy :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> ST s () basicUnsafeMove :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> ST s () basicUnsafeGrow :: MVector s (Compose f g a) -> Int -> ST s (MVector s (Compose f g a)) | |
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector MVector (a, b, c, d, e) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (a, b, c, d, e) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) basicOverlaps :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d, e)) basicInitialize :: MVector s (a, b, c, d, e) -> ST s () basicUnsafeReplicate :: Int -> (a, b, c, d, e) -> ST s (MVector s (a, b, c, d, e)) basicUnsafeRead :: MVector s (a, b, c, d, e) -> Int -> ST s (a, b, c, d, e) basicUnsafeWrite :: MVector s (a, b, c, d, e) -> Int -> (a, b, c, d, e) -> ST s () basicClear :: MVector s (a, b, c, d, e) -> ST s () basicSet :: MVector s (a, b, c, d, e) -> (a, b, c, d, e) -> ST s () basicUnsafeCopy :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> ST s () basicUnsafeMove :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> ST s () basicUnsafeGrow :: MVector s (a, b, c, d, e) -> Int -> ST s (MVector s (a, b, c, d, e)) | |
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector MVector (a, b, c, d, e, f) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (a, b, c, d, e, f) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) basicOverlaps :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d, e, f)) basicInitialize :: MVector s (a, b, c, d, e, f) -> ST s () basicUnsafeReplicate :: Int -> (a, b, c, d, e, f) -> ST s (MVector s (a, b, c, d, e, f)) basicUnsafeRead :: MVector s (a, b, c, d, e, f) -> Int -> ST s (a, b, c, d, e, f) basicUnsafeWrite :: MVector s (a, b, c, d, e, f) -> Int -> (a, b, c, d, e, f) -> ST s () basicClear :: MVector s (a, b, c, d, e, f) -> ST s () basicSet :: MVector s (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> ST s () basicUnsafeCopy :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> ST s () basicUnsafeMove :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> ST s () basicUnsafeGrow :: MVector s (a, b, c, d, e, f) -> Int -> ST s (MVector s (a, b, c, d, e, f)) | |
NFData1 (MVector s) | |
Defined in Data.Vector.Unboxed.Base | |
NFData (MVector s a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s All | |
newtype MVector s Any | |
newtype MVector s Int16 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Int32 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Int64 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Int8 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Word16 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Word32 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Word64 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Word8 | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s () | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Bool | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Char | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Double | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Float | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Int | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Word | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Complex a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Identity a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Down a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (First a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Last a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Max a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Min a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (WrappedMonoid a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Dual a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Product a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Sum a) | |
Defined in Data.Vector.Unboxed.Base | |
data MVector s (Plucker a) | |
Defined in Linear.Plucker | |
data MVector s (Quaternion a) | |
Defined in Linear.Quaternion | |
newtype MVector s (V0 a) | |
newtype MVector s (V1 a) | |
data MVector s (V2 a) | |
data MVector s (V3 a) | |
data MVector s (V4 a) | |
