personal-1.1.0: Personal web site for Yoo Chung
CopyrightCopyright (C) 2023 Yoo Chung
LicenseAll rights reserved
Maintainerweb@chungyc.org
Safe HaskellNone
LanguageGHC2021

Diagrams.Runner

Description

Exports the putDiagram function for conveniently printing SVG generated from a diagram.

This also re-exports the Diagrams.Prelude and Diagrams.Backend.SVG modules, so that code does not have to import these separately.

Synopsis

Documentation

putDiagram :: SVGFloat n => Options SVG V2 n -> QDiagram SVG V2 n Any -> IO () Source #

Write out SVG for the given diagram to standard output.

>>> putDiagram defaultOptions $ circle 1
<?xml version="1.0" encoding="UTF-8"?>
...

It can be passed in a fully specified SVGOptions, but it is usually enough to give the default set of options in defaultOptions.

defaultOptions :: SVGFloat n => Options SVG V2 n Source #

Default options for rendering a diagram into SVG.

This is a record value, so specific options can be overridden using record syntax. For example, the width of the rendered image can be overridden:

>>> let options = defaultOptions & sizeSpec .~ mkWidth 128
>>> view sizeSpec options
SizeSpec (V2 128.0 0.0)

text :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any #

lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b #

strict :: Strict lazy strict => Iso' lazy strict #

data Segment c (v :: Type -> Type) n #

Constructors

Linear !(Offset c v n) 
Cubic !(v n) !(v n) !(Offset c v n) 

Instances

Instances details
(Additive v, Num n) => EndValues (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => Parametric (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

ToPath (Located (Segment Closed v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Segment Closed v n) -> Path (V (Located (Segment Closed v n))) (N (Located (Segment Closed v n))) #

ToPath (Located [Segment Closed v n]) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located [Segment Closed v n] -> Path (V (Located [Segment Closed v n])) (N (Located [Segment Closed v n])) #

Functor v => Functor (Segment c v) 
Instance details

Defined in Diagrams.Segment

Methods

fmap :: (a -> b) -> Segment c v a -> Segment c v b #

(<$) :: a -> Segment c v b -> Segment c v a #

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (SegTree v n) (SegTree u n') (Segment Closed v n, SegTree v n) (Segment Closed u n', SegTree u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (SegTree v n) (SegTree u n') (SegTree v n, Segment Closed v n) (SegTree u n', Segment Closed u n') #

(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: Segment Closed v n -> SegMeasure v n

Show (v n) => Show (Segment c v n) 
Instance details

Defined in Diagrams.Segment

Methods

showsPrec :: Int -> Segment c v n -> ShowS #

show :: Segment c v n -> String #

showList :: [Segment c v n] -> ShowS #

Serialize (v n) => Serialize (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

put :: Putter (Segment Closed v n)

get :: Get (Segment Closed v n)

Serialize (v n) => Serialize (Segment Open v n) 
Instance details

Defined in Diagrams.Segment

Methods

put :: Putter (Segment Open v n)

get :: Get (Segment Open v n)

(Metric v, OrderedField n) => Enveloped (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

getEnvelope :: Segment Closed v n -> Envelope (V (Segment Closed v n)) (N (Segment Closed v n)) #

Transformable (Segment c v n) 
Instance details

Defined in Diagrams.Segment

Methods

transform :: Transformation (V (Segment c v n)) (N (Segment c v n)) -> Segment c v n -> Segment c v n #

Num n => DomainBounds (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

(Additive v, Num n) => EndValues (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n) => HasArcLength (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

arcLengthBounded :: N (Segment Closed v n) -> Segment Closed v n -> Interval (N (Segment Closed v n)) #

arcLength :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) #

stdArcLength :: Segment Closed v n -> N (Segment Closed v n) #

arcLengthToParam :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) #

stdArcLengthToParam :: Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) #

(Additive v, Num n) => Parametric (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

atParam :: Segment Closed v n -> N (Segment Closed v n) -> Codomain (Segment Closed v n) (N (Segment Closed v n)) #

(Additive v, Fractional n) => Sectionable (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Eq (v n) => Eq (Segment c v n) 
Instance details

Defined in Diagrams.Segment

Methods

(==) :: Segment c v n -> Segment c v n -> Bool #

(/=) :: Segment c v n -> Segment c v n -> Bool #

Ord (v n) => Ord (Segment c v n) 
Instance details

Defined in Diagrams.Segment

Methods

compare :: Segment c v n -> Segment c v n -> Ordering #

(<) :: Segment c v n -> Segment c v n -> Bool #

(<=) :: Segment c v n -> Segment c v n -> Bool #

(>) :: Segment c v n -> Segment c v n -> Bool #

(>=) :: Segment c v n -> Segment c v n -> Bool #

max :: Segment c v n -> Segment c v n -> Segment c v n #

min :: Segment c v n -> Segment c v n -> Segment c v n #

(Additive v, Num n) => Reversing (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

reversing :: Segment Closed v n -> Segment Closed v n #

Renderable (Segment c v n) NullBackend 
Instance details

Defined in Diagrams.Segment

Methods

render :: NullBackend -> Segment c v n -> Render NullBackend (V (Segment c v n)) (N (Segment c v n)) #

r ~ Segment c u n => AffineMappable (Segment c v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (Segment c v n)) (V r) (N r) -> Segment c v n -> r

r ~ Segment c u m => LinearMappable (Segment c v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (Segment c v n) -> Vn r) -> Segment c v n -> r

Each (Segment c v n) (Segment c v' n') (v n) (v' n') 
Instance details

Defined in Diagrams.Segment

Methods

each :: Traversal (Segment c v n) (Segment c v' n') (v n) (v' n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (Trail' Line v n) (Trail' Line u n') (Segment Closed v n, Trail' Line v n) (Segment Closed u n', Trail' Line u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (Trail' Line v n) (Trail' Line u n') (Trail' Line v n, Segment Closed v n) (Trail' Line u n', Segment Closed u n') #

type N (Segment c v n) 
Instance details

Defined in Diagrams.Segment

type N (Segment c v n) = n
type V (Segment c v n) 
Instance details

Defined in Diagrams.Segment

type V (Segment c v n) = v
type Codomain (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

type Codomain (Segment Closed v n) = v

index :: (Indexable i p, Eq i, Applicative f) => i -> Optical' p (Indexed i) f a a #

pattern List :: IsList l => [Item l] -> l #

(~~) :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Point v n -> Point v n -> t #

newtype Any #

Boolean monoid under disjunction (||).

Any x <> Any y = Any (x || y)

Examples

Expand
>>> Any True <> mempty <> Any False
Any {getAny = True}
>>> mconcat (map (\x -> Any (even x)) [2,4,6,7,8])
Any {getAny = True}
>>> Any False <> mempty
Any {getAny = False}

Constructors

Any 

Fields

Instances

Instances details
Data Any

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any #

toConstr :: Any -> Constr #

dataTypeOf :: Any -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) #

gmapT :: (forall b. Data b => b -> b) -> Any -> Any #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

Monoid Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Semigroup Any

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Bounded Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Any #

maxBound :: Any #

Generic Any 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep Any

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep Any = D1 ('MetaData "Any" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Any" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAny") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Read Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Binary Any

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Any -> Put #

get :: Get Any #

putList :: [Any] -> Put #

Default Any 
Instance details

Defined in Data.Default.Class

Methods

def :: Any #

NFData Any

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Any -> () #

Eq Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Ord Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

AsEmpty Any 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' Any () #

Wrapped Any 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped Any 
Instance details

Defined in Control.Lens.Wrapped

Unbox Any 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Any => Rewrapped Any t 
Instance details

Defined in Control.Lens.Wrapped

Vector Vector Any 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s Any -> ST s (Vector Any)

basicUnsafeThaw :: Vector Any -> ST s (Mutable Vector s Any)

basicLength :: Vector Any -> Int

basicUnsafeSlice :: Int -> Int -> Vector Any -> Vector Any

basicUnsafeIndexM :: Vector Any -> Int -> Box Any

basicUnsafeCopy :: Mutable Vector s Any -> Vector Any -> ST s ()

elemseq :: Vector Any -> Any -> b -> b

MVector MVector Any 
Instance details

Defined in Data.Vector.Unboxed.Base

ToResult [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [QDiagram b v n Any] = ()
type ResultOf [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [QDiagram b v n Any] = [QDiagram b v n Any]

Methods

toResult :: [QDiagram b v n Any] -> Args [QDiagram b v n Any] -> ResultOf [QDiagram b v n Any]

ToResult [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [(String, QDiagram b v n Any)] = ()
type ResultOf [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [(String, QDiagram b v n Any)] = [(String, QDiagram b v n Any)]

Methods

toResult :: [(String, QDiagram b v n Any)] -> Args [(String, QDiagram b v n Any)] -> ResultOf [(String, QDiagram b v n Any)]

(Num n, Ord n) => HasQuery (Box n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Box n -> Query (V (Box n)) (N (Box n)) Any #

(Floating n, Ord n) => HasQuery (CSG n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: CSG n -> Query (V (CSG n)) (N (CSG n)) Any #

(Num n, Ord n) => HasQuery (Ellipsoid n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Ellipsoid n -> Query (V (Ellipsoid n)) (N (Ellipsoid n)) Any #

OrderedField n => HasQuery (Frustum n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Frustum n -> Query (V (Frustum n)) (N (Frustum n)) Any #

(Additive v, Foldable v, Ord n) => HasQuery (BoundingBox v n) Any 
Instance details

Defined in Diagrams.BoundingBox

Methods

getQuery :: BoundingBox v n -> Query (V (BoundingBox v n)) (N (BoundingBox v n)) Any #

RealFloat n => HasQuery (DImage n a) Any 
Instance details

Defined in Diagrams.TwoD.Image

Methods

getQuery :: DImage n a -> Query (V (DImage n a)) (N (DImage n a)) Any #

ToResult (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (Animation b v n) = ()
type ResultOf (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (Animation b v n) = Animation b v n

Methods

toResult :: Animation b v n -> Args (Animation b v n) -> ResultOf (Animation b v n)