newtype MVector s (DoNotUnboxLazy a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (DoNotUnboxNormalForm a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (DoNotUnboxStrict a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (UnboxViaPrim a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Arg a b) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Point f a) | |
Defined in Linear.Affine | |
newtype MVector s (As a b) | |
Defined in Data.Vector.Unboxed.Base | |
data MVector s (a, b) | |
newtype MVector s (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s (Alt f a) | |
Defined in Data.Vector.Unboxed.Base | |
data MVector s (V n a) | |
data MVector s (a, b, c) | |
data MVector s (a, b, c, d) | |
newtype MVector s (Compose f g a) | |
Defined in Data.Vector.Unboxed.Base | |
data MVector s (a, b, c, d, e) | |
data MVector s (a, b, c, d, e, f) | |
Instances
NFData1 Vector | |
Defined in Data.Vector.Unboxed.Base | |
Vector Vector All | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s All -> ST s (Vector All) basicUnsafeThaw :: Vector All -> ST s (Mutable Vector s All) basicLength :: Vector All -> Int basicUnsafeSlice :: Int -> Int -> Vector All -> Vector All basicUnsafeIndexM :: Vector All -> Int -> Box All basicUnsafeCopy :: Mutable Vector s All -> Vector All -> ST s () | |
Vector Vector Any | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Any -> ST s (Vector Any) basicUnsafeThaw :: Vector Any -> ST s (Mutable Vector s Any) basicLength :: Vector Any -> Int basicUnsafeSlice :: Int -> Int -> Vector Any -> Vector Any basicUnsafeIndexM :: Vector Any -> Int -> Box Any basicUnsafeCopy :: Mutable Vector s Any -> Vector Any -> ST s () | |
Vector Vector Int16 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Int16 -> ST s (Vector Int16) basicUnsafeThaw :: Vector Int16 -> ST s (Mutable Vector s Int16) basicLength :: Vector Int16 -> Int basicUnsafeSlice :: Int -> Int -> Vector Int16 -> Vector Int16 basicUnsafeIndexM :: Vector Int16 -> Int -> Box Int16 basicUnsafeCopy :: Mutable Vector s Int16 -> Vector Int16 -> ST s () | |
Vector Vector Int32 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Int32 -> ST s (Vector Int32) basicUnsafeThaw :: Vector Int32 -> ST s (Mutable Vector s Int32) basicLength :: Vector Int32 -> Int basicUnsafeSlice :: Int -> Int -> Vector Int32 -> Vector Int32 basicUnsafeIndexM :: Vector Int32 -> Int -> Box Int32 basicUnsafeCopy :: Mutable Vector s Int32 -> Vector Int32 -> ST s () | |
Vector Vector Int64 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Int64 -> ST s (Vector Int64) basicUnsafeThaw :: Vector Int64 -> ST s (Mutable Vector s Int64) basicLength :: Vector Int64 -> Int basicUnsafeSlice :: Int -> Int -> Vector Int64 -> Vector Int64 basicUnsafeIndexM :: Vector Int64 -> Int -> Box Int64 basicUnsafeCopy :: Mutable Vector s Int64 -> Vector Int64 -> ST s () | |
Vector Vector Int8 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Int8 -> ST s (Vector Int8) basicUnsafeThaw :: Vector Int8 -> ST s (Mutable Vector s Int8) basicLength :: Vector Int8 -> Int basicUnsafeSlice :: Int -> Int -> Vector Int8 -> Vector Int8 basicUnsafeIndexM :: Vector Int8 -> Int -> Box Int8 basicUnsafeCopy :: Mutable Vector s Int8 -> Vector Int8 -> ST s () | |
Vector Vector Word16 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word16 -> ST s (Vector Word16) basicUnsafeThaw :: Vector Word16 -> ST s (Mutable Vector s Word16) basicLength :: Vector Word16 -> Int basicUnsafeSlice :: Int -> Int -> Vector Word16 -> Vector Word16 basicUnsafeIndexM :: Vector Word16 -> Int -> Box Word16 basicUnsafeCopy :: Mutable Vector s Word16 -> Vector Word16 -> ST s () | |
Vector Vector Word32 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word32 -> ST s (Vector Word32) basicUnsafeThaw :: Vector Word32 -> ST s (Mutable Vector s Word32) basicLength :: Vector Word32 -> Int basicUnsafeSlice :: Int -> Int -> Vector Word32 -> Vector Word32 basicUnsafeIndexM :: Vector Word32 -> Int -> Box Word32 basicUnsafeCopy :: Mutable Vector s Word32 -> Vector Word32 -> ST s () | |
Vector Vector Word64 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word64 -> ST s (Vector Word64) basicUnsafeThaw :: Vector Word64 -> ST s (Mutable Vector s Word64) basicLength :: Vector Word64 -> Int basicUnsafeSlice :: Int -> Int -> Vector Word64 -> Vector Word64 basicUnsafeIndexM :: Vector Word64 -> Int -> Box Word64 basicUnsafeCopy :: Mutable Vector s Word64 -> Vector Word64 -> ST s () | |