ToResult (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (QDiagram b v n Any) = ()
type ResultOf (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (QDiagram b v n Any) = QDiagram b v n Any

Methods

toResult :: QDiagram b v n Any -> Args (QDiagram b v n Any) -> ResultOf (QDiagram b v n Any)

type Rep Any

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep Any = D1 ('MetaData "Any" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Any" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAny") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))
type Unwrapped Any 
Instance details

Defined in Control.Lens.Wrapped

newtype Vector Any 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Any = V_Any (Vector Bool)
newtype MVector s Any 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Any = MV_Any (MVector s Bool)
type Args [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [QDiagram b v n Any] = ()
type Args [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [(String, QDiagram b v n Any)] = ()
type MainOpts [(String, QDiagram SVG V2 n Any)] 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts [(String, QDiagram SVG V2 n Any)] = (MainOpts (QDiagram SVG V2 n Any), DiagramMultiOpts)
type ResultOf [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [QDiagram b v n Any] = [QDiagram b v n Any]
type ResultOf [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [(String, QDiagram b v n Any)] = [(String, QDiagram b v n Any)]
type Args (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (Animation b v n) = ()
type ResultOf (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (Animation b v n) = Animation b v n
type Args (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (QDiagram b v n Any) = ()
type MainOpts (QDiagram SVG V2 n Any) 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts (QDiagram SVG V2 n Any) = (DiagramOpts, DiagramLoopOpts, PrettyOpt)
type ResultOf (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (QDiagram b v n Any) = QDiagram b v n Any

class (forall a. Functor (p a)) => Bifunctor (p :: Type -> Type -> Type) where #

A bifunctor is a type constructor that takes two type arguments and is a functor in both arguments. That is, unlike with Functor, a type constructor such as Either does not need to be partially applied for a Bifunctor instance, and the methods in this class permit mapping functions over the Left value or the Right value, or both at the same time.

Formally, the class Bifunctor represents a bifunctor from Hask -> Hask.

Intuitively it is a bifunctor where both the first and second arguments are covariant.

You can define a Bifunctor by either defining bimap or by defining both first and second. A partially applied Bifunctor must be a Functor and the second method must agree with fmap. From this it follows that:

second id = id

If you supply bimap, you should ensure that:

bimap id idid

If you supply first and second, ensure:

first idid
second idid

If you supply both, you should also ensure:

bimap f g ≡ first f . second g

These ensure by parametricity:

bimap  (f . g) (h . i) ≡ bimap f h . bimap g i
first  (f . g) ≡ first  f . first  g
second (f . g) ≡ second f . second g

Since 4.18.0.0 Functor is a superclass of 'Bifunctor.

Since: base-4.8.0.0

Minimal complete definition

bimap | first, second

Methods

bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #

Map over both arguments at the same time.

bimap f g ≡ first f . second g

Examples

Expand
>>> bimap toUpper (+1) ('j', 3)
('J',4)
>>> bimap toUpper (+1) (Left 'j')
Left 'J'
>>> bimap toUpper (+1) (Right 3)
Right 4

Instances

Instances details
Bifunctor Either

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Either a c -> Either b d #

first :: (a -> b) -> Either a c -> Either b c #

second :: (b -> c) -> Either a b -> Either a c #

Bifunctor Arg

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

bimap :: (a -> b) -> (c -> d) -> Arg a c -> Arg b d #

first :: (a -> b) -> Arg a c -> Arg b c #

second :: (b -> c) -> Arg a b -> Arg a c #

Bifunctor Either 
Instance details

Defined in Data.Strict.Either

Methods

bimap :: (a -> b) -> (c -> d) -> Either a c -> Either b d #

first :: (a -> b) -> Either a c -> Either b c #

second :: (b -> c) -> Either a b -> Either a c #

Bifunctor These 
Instance details

Defined in Data.Strict.These

Methods

bimap :: (a -> b) -> (c -> d) -> These a c -> These b d #

first :: (a -> b) -> These a c -> These b c #

second :: (b -> c) -> These a b -> These a c #

Bifunctor Pair 
Instance details

Defined in Data.Strict.Tuple

Methods

bimap :: (a -> b) -> (c -> d) -> Pair a c -> Pair b d #

first :: (a -> b) -> Pair a c -> Pair b c #

second :: (b -> c) -> Pair a b -> Pair a c #

Bifunctor These 
Instance details

Defined in Data.These

Methods

bimap :: (a -> b) -> (c -> d) -> These a c -> These b d #

first :: (a -> b) -> These a c -> These b c #

second :: (b -> c) -> These a b -> These a c #

Bifunctor (,)

Class laws for tuples hold only up to laziness. Both first id and second id are lazier than id (and fmap id):

>>> first id (undefined :: (Int, Word)) `seq` ()
()
>>> second id (undefined :: (Int, Word)) `seq` ()
()
>>> id (undefined :: (Int, Word)) `seq` ()
*** Exception: Prelude.undefined

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> (a, c) -> (b, d) #

first :: (a -> b) -> (a, c) -> (b, c) #

second :: (b -> c) -> (a, b) -> (a, c) #

Bifunctor (Const :: Type -> Type -> Type)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Const a c -> Const b d #

first :: (a -> b) -> Const a c -> Const b c #

second :: (b -> c) -> Const a b -> Const a c #

Functor f => Bifunctor (CofreeF f) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Methods

bimap :: (a -> b) -> (c -> d) -> CofreeF f a c -> CofreeF f b d #

first :: (a -> b) -> CofreeF f a c -> CofreeF f b c #

second :: (b -> c) -> CofreeF f a b -> CofreeF f a c #

Functor f => Bifunctor (FreeF f) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

bimap :: (a -> b) -> (c -> d) -> FreeF f a c -> FreeF f b d #

first :: (a -> b) -> FreeF f a c -> FreeF f b c #

second :: (b -> c) -> FreeF f a b -> FreeF f a c #

Functor f => Bifunctor (AlongsideLeft f) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

bimap :: (a -> b) -> (c -> d) -> AlongsideLeft f a c -> AlongsideLeft f b d #

first :: (a -> b) -> AlongsideLeft f a c -> AlongsideLeft f b c #

second :: (b -> c) -> AlongsideLeft f a b -> AlongsideLeft f a c #

Functor f => Bifunctor (AlongsideRight f) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

bimap :: (a -> b) -> (c -> d) -> AlongsideRight f a c -> AlongsideRight f b d #

first :: (a -> b) -> AlongsideRight f a c -> AlongsideRight f b c #

second :: (b -> c) -> AlongsideRight f a b -> AlongsideRight f a c #

Bifunctor (Tagged :: Type -> Type -> Type) 
Instance details

Defined in Data.Tagged

Methods

bimap :: (a -> b) -> (c -> d) -> Tagged a c -> Tagged b d #

first :: (a -> b) -> Tagged a c -> Tagged b c #

second :: (b -> c) -> Tagged a b -> Tagged a c #

Bifunctor (Constant :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Constant

Methods

bimap :: (a -> b) -> (c -> d) -> Constant a c -> Constant b d #

first :: (a -> b) -> Constant a c -> Constant b c #

second :: (b -> c) -> Constant a b -> Constant a c #

Bifunctor ((,,) x1)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> (x1, a, c) -> (x1, b, d) #

first :: (a -> b) -> (x1, a, c) -> (x1, b, c) #

second :: (b -> c) -> (x1, a, b) -> (x1, a, c) #

Bifunctor (K1 i :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> K1 i a c -> K1 i b d #

first :: (a -> b) -> K1 i a c -> K1 i b c #

second :: (b -> c) -> K1 i a b -> K1 i a c #

Bifunctor ((,,,) x1 x2)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> (x1, x2, a, c) -> (x1, x2, b, d) #

first :: (a -> b) -> (x1, x2, a, c) -> (x1, x2, b, c) #

second :: (b -> c) -> (x1, x2, a, b) -> (x1, x2, a, c) #

Functor f => Bifunctor (Clown f :: Type -> Type -> Type) 
Instance details

Defined in Data.Bifunctor.Clown

Methods

bimap :: (a -> b) -> (c -> d) -> Clown f a c -> Clown f b d #

first :: (a -> b) -> Clown f a c -> Clown f b c #

second :: (b -> c) -> Clown f a b -> Clown f a c #

Bifunctor p => Bifunctor (Flip p) 
Instance details

Defined in Data.Bifunctor.Flip

Methods

bimap :: (a -> b) -> (c -> d) -> Flip p a c -> Flip p b d #

first :: (a -> b) -> Flip p a c -> Flip p b c #

second :: (b -> c) -> Flip p a b -> Flip p a c #

Functor g => Bifunctor (Joker g :: Type -> Type -> Type) 
Instance details

Defined in Data.Bifunctor.Joker

Methods

bimap :: (a -> b) -> (c -> d) -> Joker g a c -> Joker g b d #

first :: (a -> b) -> Joker g a c -> Joker g b c #

second :: (b -> c) -> Joker g a b -> Joker g a c #

Bifunctor p => Bifunctor (WrappedBifunctor p) 
Instance details

Defined in Data.Bifunctor.Wrapped

Methods

bimap :: (a -> b) -> (c -> d) -> WrappedBifunctor p a c -> WrappedBifunctor p b d #

first :: (a -> b) -> WrappedBifunctor p a c -> WrappedBifunctor p b c #

second :: (b -> c) -> WrappedBifunctor p a b -> WrappedBifunctor p a c #

Bifunctor ((,,,,) x1 x2 x3)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> (x1, x2, x3, a, c) -> (x1, x2, x3, b, d) #

first :: (a -> b) -> (x1, x2, x3, a, c) -> (x1, x2, x3, b, c) #

second :: (b -> c) -> (x1, x2, x3, a, b) -> (x1, x2, x3, a, c) #

(Bifunctor f, Bifunctor g) => Bifunctor (Product f g) 
Instance details

Defined in Data.Bifunctor.Product

Methods

bimap :: (a -> b) -> (c -> d) -> Product f g a c -> Product f g b d #

first :: (a -> b) -> Product f g a c -> Product f g b c #

second :: (b -> c) -> Product f g a b -> Product f g a c #

(Bifunctor p, Bifunctor q) => Bifunctor (Sum p q) 
Instance details

Defined in Data.Bifunctor.Sum

Methods

bimap :: (a -> b) -> (c -> d) -> Sum p q a c -> Sum p q b d #

first :: (a -> b) -> Sum p q a c -> Sum p q b c #

second :: (b -> c) -> Sum p q a b -> Sum p q a c #

Bifunctor ((,,,,,) x1 x2 x3 x4)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> (x1, x2, x3, x4, a, c) -> (x1, x2, x3, x4, b, d) #

first :: (a -> b) -> (x1, x2, x3, x4, a, c) -> (x1, x2, x3, x4, b, c) #

second :: (b -> c) -> (x1, x2, x3, x4, a, b) -> (x1, x2, x3, x4, a, c) #

(Functor f, Bifunctor p) => Bifunctor (Tannen f p) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

bimap :: (a -> b) -> (c -> d) -> Tannen f p a c -> Tannen f p b d #

first :: (a -> b) -> Tannen f p a c -> Tannen f p b c #

second :: (b -> c) -> Tannen f p a b -> Tannen f p a c #

Bifunctor ((,,,,,,) x1 x2 x3 x4 x5)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> (x1, x2, x3, x4, x5, a, c) -> (x1, x2, x3, x4, x5, b, d) #

first :: (a -> b) -> (x1, x2, x3, x4, x5, a, c) -> (x1, x2, x3, x4, x5, b, c) #

second :: (b -> c) -> (x1, x2, x3, x4, x5, a, b) -> (x1, x2, x3, x4, x5, a, c) #

(Bifunctor p, Functor f, Functor g) => Bifunctor (Biff p f g) 
Instance details

Defined in Data.Bifunctor.Biff

Methods

bimap :: (a -> b) -> (c -> d) -> Biff p f g a c -> Biff p f g b d #

first :: (a -> b) -> Biff p f g a c -> Biff p f g b c #

second :: (b -> c) -> Biff p f g a b -> Biff p f g a c #

(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #

An infix synonym for fmap.

The name of this operator is an allusion to $. Note the similarities between their types:

 ($)  ::              (a -> b) ->   a ->   b
(<$>) :: Functor f => (a -> b) -> f a -> f b

Whereas $ is function application, <$> is function application lifted over a Functor.

Examples

Expand

Convert from a Maybe Int to a Maybe String using show:

>>> show <$> Nothing
Nothing
>>> show <$> Just 3
Just "3"

Convert from an Either Int Int to an Either Int String using show:

>>> show <$> Left 17
Left 17
>>> show <$> Right 17
Right "17"

Double each element of a list:

>>> (*2) <$> [1,2,3]
[2,4,6]

Apply even to the second element of a pair:

>>> even <$> (2,2)
(2,True)

newtype Sum a #

Monoid under addition.

Sum a <> Sum b = Sum (a + b)

Examples

Expand
>>> Sum 1 <> Sum 2 <> mempty
Sum {getSum = 3}
>>> mconcat [ Sum n | n <- [3 .. 9]]
Sum {getSum = 42}

Constructors

Sum 

Fields

Instances

Instances details
Representable Sum 
Instance details

Defined in Data.Functor.Rep

Associated Types

type Rep Sum 
Instance details

Defined in Data.Functor.Rep

type Rep Sum = ()

Methods

tabulate :: (Rep Sum -> a) -> Sum a

index :: Sum a -> Rep Sum -> a

MonadFix Sum

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> Sum a) -> Sum a #

MonadZip Sum

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Sum a -> Sum b -> Sum (a, b) #

mzipWith :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

munzip :: Sum (a, b) -> (Sum a, Sum b) #

Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldMap' :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Foldable1 Sum

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Sum m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Sum a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Sum a -> m #

toNonEmpty :: Sum a -> NonEmpty a #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

head :: Sum a -> a #

last :: Sum a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Sum a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Sum a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Sum a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Sum a -> b #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Applicative Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

NFData1 Sum

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Sum a -> () #

Apply Sum 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Sum (a -> b) -> Sum a -> Sum b

(.>) :: Sum a -> Sum b -> Sum b

(<.) :: Sum a -> Sum b -> Sum a

liftF2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c

Bind Sum 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Sum a -> (a -> Sum b) -> Sum b

join :: Sum (Sum a) -> Sum a

Traversable1 Sum 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Sum a -> f (Sum b) #

sequence1 :: Apply f => Sum (f b) -> f (Sum b)

Generic1 Sum 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Sum

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Sum a -> Rep1 Sum a #

to1 :: Rep1 Sum a -> Sum a #

Unbox a => Vector Vector (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Sum a) -> ST s (Vector (Sum a))

basicUnsafeThaw :: Vector (Sum a) -> ST s (Mutable Vector s (Sum a))

basicLength :: Vector (Sum a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Sum a) -> Vector (Sum a)

basicUnsafeIndexM :: Vector (Sum a) -> Int -> Box (Sum a)

basicUnsafeCopy :: Mutable Vector s (Sum a) -> Vector (Sum a) -> ST s ()

elemseq :: Vector (Sum a) -> Sum a -> b -> b

Unbox a => MVector MVector (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Sum a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Sum a) -> MVector s (Sum a)

basicOverlaps :: MVector s (Sum a) -> MVector s (Sum a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Sum a))

basicInitialize :: MVector s (Sum a) -> ST s ()

basicUnsafeReplicate :: Int -> Sum a -> ST s (MVector s (Sum a))

basicUnsafeRead :: MVector s (Sum a) -> Int -> ST s (Sum a)

basicUnsafeWrite :: MVector s (Sum a) -> Int -> Sum a -> ST s ()

basicClear :: MVector s (Sum a) -> ST s ()

basicSet :: MVector s (Sum a) -> Sum a -> ST s ()

basicUnsafeCopy :: MVector s (Sum a) -> MVector s (Sum a) -> ST s ()

basicUnsafeMove :: MVector s (Sum a) -> MVector s (Sum a) -> ST s ()

basicUnsafeGrow :: MVector s (Sum a) -> Int -> ST s (MVector s (Sum a))

Data a => Data (Sum a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) #

toConstr :: Sum a -> Constr #

dataTypeOf :: Sum a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) #

gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Semigroup (Sum a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Bounded a => Bounded (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Sum a #

maxBound :: Sum a #

Generic (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Sum a) = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Num a => Num (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Read a => Read (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Binary a => Binary (Sum a)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Sum a -> Put #

get :: Get (Sum a) #

putList :: [Sum a] -> Put #

Num a => Default (Sum a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Sum a #

NFData a => NFData (Sum a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Sum a -> () #

Eq a => Eq (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Ord a => Ord (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

(Eq a, Num a) => AsEmpty (Sum a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Sum a) () #

Wrapped (Sum a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Sum a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Sum a) = a

Methods

_Wrapped' :: Iso' (Sum a) (Unwrapped (Sum a)) #

Unbox a => Unbox (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Sum b => Rewrapped (Sum a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep Sum 
Instance details

Defined in Data.Functor.Rep

type Rep Sum = ()
type Rep1 Sum

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Sum a) = MV_Sum (MVector s a)
type Rep (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Sum a) = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (Sum a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Sum a) = a
newtype Vector (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Sum a) = V_Sum (Vector a)

newtype Product a #

Monoid under multiplication.

Product x <> Product y == Product (x * y)

Examples

Expand
>>> Product 3 <> Product 4 <> mempty
Product {getProduct = 12}
>>> mconcat [ Product n | n <- [2 .. 10]]
Product {getProduct = 3628800}

Constructors

Product 

Fields

Instances

Instances details
Representable Product 
Instance details

Defined in Data.Functor.Rep

Associated Types

type Rep Product 
Instance details

Defined in Data.Functor.Rep

type Rep Product = ()

Methods

tabulate :: (Rep Product -> a) -> Product a

index :: Product a -> Rep Product -> a

MonadFix Product

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> Product a) -> Product a #

MonadZip Product

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Product a -> Product b -> Product (a, b) #

mzipWith :: (a -> b -> c) -> Product a -> Product b -> Product c #

munzip :: Product (a, b) -> (Product a, Product b) #

Foldable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldMap' :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Foldable1 Product

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Product m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Product a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Product a -> m #

toNonEmpty :: Product a -> NonEmpty a #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

head :: Product a -> a #

last :: Product a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Product a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Product a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Product a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Product a -> b #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Applicative Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

NFData1 Product

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Product a -> () #

Apply Product 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Product (a -> b) -> Product a -> Product b

(.>) :: Product a -> Product b -> Product b

(<.) :: Product a -> Product b -> Product a

liftF2 :: (a -> b -> c) -> Product a -> Product b -> Product c

Bind Product 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Product a -> (a -> Product b) -> Product b

join :: Product (Product a) -> Product a

Traversable1 Product 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Product a -> f (Product b) #

sequence1 :: Apply f => Product (f b) -> f (Product b)

Generic1 Product 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Product

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Product a -> Rep1 Product a #

to1 :: Rep1 Product a -> Product a #

Unbox a => Vector Vector (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Product a) -> ST s (Vector (Product a))

basicUnsafeThaw :: Vector (Product a) -> ST s (Mutable Vector s (Product a))

basicLength :: Vector (Product a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Product a) -> Vector (Product a)

basicUnsafeIndexM :: Vector (Product a) -> Int -> Box (Product a)

basicUnsafeCopy :: Mutable Vector s (Product a) -> Vector (Product a) -> ST s ()

elemseq :: Vector (Product a) -> Product a -> b -> b

Unbox a => MVector MVector (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Data a => Data (Product a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) #

toConstr :: Product a -> Constr #

dataTypeOf :: Product a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) #

gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Num a => Semigroup (Product a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Bounded a => Bounded (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Generic (Product a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Product a) = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Num a => Num (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Read a => Read (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Binary a => Binary (Product a)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Product a -> Put #

get :: Get (Product a) #

putList :: [Product a] -> Put #

Num a => Default (Product a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Product a #

NFData a => NFData (Product a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Product a -> () #

Eq a => Eq (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Ord a => Ord (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

(Eq a, Num a) => AsEmpty (Product a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Product a) () #

Wrapped (Product a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Product a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Product a) = a

Methods

_Wrapped' :: Iso' (Product a) (Unwrapped (Product a)) #

Unbox a => Unbox (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Product b => Rewrapped (Product a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep Product 
Instance details

Defined in Data.Functor.Rep

type Rep Product = ()
type Rep1 Product

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Product a) = MV_Product (MVector s a)
type Rep (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Product a) = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (Product a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Product a) = a
newtype Vector (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Product a) = V_Product (Vector a)

stimesIdempotent :: Integral b => b -> a -> a #

This is a valid definition of stimes for an idempotent Semigroup.