Vector Vector Word8 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word8 -> ST s (Vector Word8) basicUnsafeThaw :: Vector Word8 -> ST s (Mutable Vector s Word8) basicLength :: Vector Word8 -> Int basicUnsafeSlice :: Int -> Int -> Vector Word8 -> Vector Word8 basicUnsafeIndexM :: Vector Word8 -> Int -> Box Word8 basicUnsafeCopy :: Mutable Vector s Word8 -> Vector Word8 -> ST s () | |
Vector Vector () | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s () -> ST s (Vector ()) basicUnsafeThaw :: Vector () -> ST s (Mutable Vector s ()) basicLength :: Vector () -> Int basicUnsafeSlice :: Int -> Int -> Vector () -> Vector () basicUnsafeIndexM :: Vector () -> Int -> Box () basicUnsafeCopy :: Mutable Vector s () -> Vector () -> ST s () | |
Vector Vector Bool | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Bool -> ST s (Vector Bool) basicUnsafeThaw :: Vector Bool -> ST s (Mutable Vector s Bool) basicLength :: Vector Bool -> Int basicUnsafeSlice :: Int -> Int -> Vector Bool -> Vector Bool basicUnsafeIndexM :: Vector Bool -> Int -> Box Bool basicUnsafeCopy :: Mutable Vector s Bool -> Vector Bool -> ST s () | |
Vector Vector Char | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Char -> ST s (Vector Char) basicUnsafeThaw :: Vector Char -> ST s (Mutable Vector s Char) basicLength :: Vector Char -> Int basicUnsafeSlice :: Int -> Int -> Vector Char -> Vector Char basicUnsafeIndexM :: Vector Char -> Int -> Box Char basicUnsafeCopy :: Mutable Vector s Char -> Vector Char -> ST s () | |
Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Double -> ST s (Vector Double) basicUnsafeThaw :: Vector Double -> ST s (Mutable Vector s Double) basicLength :: Vector Double -> Int basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double basicUnsafeIndexM :: Vector Double -> Int -> Box Double basicUnsafeCopy :: Mutable Vector s Double -> Vector Double -> ST s () | |
Vector Vector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Float -> ST s (Vector Float) basicUnsafeThaw :: Vector Float -> ST s (Mutable Vector s Float) basicLength :: Vector Float -> Int basicUnsafeSlice :: Int -> Int -> Vector Float -> Vector Float basicUnsafeIndexM :: Vector Float -> Int -> Box Float basicUnsafeCopy :: Mutable Vector s Float -> Vector Float -> ST s () | |
Vector Vector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Int -> ST s (Vector Int) basicUnsafeThaw :: Vector Int -> ST s (Mutable Vector s Int) basicLength :: Vector Int -> Int basicUnsafeSlice :: Int -> Int -> Vector Int -> Vector Int basicUnsafeIndexM :: Vector Int -> Int -> Box Int basicUnsafeCopy :: Mutable Vector s Int -> Vector Int -> ST s () | |
Vector Vector Word | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word -> ST s (Vector Word) basicUnsafeThaw :: Vector Word -> ST s (Mutable Vector s Word) basicLength :: Vector Word -> Int basicUnsafeSlice :: Int -> Int -> Vector Word -> Vector Word basicUnsafeIndexM :: Vector Word -> Int -> Box Word basicUnsafeCopy :: Mutable Vector s Word -> Vector Word -> ST s () | |
Unbox a => Vector Vector (Complex a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Complex a) -> ST s (Vector (Complex a)) basicUnsafeThaw :: Vector (Complex a) -> ST s (Mutable Vector s (Complex a)) basicLength :: Vector (Complex a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Complex a) -> Vector (Complex a) basicUnsafeIndexM :: Vector (Complex a) -> Int -> Box (Complex a) basicUnsafeCopy :: Mutable Vector s (Complex a) -> Vector (Complex a) -> ST s () | |
Unbox a => Vector Vector (Identity a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Identity a) -> ST s (Vector (Identity a)) basicUnsafeThaw :: Vector (Identity a) -> ST s (Mutable Vector s (Identity a)) basicLength :: Vector (Identity a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Identity a) -> Vector (Identity a) basicUnsafeIndexM :: Vector (Identity a) -> Int -> Box (Identity a) basicUnsafeCopy :: Mutable Vector s (Identity a) -> Vector (Identity a) -> ST s () | |
Unbox a => Vector Vector (Down a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Down a) -> ST s (Vector (Down a)) basicUnsafeThaw :: Vector (Down a) -> ST s (Mutable Vector s (Down a)) basicLength :: Vector (Down a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Down a) -> Vector (Down a) basicUnsafeIndexM :: Vector (Down a) -> Int -> Box (Down a) basicUnsafeCopy :: Mutable Vector s (Down a) -> Vector (Down a) -> ST s () | |