When x <> x = x, this definition should be preferred, because it works in \(\mathcal{O}(1)\) rather than \(\mathcal{O}(\log n)\).

stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a #

This is a valid definition of stimes for an idempotent Monoid.

When x <> x = x, this definition should be preferred, because it works in \(\mathcal{O}(1)\) rather than \(\mathcal{O}(\log n)\)

type family N a #

Instances

Instances details
type N SVG 
Instance details

Defined in Diagrams.Backend.SVG

type N SVG = Double
type N (Active a) 
Instance details

Defined in Diagrams.Animation.Active

type N (Active a) = N a
type N (Set a) 
Instance details

Defined in Diagrams.Core.V

type N (Set a) = N a
type N (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type N (TransInv t) = N t
type N (Angle n) 
Instance details

Defined in Diagrams.Angle

type N (Angle n) = n
type N (Located a) 
Instance details

Defined in Diagrams.Located

type N (Located a) = N a
type N (Tangent t) 
Instance details

Defined in Diagrams.Tangent

type N (Tangent t) = N t
type N (OrthoLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type N (OrthoLens n) = n
type N (PerspectiveLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type N (PerspectiveLens n) = n
type N (ParallelLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type N (ParallelLight n) = n
type N (PointLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type N (PointLight n) = n
type N (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (Box n) = n
type N (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (CSG n) = n
type N (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (Ellipsoid n) = n
type N (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (Frustum n) = n
type N (GetSegment t) 
Instance details

Defined in Diagrams.Trail

type N (GetSegment t) = N t
type N (ScaleInv t) 
Instance details

Defined in Diagrams.Transform.ScaleInv

type N (ScaleInv t) = N t
type N (FillTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (FillTexture n) = n
type N (LGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (LGradient n) = n
type N (LineTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (LineTexture n) = n
type N (RGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (RGradient n) = n
type N (Texture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (Texture n) = n
type N (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

type N (Clip n) = n
type N (BernsteinPoly n) 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

type N (BernsteinPoly n) = n
type N (Text n) 
Instance details

Defined in Diagrams.TwoD.Text

type N (Text n) = n
type N (V2 n) 
Instance details

Defined in Diagrams.TwoD.Types

type N (V2 n) = n
type N (V3 n) 
Instance details

Defined in Diagrams.ThreeD.Types

type N (V3 n) = n
type N (Deletable m) 
Instance details

Defined in Diagrams.Core.V

type N (Deletable m) = N m
type N (Split m) 
Instance details

Defined in Diagrams.Core.V

type N (Split m) = N m
type N (Maybe a) 
Instance details

Defined in Diagrams.Core.V

type N (Maybe a) = N a
type N [a] 
Instance details

Defined in Diagrams.Core.V

type N [a] = N a
type N (Map k a) 
Instance details

Defined in Diagrams.Core.V

type N (Map k a) = N a
type N (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type N (Envelope v n) = n
type N (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

type N (Measured n a) = N a
type N (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

type N (Attribute v n) = n
type N (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type N (Style v n) = n
type N (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type N (Trace v n) = n
type N (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

type N (Transformation v n) = n
type N (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

type N (BoundingBox v n) = n
type N (NonEmptyBoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

type N (NonEmptyBoundingBox v n) = n
type N (Direction v n) 
Instance details

Defined in Diagrams.Direction

type N (Direction v n) = n
type N (Path v n) 
Instance details

Defined in Diagrams.Path

type N (Path v n) = n
type N (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

type N (FixedSegment v n) = n
type N (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

type N (SizeSpec v n) = n
type N (Camera l n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type N (Camera l n) = n
type N (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type N (SegTree v n) = n
type N (Trail v n) 
Instance details

Defined in Diagrams.Trail

type N (Trail v n) = n
type N (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

type N (DImage n a) = n
type N (FingerTree m a) 
Instance details

Defined in Diagrams.Trail

type N (FingerTree m a) = N a
type N (Point v n) 
Instance details

Defined in Diagrams.Core.Points

type N (Point v n) = n
type N (m :+: n) 
Instance details

Defined in Diagrams.Core.V

type N (m :+: n) = N m
type N (a, b) 
Instance details

Defined in Diagrams.Core.V

type N (a, b) = N a
type N (a -> b) 
Instance details

Defined in Diagrams.Core.V

type N (a -> b) = N b
type N (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type N (Query v n m) = n
type N (Prim b v n) 
Instance details

Defined in Diagrams.Core.Types

type N (Prim b v n) = n
type N (Offset c v n) 
Instance details

Defined in Diagrams.Segment

type N (Offset c v n) = n
type N (Segment c v n) 
Instance details

Defined in Diagrams.Segment

type N (Segment c v n) = n
type N (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

type N (Trail' l v n) = n
type N (a, b, c) 
Instance details

Defined in Diagrams.Core.V

type N (a, b, c) = N a
type N (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type N (QDiagram b v n m) = n
type N (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type N (SubMap b v n m) = n
type N (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type N (Subdiagram b v n m) = n

newtype Last a #

Beware that Data.Semigroup.Last is different from Data.Monoid.Last. The former simply returns the last value, so x <> Data.Semigroup.Last Nothing = Data.Semigroup.Last Nothing. The latter returns the last non-Nothing, thus x <> Data.Monoid.Last Nothing = x.

Examples

Expand
>>> Last 0 <> Last 10
Last {getLast = 10}
>>> sconcat $ Last 1 :| [ Last n | n <- [2..]]
Last {getLast = * hangs forever *

Constructors

Last 

Fields

Instances

Instances details
MonadFix Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mfix :: (a -> Last a) -> Last a #

Foldable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldMap' :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable1 Last

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Last m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Last a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Last a -> m #

toNonEmpty :: Last a -> NonEmpty a #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

head :: Last a -> a #

last :: Last a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Last a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Last a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Last a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Last a -> b #

Traversable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Applicative Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Functor Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Monad Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

NFData1 Last

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Last a -> () #

Apply Last 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Last (a -> b) -> Last a -> Last b

(.>) :: Last a -> Last b -> Last b

(<.) :: Last a -> Last b -> Last a

liftF2 :: (a -> b -> c) -> Last a -> Last b -> Last c

Bind Last 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Last a -> (a -> Last b) -> Last b

join :: Last (Last a) -> Last a

Traversable1 Last 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Last a -> f (Last b) #

sequence1 :: Apply f => Last (f b) -> f (Last b)

Generic1 Last 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Last = D1 ('MetaData "Last" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Last a -> Rep1 Last a #

to1 :: Rep1 Last a -> Last a #

Unbox a => Vector Vector (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Last a) -> ST s (Vector (Last a))

basicUnsafeThaw :: Vector (Last a) -> ST s (Mutable Vector s (Last a))

basicLength :: Vector (Last a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Last a) -> Vector (Last a)

basicUnsafeIndexM :: Vector (Last a) -> Int -> Box (Last a)

basicUnsafeCopy :: Mutable Vector s (Last a) -> Vector (Last a) -> ST s ()

elemseq :: Vector (Last a) -> Last a -> b -> b

Unbox a => MVector MVector (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Last a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Last a) -> MVector s (Last a)

basicOverlaps :: MVector s (Last a) -> MVector s (Last a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Last a))

basicInitialize :: MVector s (Last a) -> ST s ()

basicUnsafeReplicate :: Int -> Last a -> ST s (MVector s (Last a))

basicUnsafeRead :: MVector s (Last a) -> Int -> ST s (Last a)

basicUnsafeWrite :: MVector s (Last a) -> Int -> Last a -> ST s ()

basicClear :: MVector s (Last a) -> ST s ()

basicSet :: MVector s (Last a) -> Last a -> ST s ()

basicUnsafeCopy :: MVector s (Last a) -> MVector s (Last a) -> ST s ()

basicUnsafeMove :: MVector s (Last a) -> MVector s (Last a) -> ST s ()

basicUnsafeGrow :: MVector s (Last a) -> Int -> ST s (MVector s (Last a))

Data a => Data (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) #

toConstr :: Last a -> Constr #

dataTypeOf :: Last a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) #

gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Bounded a => Bounded (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: Last a #

maxBound :: Last a #

Enum a => Enum (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: Last a -> Last a #

pred :: Last a -> Last a #

toEnum :: Int -> Last a #

fromEnum :: Last a -> Int #

enumFrom :: Last a -> [Last a] #

enumFromThen :: Last a -> Last a -> [Last a] #

enumFromTo :: Last a -> Last a -> [Last a] #

enumFromThenTo :: Last a -> Last a -> Last a -> [Last a] #

Generic (Last a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Last a) = D1 ('MetaData "Last" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Read a => Read (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show a => Show (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Binary a => Binary (Last a)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Last a -> Put #

get :: Get (Last a) #

putList :: [Last a] -> Put #

NFData a => NFData (Last a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Last a -> () #

Eq a => Eq (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Ord a => Ord (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Hashable a => Hashable (Last a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Last a -> Int

hash :: Last a -> Int

Wrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Last a) = a

Methods

_Wrapped' :: Iso' (Last a) (Unwrapped (Last a)) #

Unbox a => Unbox (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Last b => Rewrapped (Last a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep1 Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Last = D1 ('MetaData "Last" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Last a) = MV_Last (MVector s a)
type Rep (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Last a) = D1 ('MetaData "Last" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Last a) = a
newtype Vector (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Last a) = V_Last (Vector a)

newtype First a #

Beware that Data.Semigroup.First is different from Data.Monoid.First. The former simply returns the first value, so Data.Semigroup.First Nothing <> x = Data.Semigroup.First Nothing. The latter returns the first non-Nothing, thus Data.Monoid.First Nothing <> x = x.

Examples

Expand
>>> First 0 <> First 10
First 0
>>> sconcat $ First 1 :| [ First n | n <- [2 ..] ]
First 1

Constructors

First 

Fields

Instances

Instances details
MonadFix First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mfix :: (a -> First a) -> First a #

Foldable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldMap' :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable1 First

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => First m -> m #

foldMap1 :: Semigroup m => (a -> m) -> First a -> m #

foldMap1' :: Semigroup m => (a -> m) -> First a -> m #

toNonEmpty :: First a -> NonEmpty a #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

head :: First a -> a #

last :: First a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> First a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> First a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> First a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> First a -> b #

Traversable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Applicative First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Functor First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Monad First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

NFData1 First

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> First a -> () #

Apply First 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: First (a -> b) -> First a -> First b

(.>) :: First a -> First b -> First b

(<.) :: First a -> First b -> First a

liftF2 :: (a -> b -> c) -> First a -> First b -> First c

Bind First 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: First a -> (a -> First b) -> First b

join :: First (First a) -> First a

Traversable1 First 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> First a -> f (First b) #

sequence1 :: Apply f => First (f b) -> f (First b)

Generic1 First 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 First = D1 ('MetaData "First" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: First a -> Rep1 First a #

to1 :: Rep1 First a -> First a #

Unbox a => Vector Vector (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (First a) -> ST s (Vector (First a))

basicUnsafeThaw :: Vector (First a) -> ST s (Mutable Vector s (First a))

basicLength :: Vector (First a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (First a) -> Vector (First a)

basicUnsafeIndexM :: Vector (First a) -> Int -> Box (First a)

basicUnsafeCopy :: Mutable Vector s (First a) -> Vector (First a) -> ST s ()

elemseq :: Vector (First a) -> First a -> b -> b

Unbox a => MVector MVector (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (First a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (First a) -> MVector s (First a)

basicOverlaps :: MVector s (First a) -> MVector s (First a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (First a))

basicInitialize :: MVector s (First a) -> ST s ()

basicUnsafeReplicate :: Int -> First a -> ST s (MVector s (First a))

basicUnsafeRead :: MVector s (First a) -> Int -> ST s (First a)

basicUnsafeWrite :: MVector s (First a) -> Int -> First a -> ST s ()

basicClear :: MVector s (First a) -> ST s ()

basicSet :: MVector s (First a) -> First a -> ST s ()

basicUnsafeCopy :: MVector s (First a) -> MVector s (First a) -> ST s ()

basicUnsafeMove :: MVector s (First a) -> MVector s (First a) -> ST s ()

basicUnsafeGrow :: MVector s (First a) -> Int -> ST s (MVector s (First a))

Data a => Data (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) #

toConstr :: First a -> Constr #

dataTypeOf :: First a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) #

gmapT :: (forall b. Data b => b -> b) -> First a -> First a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Bounded a => Bounded (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: First a #

maxBound :: First a #

Enum a => Enum (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: First a -> First a #

pred :: First a -> First a #

toEnum :: Int -> First a #

fromEnum :: First a -> Int #

enumFrom :: First a -> [First a] #

enumFromThen :: First a -> First a -> [First a] #

enumFromTo :: First a -> First a -> [First a] #

enumFromThenTo :: First a -> First a -> First a -> [First a] #

Generic (First a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (First a) = D1 ('MetaData "First" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Read a => Read (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show a => Show (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Binary a => Binary (First a)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: First a -> Put #

get :: Get (First a) #

putList :: [First a] -> Put #

NFData a => NFData (First a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: First a -> () #

Eq a => Eq (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Ord a => Ord (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Hashable a => Hashable (First a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> First a -> Int

hash :: First a -> Int

Wrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (First a) = a

Methods

_Wrapped' :: Iso' (First a) (Unwrapped (First a)) #

Unbox a => Unbox (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ First b => Rewrapped (First a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep1 First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 First = D1 ('MetaData "First" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (First a) = MV_First (MVector s a)
type Rep (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (First a) = D1 ('MetaData "First" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (First a) = a
newtype Vector (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (First a) = V_First (Vector a)

class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #

Functors representing data structures that can be transformed to structures of the same shape by performing an Applicative (or, therefore, Monad) action on each element from left to right.

A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.

For the class laws see the Laws section of Data.Traversable.

Minimal complete definition

traverse | sequenceA

Methods

traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #

Map each element of a structure to an action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see traverse_.

Examples

Expand

Basic usage:

In the first two examples we show each evaluated action mapping to the output structure.

>>> traverse Just [1,2,3,4]
Just [1,2,3,4]
>>> traverse id [Right 1, Right 2, Right 3, Right 4]
Right [1,2,3,4]

In the next examples, we show that Nothing and Left values short circuit the created structure.

>>> traverse (const Nothing) [1,2,3,4]
Nothing
>>> traverse (\x -> if odd x then Just x else Nothing)  [1,2,3,4]
Nothing
>>> traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]
Left 0

Instances

Instances details
Traversable ZipList

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) #

Traversable Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Traversable Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Down

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Down a -> f (Down b) #

sequenceA :: Applicative f => Down (f a) -> f (Down a) #

mapM :: Monad m => (a -> m b) -> Down a -> m (Down b) #

sequence :: Monad m => Down (m a) -> m (Down a) #

Traversable First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Traversable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Traversable NonEmpty

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Traversable Par1

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequenceA :: Applicative f => Par1 (f a) -> f (Par1 a) #

mapM :: Monad m => (a -> m b) -> Par1 a -> m (Par1 b) #

sequence :: Monad m => Par1 (m a) -> m (Par1 a) #

Traversable IntMap

Traverses in order of increasing key.

Instance details

Defined in Data.IntMap.Internal

Methods

traverse :: Applicative f => (a -> f b) -> IntMap a -> f (IntMap b) #

sequenceA :: Applicative f => IntMap (f a) -> f (IntMap a) #

mapM :: Monad m => (a -> m b) -> IntMap a -> m (IntMap b) #

sequence :: Monad m => IntMap (m a) -> m (IntMap a) #

Traversable Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Digit a -> f (Digit b) #

sequenceA :: Applicative f => Digit (f a) -> f (Digit a) #

mapM :: Monad m => (a -> m b) -> Digit a -> m (Digit b) #

sequence :: Monad m => Digit (m a) -> m (Digit a) #

Traversable Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Elem a -> f (Elem b) #

sequenceA :: Applicative f => Elem (f a) -> f (Elem a) #

mapM :: Monad m => (a -> m b) -> Elem a -> m (Elem b) #

sequence :: Monad m => Elem (m a) -> m (Elem a) #

Traversable FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) #

sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) #

mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) #

sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) #

Traversable Node 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Node a -> f (Node b) #

sequenceA :: Applicative f => Node (f a) -> f (Node a) #

mapM :: Monad m => (a -> m b) -> Node a -> m (Node b) #

sequence :: Monad m => Node (m a) -> m (Node a) #

Traversable Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Seq a -> f (Seq b) #

sequenceA :: Applicative f => Seq (f a) -> f (Seq a) #

mapM :: Monad m => (a -> m b) -> Seq a -> m (Seq b) #

sequence :: Monad m => Seq (m a) -> m (Seq a) #

Traversable ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewL a -> f (ViewL b) #

sequenceA :: Applicative f => ViewL (f a) -> f (ViewL a) #

mapM :: Monad m => (a -> m b) -> ViewL a -> m (ViewL b) #

sequence :: Monad m => ViewL (m a) -> m (ViewL a) #

Traversable ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

traverse :: Applicative f => (a -> f b) -> ViewR a -> f (ViewR b) #

sequenceA :: Applicative f => ViewR (f a) -> f (ViewR a) #

mapM :: Monad m => (a -> m b) -> ViewR a -> m (ViewR b) #

sequence :: Monad m => ViewR (m a) -> m (ViewR a) #

Traversable Tree 
Instance details

Defined in Data.Tree

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) #

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) #

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) #

sequence :: Monad m => Tree (m a) -> m (Tree a) #

Traversable Attr 
Instance details

Defined in Text.DocLayout.Attributed

Methods

traverse :: Applicative f => (a -> f b) -> Attr a -> f (Attr b) #

sequenceA :: Applicative f => Attr (f a) -> f (Attr a) #

mapM :: Monad m => (a -> m b) -> Attr a -> m (Attr b) #

sequence :: Monad m => Attr (m a) -> m (Attr a) #

Traversable Attributed 
Instance details

Defined in Text.DocLayout.Attributed

Methods

traverse :: Applicative f => (a -> f b) -> Attributed a -> f (Attributed b) #

sequenceA :: Applicative f => Attributed (f a) -> f (Attributed a) #

mapM :: Monad m => (a -> m b) -> Attributed a -> m (Attributed b) #

sequence :: Monad m => Attributed (m a) -> m (Attributed a) #

Traversable Context 
Instance details

Defined in Text.DocTemplates.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Context a -> f (Context b) #

sequenceA :: Applicative f => Context (f a) -> f (Context a) #

mapM :: Monad m => (a -> m b) -> Context a -> m (Context b) #

sequence :: Monad m => Context (m a) -> m (Context a) #

Traversable Resolved 
Instance details

Defined in Text.DocTemplates.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Resolved a -> f (Resolved b) #

sequenceA :: Applicative f => Resolved (f a) -> f (Resolved a) #

mapM :: Monad m => (a -> m b) -> Resolved a -> m (Resolved b) #

sequence :: Monad m => Resolved (m a) -> m (Resolved a) #

Traversable Template 
Instance details

Defined in Text.DocTemplates.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Template a -> f (Template b) #