Unbox a => Vector Vector (First a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (First a) -> ST s (Vector (First a)) basicUnsafeThaw :: Vector (First a) -> ST s (Mutable Vector s (First a)) basicLength :: Vector (First a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (First a) -> Vector (First a) basicUnsafeIndexM :: Vector (First a) -> Int -> Box (First a) basicUnsafeCopy :: Mutable Vector s (First a) -> Vector (First a) -> ST s () | |
Unbox a => Vector Vector (Last a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Last a) -> ST s (Vector (Last a)) basicUnsafeThaw :: Vector (Last a) -> ST s (Mutable Vector s (Last a)) basicLength :: Vector (Last a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Last a) -> Vector (Last a) basicUnsafeIndexM :: Vector (Last a) -> Int -> Box (Last a) basicUnsafeCopy :: Mutable Vector s (Last a) -> Vector (Last a) -> ST s () | |
Unbox a => Vector Vector (Max a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Max a) -> ST s (Vector (Max a)) basicUnsafeThaw :: Vector (Max a) -> ST s (Mutable Vector s (Max a)) basicLength :: Vector (Max a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Max a) -> Vector (Max a) basicUnsafeIndexM :: Vector (Max a) -> Int -> Box (Max a) basicUnsafeCopy :: Mutable Vector s (Max a) -> Vector (Max a) -> ST s () | |
Unbox a => Vector Vector (Min a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Min a) -> ST s (Vector (Min a)) basicUnsafeThaw :: Vector (Min a) -> ST s (Mutable Vector s (Min a)) basicLength :: Vector (Min a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Min a) -> Vector (Min a) basicUnsafeIndexM :: Vector (Min a) -> Int -> Box (Min a) basicUnsafeCopy :: Mutable Vector s (Min a) -> Vector (Min a) -> ST s () | |
Unbox a => Vector Vector (WrappedMonoid a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (WrappedMonoid a) -> ST s (Vector (WrappedMonoid a)) basicUnsafeThaw :: Vector (WrappedMonoid a) -> ST s (Mutable Vector s (WrappedMonoid a)) basicLength :: Vector (WrappedMonoid a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (WrappedMonoid a) -> Vector (WrappedMonoid a) basicUnsafeIndexM :: Vector (WrappedMonoid a) -> Int -> Box (WrappedMonoid a) basicUnsafeCopy :: Mutable Vector s (WrappedMonoid a) -> Vector (WrappedMonoid a) -> ST s () elemseq :: Vector (WrappedMonoid a) -> WrappedMonoid a -> b -> b | |
Unbox a => Vector Vector (Dual a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Dual a) -> ST s (Vector (Dual a)) basicUnsafeThaw :: Vector (Dual a) -> ST s (Mutable Vector s (Dual a)) basicLength :: Vector (Dual a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Dual a) -> Vector (Dual a) basicUnsafeIndexM :: Vector (Dual a) -> Int -> Box (Dual a) basicUnsafeCopy :: Mutable Vector s (Dual a) -> Vector (Dual a) -> ST s () | |
Unbox a => Vector Vector (Product a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Product a) -> ST s (Vector (Product a)) basicUnsafeThaw :: Vector (Product a) -> ST s (Mutable Vector s (Product a)) basicLength :: Vector (Product a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Product a) -> Vector (Product a) basicUnsafeIndexM :: Vector (Product a) -> Int -> Box (Product a) basicUnsafeCopy :: Mutable Vector s (Product a) -> Vector (Product a) -> ST s () | |
Unbox a => Vector Vector (Sum a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Sum a) -> ST s (Vector (Sum a)) basicUnsafeThaw :: Vector (Sum a) -> ST s (Mutable Vector s (Sum a)) basicLength :: Vector (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Sum a) -> Vector (Sum a) basicUnsafeIndexM :: Vector (Sum a) -> Int -> Box (Sum a) basicUnsafeCopy :: Mutable Vector s (Sum a) -> Vector (Sum a) -> ST s () | |
Unbox a => Vector Vector (Plucker a) | |
Defined in Linear.Plucker Methods basicUnsafeFreeze :: Mutable Vector s (Plucker a) -> ST s (Vector (Plucker a)) basicUnsafeThaw :: Vector (Plucker a) -> ST s (Mutable Vector s (Plucker a)) basicLength :: Vector (Plucker a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Plucker a) -> Vector (Plucker a) basicUnsafeIndexM :: Vector (Plucker a) -> Int -> Box (Plucker a) basicUnsafeCopy :: Mutable Vector s (Plucker a) -> Vector (Plucker a) -> ST s () | |
Unbox a => Vector Vector (Quaternion a) | |
Defined in Linear.Quaternion Methods basicUnsafeFreeze :: Mutable Vector s (Quaternion a) -> ST s (Vector (Quaternion a)) basicUnsafeThaw :: Vector (Quaternion a) -> ST s (Mutable Vector s (Quaternion a)) basicLength :: Vector (Quaternion a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Quaternion a) -> Vector (Quaternion a) basicUnsafeIndexM :: Vector (Quaternion a) -> Int -> Box (Quaternion a) basicUnsafeCopy :: Mutable Vector s (Quaternion a) -> Vector (Quaternion a) -> ST s () | |
Vector Vector (V0 a) | |
Defined in Linear.V0 Methods basicUnsafeFreeze :: Mutable Vector s (V0 a) -> ST s (Vector (V0 a)) basicUnsafeThaw :: Vector (V0 a) -> ST s (Mutable Vector s (V0 a)) basicLength :: Vector (V0 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V0 a) -> Vector (V0 a) basicUnsafeIndexM :: Vector (V0 a) -> Int -> Box (V0 a) basicUnsafeCopy :: Mutable Vector s (V0 a) -> Vector (V0 a) -> ST s () | |
Unbox a => Vector Vector (V1 a) | |
Defined in Linear.V1 Methods basicUnsafeFreeze :: Mutable Vector s (V1 a) -> ST s (Vector (V1 a)) basicUnsafeThaw :: Vector (V1 a) -> ST s (Mutable Vector s (V1 a)) basicLength :: Vector (V1 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V1 a) -> Vector (V1 a) basicUnsafeIndexM :: Vector (V1 a) -> Int -> Box (V1 a) basicUnsafeCopy :: Mutable Vector s (V1 a) -> Vector (V1 a) -> ST s () | |
Unbox a => Vector Vector (V2 a) | |
Defined in Linear.V2 Methods basicUnsafeFreeze :: Mutable Vector s (V2 a) -> ST s (Vector (V2 a)) basicUnsafeThaw :: Vector (V2 a) -> ST s (Mutable Vector s (V2 a)) basicLength :: Vector (V2 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V2 a) -> Vector (V2 a) basicUnsafeIndexM :: Vector (V2 a) -> Int -> Box (V2 a) basicUnsafeCopy :: Mutable Vector s (V2 a) -> Vector (V2 a) -> ST s () | |
Unbox a => Vector Vector (V3 a) | |
Defined in Linear.V3 Methods basicUnsafeFreeze :: Mutable Vector s (V3 a) -> ST s (Vector (V3 a)) basicUnsafeThaw :: Vector (V3 a) -> ST s (Mutable Vector s (V3 a)) basicLength :: Vector (V3 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V3 a) -> Vector (V3 a) basicUnsafeIndexM :: Vector (V3 a) -> Int -> Box (V3 a) basicUnsafeCopy :: Mutable Vector s (V3 a) -> Vector (V3 a) -> ST s () | |
Unbox a => Vector Vector (V4 a) | |
Defined in Linear.V4 Methods basicUnsafeFreeze :: Mutable Vector s (V4 a) -> ST s (Vector (V4 a)) basicUnsafeThaw :: Vector (V4 a) -> ST s (Mutable Vector s (V4 a)) basicLength :: Vector (V4 a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V4 a) -> Vector (V4 a) basicUnsafeIndexM :: Vector (V4 a) -> Int -> Box (V4 a) basicUnsafeCopy :: Mutable Vector s (V4 a) -> Vector (V4 a) -> ST s () | |
Vector Vector (DoNotUnboxLazy a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (DoNotUnboxLazy a) -> ST s (Vector (DoNotUnboxLazy a)) basicUnsafeThaw :: Vector (DoNotUnboxLazy a) -> ST s (Mutable Vector s (DoNotUnboxLazy a)) basicLength :: Vector (DoNotUnboxLazy a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (DoNotUnboxLazy a) -> Vector (DoNotUnboxLazy a) basicUnsafeIndexM :: Vector (DoNotUnboxLazy a) -> Int -> Box (DoNotUnboxLazy a) basicUnsafeCopy :: Mutable Vector s (DoNotUnboxLazy a) -> Vector (DoNotUnboxLazy a) -> ST s () elemseq :: Vector (DoNotUnboxLazy a) -> DoNotUnboxLazy a -> b -> b | |
NFData a => Vector Vector (DoNotUnboxNormalForm a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (DoNotUnboxNormalForm a) -> ST s (Vector (DoNotUnboxNormalForm a)) basicUnsafeThaw :: Vector (DoNotUnboxNormalForm a) -> ST s (Mutable Vector s (DoNotUnboxNormalForm a)) basicLength :: Vector (DoNotUnboxNormalForm a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (DoNotUnboxNormalForm a) -> Vector (DoNotUnboxNormalForm a) basicUnsafeIndexM :: Vector (DoNotUnboxNormalForm a) -> Int -> Box (DoNotUnboxNormalForm a) basicUnsafeCopy :: Mutable Vector s (DoNotUnboxNormalForm a) -> Vector (DoNotUnboxNormalForm a) -> ST s () elemseq :: Vector (DoNotUnboxNormalForm a) -> DoNotUnboxNormalForm a -> b -> b | |