sequenceA :: Applicative f => Template (f a) -> f (Template a) #

mapM :: Monad m => (a -> m b) -> Template a -> m (Template b) #

sequence :: Monad m => Template (m a) -> m (Template a) #

Traversable Val 
Instance details

Defined in Text.DocTemplates.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Val a -> f (Val b) #

sequenceA :: Applicative f => Val (f a) -> f (Val a) #

mapM :: Monad m => (a -> m b) -> Val a -> m (Val b) #

sequence :: Monad m => Val (m a) -> m (Val a) #

Traversable Item 
Instance details

Defined in Hakyll.Core.Item

Methods

traverse :: Applicative f => (a -> f b) -> Item a -> f (Item b) #

sequenceA :: Applicative f => Item (f a) -> f (Item a) #

mapM :: Monad m => (a -> m b) -> Item a -> m (Item b) #

sequence :: Monad m => Item (m a) -> m (Item a) #

Traversable Interval 
Instance details

Defined in Numeric.Interval.Kaucher

Methods

traverse :: Applicative f => (a -> f b) -> Interval a -> f (Interval b) #

sequenceA :: Applicative f => Interval (f a) -> f (Interval a) #

mapM :: Monad m => (a -> m b) -> Interval a -> m (Interval b) #

sequence :: Monad m => Interval (m a) -> m (Interval a) #

Traversable Plucker 
Instance details

Defined in Linear.Plucker

Methods

traverse :: Applicative f => (a -> f b) -> Plucker a -> f (Plucker b) #

sequenceA :: Applicative f => Plucker (f a) -> f (Plucker a) #

mapM :: Monad m => (a -> m b) -> Plucker a -> m (Plucker b) #

sequence :: Monad m => Plucker (m a) -> m (Plucker a) #

Traversable Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

traverse :: Applicative f => (a -> f b) -> Quaternion a -> f (Quaternion b) #

sequenceA :: Applicative f => Quaternion (f a) -> f (Quaternion a) #

mapM :: Monad m => (a -> m b) -> Quaternion a -> m (Quaternion b) #

sequence :: Monad m => Quaternion (m a) -> m (Quaternion a) #

Traversable V0 
Instance details

Defined in Linear.V0

Methods

traverse :: Applicative f => (a -> f b) -> V0 a -> f (V0 b) #

sequenceA :: Applicative f => V0 (f a) -> f (V0 a) #

mapM :: Monad m => (a -> m b) -> V0 a -> m (V0 b) #

sequence :: Monad m => V0 (m a) -> m (V0 a) #

Traversable V1 
Instance details

Defined in Linear.V1

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) #

sequence :: Monad m => V1 (m a) -> m (V1 a) #

Traversable V2 
Instance details

Defined in Linear.V2

Methods

traverse :: Applicative f => (a -> f b) -> V2 a -> f (V2 b) #

sequenceA :: Applicative f => V2 (f a) -> f (V2 a) #

mapM :: Monad m => (a -> m b) -> V2 a -> m (V2 b) #

sequence :: Monad m => V2 (m a) -> m (V2 a) #

Traversable V3 
Instance details

Defined in Linear.V3

Methods

traverse :: Applicative f => (a -> f b) -> V3 a -> f (V3 b) #

sequenceA :: Applicative f => V3 (f a) -> f (V3 a) #

mapM :: Monad m => (a -> m b) -> V3 a -> m (V3 b) #

sequence :: Monad m => V3 (m a) -> m (V3 a) #

Traversable V4 
Instance details

Defined in Linear.V4

Methods

traverse :: Applicative f => (a -> f b) -> V4 a -> f (V4 b) #

sequenceA :: Applicative f => V4 (f a) -> f (V4 a) #

mapM :: Monad m => (a -> m b) -> V4 a -> m (V4 b) #

sequence :: Monad m => V4 (m a) -> m (V4 a) #

Traversable Recommend 
Instance details

Defined in Data.Monoid.Recommend

Methods

traverse :: Applicative f => (a -> f b) -> Recommend a -> f (Recommend b) #

sequenceA :: Applicative f => Recommend (f a) -> f (Recommend a) #

mapM :: Monad m => (a -> m b) -> Recommend a -> m (Recommend b) #

sequence :: Monad m => Recommend (m a) -> m (Recommend a) #

Traversable Many 
Instance details

Defined in Text.Pandoc.Builder

Methods

traverse :: Applicative f => (a -> f b) -> Many a -> f (Many b) #

sequenceA :: Applicative f => Many (f a) -> f (Many a) #

mapM :: Monad m => (a -> m b) -> Many a -> m (Many b) #

sequence :: Monad m => Many (m a) -> m (Many a) #

Traversable Array 
Instance details

Defined in Data.Primitive.Array

Methods

traverse :: Applicative f => (a -> f b) -> Array a -> f (Array b) #

sequenceA :: Applicative f => Array (f a) -> f (Array a) #

mapM :: Monad m => (a -> m b) -> Array a -> m (Array b) #

sequence :: Monad m => Array (m a) -> m (Array a) #

Traversable SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

traverse :: Applicative f => (a -> f b) -> SmallArray a -> f (SmallArray b) #

sequenceA :: Applicative f => SmallArray (f a) -> f (SmallArray a) #

mapM :: Monad m => (a -> m b) -> SmallArray a -> m (SmallArray b) #

sequence :: Monad m => SmallArray (m a) -> m (SmallArray a) #

Traversable Maybe 
Instance details

Defined in Data.Strict.Maybe

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Traversable TyVarBndr 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

traverse :: Applicative f => (a -> f b) -> TyVarBndr a -> f (TyVarBndr b) #

sequenceA :: Applicative f => TyVarBndr (f a) -> f (TyVarBndr a) #

mapM :: Monad m => (a -> m b) -> TyVarBndr a -> m (TyVarBndr b) #

sequence :: Monad m => TyVarBndr (m a) -> m (TyVarBndr a) #

Traversable Vector 
Instance details

Defined in Data.Vector

Methods

traverse :: Applicative f => (a -> f b) -> Vector a -> f (Vector b) #

sequenceA :: Applicative f => Vector (f a) -> f (Vector a) #

mapM :: Monad m => (a -> m b) -> Vector a -> m (Vector b) #

sequence :: Monad m => Vector (m a) -> m (Vector a) #

Traversable Vector 
Instance details

Defined in Data.Vector.Strict

Methods

traverse :: Applicative f => (a -> f b) -> Vector a -> f (Vector b) #

sequenceA :: Applicative f => Vector (f a) -> f (Vector a) #

mapM :: Monad m => (a -> m b) -> Vector a -> m (Vector b) #

sequence :: Monad m => Vector (m a) -> m (Vector a) #

Traversable Maybe

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Traversable Solo

Since: base-4.15

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Solo a -> f (Solo b) #

sequenceA :: Applicative f => Solo (f a) -> f (Solo a) #

mapM :: Monad m => (a -> m b) -> Solo a -> m (Solo b) #

sequence :: Monad m => Solo (m a) -> m (Solo a) #

Traversable []

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] #

sequenceA :: Applicative f => [f a] -> f [a] #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] #

sequence :: Monad m => [m a] -> m [a] #

Traversable (Either a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> Either a a0 -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a0) -> f (Either a a0) #

mapM :: Monad m => (a0 -> m b) -> Either a a0 -> m (Either a b) #

sequence :: Monad m => Either a (m a0) -> m (Either a a0) #

Traversable (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) #

Traversable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a0 -> f b) -> Arg a a0 -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a0) -> f (Arg a a0) #

mapM :: Monad m => (a0 -> m b) -> Arg a a0 -> m (Arg a b) #

sequence :: Monad m => Arg a (m a0) -> m (Arg a a0) #

Ix i => Traversable (Array i)

Since: base-2.1

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) #

sequence :: Monad m => Array i (m a) -> m (Array i a) #

Traversable (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) #

sequence :: Monad m => U1 (m a) -> m (U1 a) #

Traversable (UAddr :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UAddr a -> f (UAddr b) #

sequenceA :: Applicative f => UAddr (f a) -> f (UAddr a) #

mapM :: Monad m => (a -> m b) -> UAddr a -> m (UAddr b) #

sequence :: Monad m => UAddr (m a) -> m (UAddr a) #

Traversable (UChar :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UChar a -> f (UChar b) #

sequenceA :: Applicative f => UChar (f a) -> f (UChar a) #

mapM :: Monad m => (a -> m b) -> UChar a -> m (UChar b) #

sequence :: Monad m => UChar (m a) -> m (UChar a) #

Traversable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) #

Traversable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) #

Traversable (UInt :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UInt a -> f (UInt b) #

sequenceA :: Applicative f => UInt (f a) -> f (UInt a) #

mapM :: Monad m => (a -> m b) -> UInt a -> m (UInt b) #

sequence :: Monad m => UInt (m a) -> m (UInt a) #

Traversable (UWord :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UWord a -> f (UWord b) #

sequenceA :: Applicative f => UWord (f a) -> f (UWord a) #

mapM :: Monad m => (a -> m b) -> UWord a -> m (UWord b) #

sequence :: Monad m => UWord (m a) -> m (UWord a) #

Traversable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) #

sequence :: Monad m => V1 (m a) -> m (V1 a) #

Traversable (Map k)

Traverses in order of increasing key.