Vector Vector (DoNotUnboxStrict a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (DoNotUnboxStrict a) -> ST s (Vector (DoNotUnboxStrict a)) basicUnsafeThaw :: Vector (DoNotUnboxStrict a) -> ST s (Mutable Vector s (DoNotUnboxStrict a)) basicLength :: Vector (DoNotUnboxStrict a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (DoNotUnboxStrict a) -> Vector (DoNotUnboxStrict a) basicUnsafeIndexM :: Vector (DoNotUnboxStrict a) -> Int -> Box (DoNotUnboxStrict a) basicUnsafeCopy :: Mutable Vector s (DoNotUnboxStrict a) -> Vector (DoNotUnboxStrict a) -> ST s () elemseq :: Vector (DoNotUnboxStrict a) -> DoNotUnboxStrict a -> b -> b | |
Prim a => Vector Vector (UnboxViaPrim a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (UnboxViaPrim a) -> ST s (Vector (UnboxViaPrim a)) basicUnsafeThaw :: Vector (UnboxViaPrim a) -> ST s (Mutable Vector s (UnboxViaPrim a)) basicLength :: Vector (UnboxViaPrim a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (UnboxViaPrim a) -> Vector (UnboxViaPrim a) basicUnsafeIndexM :: Vector (UnboxViaPrim a) -> Int -> Box (UnboxViaPrim a) basicUnsafeCopy :: Mutable Vector s (UnboxViaPrim a) -> Vector (UnboxViaPrim a) -> ST s () elemseq :: Vector (UnboxViaPrim a) -> UnboxViaPrim a -> b -> b | |
(Unbox a, Unbox b) => Vector Vector (Arg a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Arg a b) -> ST s (Vector (Arg a b)) basicUnsafeThaw :: Vector (Arg a b) -> ST s (Mutable Vector s (Arg a b)) basicLength :: Vector (Arg a b) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Arg a b) -> Vector (Arg a b) basicUnsafeIndexM :: Vector (Arg a b) -> Int -> Box (Arg a b) basicUnsafeCopy :: Mutable Vector s (Arg a b) -> Vector (Arg a b) -> ST s () | |
Unbox (f a) => Vector Vector (Point f a) | |
Defined in Linear.Affine Methods basicUnsafeFreeze :: Mutable Vector s (Point f a) -> ST s (Vector (Point f a)) basicUnsafeThaw :: Vector (Point f a) -> ST s (Mutable Vector s (Point f a)) basicLength :: Vector (Point f a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Point f a) -> Vector (Point f a) basicUnsafeIndexM :: Vector (Point f a) -> Int -> Box (Point f a) basicUnsafeCopy :: Mutable Vector s (Point f a) -> Vector (Point f a) -> ST s () | |
(IsoUnbox a b, Unbox b) => Vector Vector (As a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (As a b) -> ST s (Vector (As a b)) basicUnsafeThaw :: Vector (As a b) -> ST s (Mutable Vector s (As a b)) basicLength :: Vector (As a b) -> Int basicUnsafeSlice :: Int -> Int -> Vector (As a b) -> Vector (As a b) basicUnsafeIndexM :: Vector (As a b) -> Int -> Box (As a b) basicUnsafeCopy :: Mutable Vector s (As a b) -> Vector (As a b) -> ST s () | |
(Unbox a, Unbox b) => Vector Vector (a, b) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (a, b) -> ST s (Vector (a, b)) basicUnsafeThaw :: Vector (a, b) -> ST s (Mutable Vector s (a, b)) basicLength :: Vector (a, b) -> Int basicUnsafeSlice :: Int -> Int -> Vector (a, b) -> Vector (a, b) basicUnsafeIndexM :: Vector (a, b) -> Int -> Box (a, b) basicUnsafeCopy :: Mutable Vector s (a, b) -> Vector (a, b) -> ST s () | |
Unbox a => Vector Vector (Const a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Const a b) -> ST s (Vector (Const a b)) basicUnsafeThaw :: Vector (Const a b) -> ST s (Mutable Vector s (Const a b)) basicLength :: Vector (Const a b) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b) basicUnsafeIndexM :: Vector (Const a b) -> Int -> Box (Const a b) basicUnsafeCopy :: Mutable Vector s (Const a b) -> Vector (Const a b) -> ST s () | |
Unbox (f a) => Vector Vector (Alt f a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Alt f a) -> ST s (Vector (Alt f a)) basicUnsafeThaw :: Vector (Alt f a) -> ST s (Mutable Vector s (Alt f a)) basicLength :: Vector (Alt f a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Alt f a) -> Vector (Alt f a) basicUnsafeIndexM :: Vector (Alt f a) -> Int -> Box (Alt f a) basicUnsafeCopy :: Mutable Vector s (Alt f a) -> Vector (Alt f a) -> ST s () | |
(Dim n, Unbox a) => Vector Vector (V n a) | |
Defined in Linear.V Methods basicUnsafeFreeze :: Mutable Vector s (V n a) -> ST s (Vector (V n a)) basicUnsafeThaw :: Vector (V n a) -> ST s (Mutable Vector s (V n a)) basicLength :: Vector (V n a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (V n a) -> Vector (V n a) basicUnsafeIndexM :: Vector (V n a) -> Int -> Box (V n a) basicUnsafeCopy :: Mutable Vector s (V n a) -> Vector (V n a) -> ST s () | |
(Unbox a, Unbox b, Unbox c) => Vector Vector (a, b, c) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (a, b, c) -> ST s (Vector (a, b, c)) basicUnsafeThaw :: Vector (a, b, c) -> ST s (Mutable Vector s (a, b, c)) basicLength :: Vector (a, b, c) -> Int basicUnsafeSlice :: Int -> Int -> Vector (a, b, c) -> Vector (a, b, c) basicUnsafeIndexM :: Vector (a, b, c) -> Int -> Box (a, b, c) basicUnsafeCopy :: Mutable Vector s (a, b, c) -> Vector (a, b, c) -> ST s () | |
(Unbox a, Unbox b, Unbox c, Unbox d) => Vector Vector (a, b, c, d) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (a, b, c, d) -> ST s (Vector (a, b, c, d)) basicUnsafeThaw :: Vector (a, b, c, d) -> ST s (Mutable Vector s (a, b, c, d)) basicLength :: Vector (a, b, c, d) -> Int basicUnsafeSlice :: Int -> Int -> Vector (a, b, c, d) -> Vector (a, b, c, d) basicUnsafeIndexM :: Vector (a, b, c, d) -> Int -> Box (a, b, c, d) basicUnsafeCopy :: Mutable Vector s (a, b, c, d) -> Vector (a, b, c, d) -> ST s () | |
Unbox (f (g a)) => Vector Vector (Compose f g a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Compose f g a) -> ST s (Vector (Compose f g a)) basicUnsafeThaw :: Vector (Compose f g a) -> ST s (Mutable Vector s (Compose f g a)) basicLength :: Vector (Compose f g a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Compose f g a) -> Vector (Compose f g a) basicUnsafeIndexM :: Vector (Compose f g a) -> Int -> Box (Compose f g a) basicUnsafeCopy :: Mutable Vector s (Compose f g a) -> Vector (Compose f g a) -> ST s () elemseq :: Vector (Compose f g a) -> Compose f g a -> b -> b | |
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => Vector Vector (a, b, c, d, e) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (a, b, c, d, e) -> ST s (Vector (a, b, c, d, e)) basicUnsafeThaw :: Vector (a, b, c, d, e) -> ST s (Mutable Vector s (a, b, c, d, e)) basicLength :: Vector (a, b, c, d, e) -> Int basicUnsafeSlice :: Int -> Int -> Vector (a, b, c, d, e) -> Vector (a, b, c, d, e) basicUnsafeIndexM :: Vector (a, b, c, d, e) -> Int -> Box (a, b, c, d, e) basicUnsafeCopy :: Mutable Vector s (a, b, c, d, e) -> Vector (a, b, c, d, e) -> ST s () elemseq :: Vector (a, b, c, d, e) -> (a, b, c, d, e) -> b0 -> b0 | |
(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => Vector Vector (a, b, c, d, e, f) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (a, b, c, d, e, f) -> ST s (Vector (a, b, c, d, e, f)) basicUnsafeThaw :: Vector (a, b, c, d, e, f) -> ST s (Mutable Vector s (a, b, c, d, e, f)) basicLength :: Vector (a, b, c, d, e, f) -> Int basicUnsafeSlice :: Int -> Int -> Vector (a, b, c, d, e, f) -> Vector (a, b, c, d, e, f) basicUnsafeIndexM :: Vector (a, b, c, d, e, f) -> Int -> Box (a, b, c, d, e, f) basicUnsafeCopy :: Mutable Vector s (a, b, c, d, e, f) -> Vector (a, b, c, d, e, f) -> ST s () elemseq :: Vector (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> b0 -> b0 | |
(Data a, Unbox a) => Data (Vector a) | |
Defined in Data.Vector.Unboxed.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
NFData (Vector a) | |
Defined in Data.Vector.Unboxed.Base | |
Unbox a => Ixed (Vector a) | |
Defined in Control.Lens.At | |
Unbox a => AsEmpty (Vector a) | |
Defined in Control.Lens.Empty | |
Unbox a => Reversing (Vector a) | |
Defined in Control.Lens.Internal.Iso | |
Unbox a => Wrapped (Vector a) | |
(Unbox a, t ~ Vector a') => Rewrapped (Vector a) t | |
Defined in Control.Lens.Wrapped | |
(Unbox a, Unbox b) => Cons (Vector a) (Vector b) a b | |
(Unbox a, Unbox b) => Snoc (Vector a) (Vector b) a b | |
(Unbox a, Unbox b) => Each (Vector a) (Vector b) a b | |
type Mutable Vector | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector All | |
newtype Vector Any | |
newtype Vector Int16 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Int32 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Int64 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Int8 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Word16 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Word32 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Word64 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Word8 | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector () | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Bool | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Char | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Double | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Float | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Int | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector Word | |