Instance details

Defined in Data.Map.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Traversable f => Traversable (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Cofree f a -> f0 (Cofree f b) #

sequenceA :: Applicative f0 => Cofree f (f0 a) -> f0 (Cofree f a) #

mapM :: Monad m => (a -> m b) -> Cofree f a -> m (Cofree f b) #

sequence :: Monad m => Cofree f (m a) -> m (Cofree f a) #

Traversable f => Traversable (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Free f a -> f0 (Free f b) #

sequenceA :: Applicative f0 => Free f (f0 a) -> f0 (Free f a) #

mapM :: Monad m => (a -> m b) -> Free f a -> m (Free f b) #

sequence :: Monad m => Free f (m a) -> m (Free f a) #

Traversable f => Traversable (Yoneda f) 
Instance details

Defined in Data.Functor.Yoneda

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Yoneda f a -> f0 (Yoneda f b) #

sequenceA :: Applicative f0 => Yoneda f (f0 a) -> f0 (Yoneda f a) #

mapM :: Monad m => (a -> m b) -> Yoneda f a -> m (Yoneda f b) #

sequence :: Monad m => Yoneda f (m a) -> m (Yoneda f a) #

Traversable (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

traverse :: Applicative f => (a -> f b) -> Level i a -> f (Level i b) #

sequenceA :: Applicative f => Level i (f a) -> f (Level i a) #

mapM :: Monad m => (a -> m b) -> Level i a -> m (Level i b) #

sequence :: Monad m => Level i (m a) -> m (Level i a) #

Traversable f => Traversable (Point f) 
Instance details

Defined in Linear.Affine

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Point f a -> f0 (Point f b) #

sequenceA :: Applicative f0 => Point f (f0 a) -> f0 (Point f a) #

mapM :: Monad m => (a -> m b) -> Point f a -> m (Point f b) #

sequence :: Monad m => Point f (m a) -> m (Point f a) #

Traversable (Either e) 
Instance details

Defined in Data.Strict.Either

Methods

traverse :: Applicative f => (a -> f b) -> Either e a -> f (Either e b) #

sequenceA :: Applicative f => Either e (f a) -> f (Either e a) #

mapM :: Monad m => (a -> m b) -> Either e a -> m (Either e b) #

sequence :: Monad m => Either e (m a) -> m (Either e a) #

Traversable (These a) 
Instance details

Defined in Data.Strict.These

Methods

traverse :: Applicative f => (a0 -> f b) -> These a a0 -> f (These a b) #

sequenceA :: Applicative f => These a (f a0) -> f (These a a0) #

mapM :: Monad m => (a0 -> m b) -> These a a0 -> m (These a b) #

sequence :: Monad m => These a (m a0) -> m (These a a0) #

Traversable (Pair e) 
Instance details

Defined in Data.Strict.Tuple

Methods

traverse :: Applicative f => (a -> f b) -> Pair e a -> f (Pair e b) #

sequenceA :: Applicative f => Pair e (f a) -> f (Pair e a) #

mapM :: Monad m => (a -> m b) -> Pair e a -> m (Pair e b) #

sequence :: Monad m => Pair e (m a) -> m (Pair e a) #

Traversable (These a) 
Instance details

Defined in Data.These

Methods

traverse :: Applicative f => (a0 -> f b) -> These a a0 -> f (These a b) #

sequenceA :: Applicative f => These a (f a0) -> f (These a a0) #

mapM :: Monad m => (a0 -> m b) -> These a a0 -> m (These a b) #

sequence :: Monad m => These a (m a0) -> m (These a a0) #

Traversable f => Traversable (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Lift f a -> f0 (Lift f b) #

sequenceA :: Applicative f0 => Lift f (f0 a) -> f0 (Lift f a) #

mapM :: Monad m => (a -> m b) -> Lift f a -> m (Lift f b) #

sequence :: Monad m => Lift f (m a) -> m (Lift f a) #

Traversable f => Traversable (MaybeT f) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

traverse :: Applicative f0 => (a -> f0 b) -> MaybeT f a -> f0 (MaybeT f b) #

sequenceA :: Applicative f0 => MaybeT f (f0 a) -> f0 (MaybeT f a) #

mapM :: Monad m => (a -> m b) -> MaybeT f a -> m (MaybeT f b) #

sequence :: Monad m => MaybeT f (m a) -> m (MaybeT f a) #

Traversable (HashMap k) 
Instance details

Defined in Data.HashMap.Internal

Methods

traverse :: Applicative f => (a -> f b) -> HashMap k a -> f (HashMap k b) #

sequenceA :: Applicative f => HashMap k (f a) -> f (HashMap k a) #

mapM :: Monad m => (a -> m b) -> HashMap k a -> m (HashMap k b) #

sequence :: Monad m => HashMap k (m a) -> m (HashMap k a) #

Traversable ((,) a)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a0 -> f b) -> (a, a0) -> f (a, b) #

sequenceA :: Applicative f => (a, f a0) -> f (a, a0) #

mapM :: Monad m => (a0 -> m b) -> (a, a0) -> m (a, b) #

sequence :: Monad m => (a, m a0) -> m (a, a0) #

Traversable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Traversable f => Traversable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) #

Traversable f => Traversable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) #

Traversable f => Traversable (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) #

Bitraversable p => Traversable (Fix p) 
Instance details

Defined in Data.Bifunctor.Fix

Methods

traverse :: Applicative f => (a -> f b) -> Fix p a -> f (Fix p b) #

sequenceA :: Applicative f => Fix p (f a) -> f (Fix p a) #

mapM :: Monad m => (a -> m b) -> Fix p a -> m (Fix p b) #

sequence :: Monad m => Fix p (m a) -> m (Fix p a) #

Bitraversable p => Traversable (Join p) 
Instance details

Defined in Data.Bifunctor.Join

Methods

traverse :: Applicative f => (a -> f b) -> Join p a -> f (Join p b) #

sequenceA :: Applicative f => Join p (f a) -> f (Join p a) #

mapM :: Monad m => (a -> m b) -> Join p a -> m (Join p b) #

sequence :: Monad m => Join p (m a) -> m (Join p a) #

Traversable f => Traversable (CofreeF f a) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> CofreeF f a a0 -> f0 (CofreeF f a b) #

sequenceA :: Applicative f0 => CofreeF f a (f0 a0) -> f0 (CofreeF f a a0) #

mapM :: Monad m => (a0 -> m b) -> CofreeF f a a0 -> m (CofreeF f a b) #

sequence :: Monad m => CofreeF f a (m a0) -> m (CofreeF f a a0) #

(Traversable f, Traversable w) => Traversable (CofreeT f w) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Methods

traverse :: Applicative f0 => (a -> f0 b) -> CofreeT f w a -> f0 (CofreeT f w b) #

sequenceA :: Applicative f0 => CofreeT f w (f0 a) -> f0 (CofreeT f w a) #

mapM :: Monad m => (a -> m b) -> CofreeT f w a -> m (CofreeT f w b) #

sequence :: Monad m => CofreeT f w (m a) -> m (CofreeT f w a) #

Traversable f => Traversable (FreeF f a) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> FreeF f a a0 -> f0 (FreeF f a b) #

sequenceA :: Applicative f0 => FreeF f a (f0 a0) -> f0 (FreeF f a a0) #

mapM :: Monad m => (a0 -> m b) -> FreeF f a a0 -> m (FreeF f a b) #

sequence :: Monad m => FreeF f a (m a0) -> m (FreeF f a a0) #

(Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

traverse :: Applicative f0 => (a -> f0 b) -> FreeT f m a -> f0 (FreeT f m b) #

sequenceA :: Applicative f0 => FreeT f m (f0 a) -> f0 (FreeT f m a) #

mapM :: Monad m0 => (a -> m0 b) -> FreeT f m a -> m0 (FreeT f m b) #

sequence :: Monad m0 => FreeT f m (m0 a) -> m0 (FreeT f m a) #

Traversable f => Traversable (AlongsideLeft f b) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

traverse :: Applicative f0 => (a -> f0 b0) -> AlongsideLeft f b a -> f0 (AlongsideLeft f b b0) #

sequenceA :: Applicative f0 => AlongsideLeft f b (f0 a) -> f0 (AlongsideLeft f b a) #

mapM :: Monad m => (a -> m b0) -> AlongsideLeft f b a -> m (AlongsideLeft f b b0) #

sequence :: Monad m => AlongsideLeft f b (m a) -> m (AlongsideLeft f b a) #

Traversable f => Traversable (AlongsideRight f a) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> AlongsideRight f a a0 -> f0 (AlongsideRight f a b) #

sequenceA :: Applicative f0 => AlongsideRight f a (f0 a0) -> f0 (AlongsideRight f a a0) #

mapM :: Monad m => (a0 -> m b) -> AlongsideRight f a a0 -> m (AlongsideRight f a b) #

sequence :: Monad m => AlongsideRight f a (m a0) -> m (AlongsideRight f a a0) #

Traversable (V n) 
Instance details

Defined in Linear.V

Methods

traverse :: Applicative f => (a -> f b) -> V n a -> f (V n b) #

sequenceA :: Applicative f => V n (f a) -> f (V n a) #

mapM :: Monad m => (a -> m b) -> V n a -> m (V n b) #

sequence :: Monad m => V n (m a) -> m (V n a) #

Traversable (Tagged s) 
Instance details

Defined in Data.Tagged

Methods

traverse :: Applicative f => (a -> f b) -> Tagged s a -> f (Tagged s b) #

sequenceA :: Applicative f => Tagged s (f a) -> f (Tagged s a) #

mapM :: Monad m => (a -> m b) -> Tagged s a -> m (Tagged s b) #

sequence :: Monad m => Tagged s (m a) -> m (Tagged s a) #

Traversable f => Traversable (Backwards f)

Derived instance.