Defined in Data.Vector.Unboxed.Base | |
type Item (Vector e) | |
Defined in Data.Vector.Unboxed | |
type Index (Vector a) | |
Defined in Control.Lens.At | |
type IxValue (Vector a) | |
Defined in Control.Lens.At | |
type Unwrapped (Vector a) | |
Defined in Control.Lens.Wrapped | |
newtype Vector (Complex a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Identity a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Down a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (First a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Last a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Max a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Min a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (WrappedMonoid a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Dual a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Product a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Sum a) | |
Defined in Data.Vector.Unboxed.Base | |
data Vector (Plucker a) | |
Defined in Linear.Plucker | |
data Vector (Quaternion a) | |
Defined in Linear.Quaternion | |
newtype Vector (V0 a) | |
newtype Vector (V1 a) | |
data Vector (V2 a) | |
data Vector (V3 a) | |
data Vector (V4 a) | |
newtype Vector (DoNotUnboxLazy a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (DoNotUnboxNormalForm a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (DoNotUnboxStrict a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (UnboxViaPrim a) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Arg a b) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Point f a) | |
Defined in Linear.Affine | |
newtype Vector (As a b) | |
Defined in Data.Vector.Unboxed.Base | |
data Vector (a, b) | |
newtype Vector (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
newtype Vector (Alt f a) | |
Defined in Data.Vector.Unboxed.Base | |
data Vector (V n a) | |
data Vector (a, b, c) | |
data Vector (a, b, c, d) | |
newtype Vector (Compose f g a) | |
Defined in Data.Vector.Unboxed.Base | |
data Vector (a, b, c, d, e) | |
data Vector (a, b, c, d, e, f) | |
Constructors
SVG |
Instances
Show SVG | |||||||||||||
SVGFloat n => Backend SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG Associated Types
| |||||||||||||
SVGFloat n => Renderable (Text n) SVG | |||||||||||||
SVGFloat n => Renderable (Path V2 n) SVG | |||||||||||||
SVGFloat n => Renderable (DImage n Embedded) SVG | |||||||||||||
SVGFloat n => Renderable (DImage n (Native Img)) SVG | |||||||||||||
Monoid (Render SVG V2 n) | |||||||||||||
Semigroup (Render SVG V2 n) | |||||||||||||
Eq n => Eq (Options SVG V2 n) | |||||||||||||
Hashable n => Hashable (Options SVG V2 n) | |||||||||||||
type N SVG | |||||||||||||
Defined in Diagrams.Backend.SVG | |||||||||||||
type V SVG | |||||||||||||
Defined in Diagrams.Backend.SVG | |||||||||||||
data Options SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG data Options SVG V2 n = SVGOptions {
| |||||||||||||
newtype Render SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG | |||||||||||||
type Result SVG V2 n | |||||||||||||
Defined in Diagrams.Backend.SVG | |||||||||||||
type MainOpts [(String, QDiagram SVG V2 n Any)] | |||||||||||||
type MainOpts (QDiagram SVG V2 n Any) | |||||||||||||
Defined in Diagrams.Backend.SVG.CmdLine |
data family Options b (v :: Type -> Type) n #
Instances
Eq n => Eq (Options SVG V2 n) | |
Hashable n => Hashable (Options SVG V2 n) | |
data Options NullBackend v n | |
Defined in Diagrams.Core.Types | |
data Options SVG V2 n | |
Defined in Diagrams.Backend.SVG data Options SVG V2 n = SVGOptions {
|
data family Options b (v :: Type -> Type) n #
Instances
Eq n => Eq (Options SVG V2 n) | |
Hashable n => Hashable (Options SVG V2 n) | |
data Options NullBackend v n | |
Defined in Diagrams.Core.Types | |
data Options SVG V2 n | |
Defined in Diagrams.Backend.SVG data Options SVG V2 n = SVGOptions {
|
type SVGFloat n = (Show n, TypeableFloat n) #
generateDoctype :: forall n f. Functor f => (Bool -> f Bool) -> Options SVG V2 n -> f (Options SVG V2 n) #
sizeSpec :: forall n f. Functor f => (SizeSpec V2 n -> f (SizeSpec V2 n)) -> Options SVG V2 n -> f (Options SVG V2 n) #
svgAttributes :: forall n f. Functor f => ([Attribute] -> f [Attribute]) -> Options SVG V2 n -> f (Options SVG V2 n) #