Instance details

Defined in Control.Applicative.Backwards

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Backwards f a -> f0 (Backwards f b) #

sequenceA :: Applicative f0 => Backwards f (f0 a) -> f0 (Backwards f a) #

mapM :: Monad m => (a -> m b) -> Backwards f a -> m (Backwards f b) #

sequence :: Monad m => Backwards f (m a) -> m (Backwards f a) #

Traversable f => Traversable (ExceptT e f) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ExceptT e f a -> f0 (ExceptT e f b) #

sequenceA :: Applicative f0 => ExceptT e f (f0 a) -> f0 (ExceptT e f a) #

mapM :: Monad m => (a -> m b) -> ExceptT e f a -> m (ExceptT e f b) #

sequence :: Monad m => ExceptT e f (m a) -> m (ExceptT e f a) #

Traversable f => Traversable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

traverse :: Applicative f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequenceA :: Applicative f0 => IdentityT f (f0 a) -> f0 (IdentityT f a) #

mapM :: Monad m => (a -> m b) -> IdentityT f a -> m (IdentityT f b) #

sequence :: Monad m => IdentityT f (m a) -> m (IdentityT f a) #

Traversable f => Traversable (WriterT w f) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

traverse :: Applicative f0 => (a -> f0 b) -> WriterT w f a -> f0 (WriterT w f b) #

sequenceA :: Applicative f0 => WriterT w f (f0 a) -> f0 (WriterT w f a) #

mapM :: Monad m => (a -> m b) -> WriterT w f a -> m (WriterT w f b) #

sequence :: Monad m => WriterT w f (m a) -> m (WriterT w f a) #

Traversable f => Traversable (WriterT w f) 
Instance details

Defined in Control.Monad.Trans.Writer.Strict

Methods

traverse :: Applicative f0 => (a -> f0 b) -> WriterT w f a -> f0 (WriterT w f b) #

sequenceA :: Applicative f0 => WriterT w f (f0 a) -> f0 (WriterT w f a) #

mapM :: Monad m => (a -> m b) -> WriterT w f a -> m (WriterT w f b) #

sequence :: Monad m => WriterT w f (m a) -> m (WriterT w f a) #

Traversable (Constant a :: Type -> Type) 
Instance details

Defined in Data.Functor.Constant

Methods

traverse :: Applicative f => (a0 -> f b) -> Constant a a0 -> f (Constant a b) #

sequenceA :: Applicative f => Constant a (f a0) -> f (Constant a a0) #

mapM :: Monad m => (a0 -> m b) -> Constant a a0 -> m (Constant a b) #

sequence :: Monad m => Constant a (m a0) -> m (Constant a a0) #

Traversable f => Traversable (Reverse f)

Traverse from right to left.

Instance details

Defined in Data.Functor.Reverse

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Reverse f a -> f0 (Reverse f b) #

sequenceA :: Applicative f0 => Reverse f (f0 a) -> f0 (Reverse f a) #

mapM :: Monad m => (a -> m b) -> Reverse f a -> m (Reverse f b) #

sequence :: Monad m => Reverse f (m a) -> m (Reverse f a) #

(Traversable f, Traversable g) => Traversable (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Product f g a -> f0 (Product f g b) #

sequenceA :: Applicative f0 => Product f g (f0 a) -> f0 (Product f g a) #

mapM :: Monad m => (a -> m b) -> Product f g a -> m (Product f g b) #

sequence :: Monad m => Product f g (m a) -> m (Product f g a) #

(Traversable f, Traversable g) => Traversable (Sum f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

sequenceA :: Applicative f0 => Sum f g (f0 a) -> f0 (Sum f g a) #

mapM :: Monad m => (a -> m b) -> Sum f g a -> m (Sum f g b) #

sequence :: Monad m => Sum f g (m a) -> m (Sum f g a) #

(Traversable f, Traversable g) => Traversable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) #

(Traversable f, Traversable g) => Traversable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) #

Traversable (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) #

Traversable (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

traverse :: Applicative f => (a -> f b0) -> Magma i t b a -> f (Magma i t b b0) #

sequenceA :: Applicative f => Magma i t b (f a) -> f (Magma i t b a) #

mapM :: Monad m => (a -> m b0) -> Magma i t b a -> m (Magma i t b b0) #

sequence :: Monad m => Magma i t b (m a) -> m (Magma i t b a) #

Traversable (Forget r a :: Type -> Type) 
Instance details

Defined in Data.Profunctor.Types

Methods

traverse :: Applicative f => (a0 -> f b) -> Forget r a a0 -> f (Forget r a b) #

sequenceA :: Applicative f => Forget r a (f a0) -> f (Forget r a a0) #

mapM :: Monad m => (a0 -> m b) -> Forget r a a0 -> m (Forget r a b) #

sequence :: Monad m => Forget r a (m a0) -> m (Forget r a a0) #

(Traversable f, Traversable g) => Traversable (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

sequenceA :: Applicative f0 => Compose f g (f0 a) -> f0 (Compose f g a) #

mapM :: Monad m => (a -> m b) -> Compose f g a -> m (Compose f g b) #

sequence :: Monad m => Compose f g (m a) -> m (Compose f g a) #

(Traversable f, Traversable g) => Traversable (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) #

Traversable f => Traversable (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) #

Traversable (Clown f a :: Type -> Type) 
Instance details

Defined in Data.Bifunctor.Clown

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Clown f a a0 -> f0 (Clown f a b) #

sequenceA :: Applicative f0 => Clown f a (f0 a0) -> f0 (Clown f a a0) #

mapM :: Monad m => (a0 -> m b) -> Clown f a a0 -> m (Clown f a b) #

sequence :: Monad m => Clown f a (m a0) -> m (Clown f a a0) #

Bitraversable p => Traversable (Flip p a) 
Instance details

Defined in Data.Bifunctor.Flip

Methods

traverse :: Applicative f => (a0 -> f b) -> Flip p a a0 -> f (Flip p a b) #

sequenceA :: Applicative f => Flip p a (f a0) -> f (Flip p a a0) #

mapM :: Monad m => (a0 -> m b) -> Flip p a a0 -> m (Flip p a b) #

sequence :: Monad m => Flip p a (m a0) -> m (Flip p a a0) #

Traversable g => Traversable (Joker g a) 
Instance details

Defined in Data.Bifunctor.Joker

Methods

traverse :: Applicative f => (a0 -> f b) -> Joker g a a0 -> f (Joker g a b) #

sequenceA :: Applicative f => Joker g a (f a0) -> f (Joker g a a0) #

mapM :: Monad m => (a0 -> m b) -> Joker g a a0 -> m (Joker g a b) #

sequence :: Monad m => Joker g a (m a0) -> m (Joker g a a0) #

Bitraversable p => Traversable (WrappedBifunctor p a) 
Instance details

Defined in Data.Bifunctor.Wrapped

Methods

traverse :: Applicative f => (a0 -> f b) -> WrappedBifunctor p a a0 -> f (WrappedBifunctor p a b) #

sequenceA :: Applicative f => WrappedBifunctor p a (f a0) -> f (WrappedBifunctor p a a0) #

mapM :: Monad m => (a0 -> m b) -> WrappedBifunctor p a a0 -> m (WrappedBifunctor p a b) #

sequence :: Monad m => WrappedBifunctor p a (m a0) -> m (WrappedBifunctor p a a0) #

(Traversable (f a), Traversable (g a)) => Traversable (Product f g a) 
Instance details

Defined in Data.Bifunctor.Product

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Product f g a a0 -> f0 (Product f g a b) #

sequenceA :: Applicative f0 => Product f g a (f0 a0) -> f0 (Product f g a a0) #

mapM :: Monad m => (a0 -> m b) -> Product f g a a0 -> m (Product f g a b) #

sequence :: Monad m => Product f g a (m a0) -> m (Product f g a a0) #

(Traversable (f a), Traversable (g a)) => Traversable (Sum f g a) 
Instance details

Defined in Data.Bifunctor.Sum

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Sum f g a a0 -> f0 (Sum f g a b) #

sequenceA :: Applicative f0 => Sum f g a (f0 a0) -> f0 (Sum f g a a0) #

mapM :: Monad m => (a0 -> m b) -> Sum f g a a0 -> m (Sum f g a b) #

sequence :: Monad m => Sum f g a (m a0) -> m (Sum f g a a0) #

(Traversable f, Bitraversable p) => Traversable (Tannen f p a) 
Instance details

Defined in Data.Bifunctor.Tannen

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Tannen f p a a0 -> f0 (Tannen f p a b) #

sequenceA :: Applicative f0 => Tannen f p a (f0 a0) -> f0 (Tannen f p a a0) #

mapM :: Monad m => (a0 -> m b) -> Tannen f p a a0 -> m (Tannen f p a b) #

sequence :: Monad m => Tannen f p a (m a0) -> m (Tannen f p a a0) #

(Bitraversable p, Traversable g) => Traversable (Biff p f g a) 
Instance details

Defined in Data.Bifunctor.Biff

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> Biff p f g a a0 -> f0 (Biff p f g a b) #

sequenceA :: Applicative f0 => Biff p f g a (f0 a0) -> f0 (Biff p f g a a0) #

mapM :: Monad m => (a0 -> m b) -> Biff p f g a a0 -> m (Biff p f g a b) #

sequence :: Monad m => Biff p f g a (m a0) -> m (Biff p f g a a0) #

with :: Default d => d #

lazy :: Strict lazy strict => Iso' strict lazy #

trace :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Lens' (QDiagram b v n m) (Trace v n) #

(|||) :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a -> a -> a #

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Instances should satisfy the following:

Associativity
x <> (y <> z) = (x <> y) <> z

You can alternatively define sconcat instead of (<>), in which case the laws are:

Unit
sconcat (pure x) = x
Multiplication
sconcat (join xss) = sconcat (fmap sconcat xss)

Since: base-4.9.0.0

Minimal complete definition

(<>) | sconcat

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

Examples

Expand
>>> [1,2,3] <> [4,5,6]
[1,2,3,4,5,6]
>>> Just [1, 2, 3] <> Just [4, 5, 6]
Just [1,2,3,4,5,6]
>>> putStr "Hello, " <> putStrLn "World!"
Hello, World!

sconcat :: NonEmpty a -> a #

Reduce a non-empty list with <>

The default definition should be sufficient, but this can be overridden for efficiency.

Examples

Expand

For the following examples, we will assume that we have:

>>> import Data.List.NonEmpty (NonEmpty (..))
>>> sconcat $ "Hello" :| [" ", "Haskell", "!"]
"Hello Haskell!"
>>> sconcat $ Just [1, 2, 3] :| [Nothing, Just [4, 5, 6]]
Just [1,2,3,4,5,6]
>>> sconcat $ Left 1 :| [Right 2, Left 3, Right 4]
Right 2

stimes :: Integral b => b -> a -> a #

Repeat a value n times.

The default definition will raise an exception for a multiplier that is <= 0. This may be overridden with an implementation that is total. For monoids it is preferred to use stimesMonoid.

By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by picking stimes = stimesIdempotent or stimes = stimesIdempotentMonoid respectively.

Examples

Expand
>>> stimes 4 [1]
[1,1,1,1]
>>> stimes 5 (putStr "hi!")
hi!hi!hi!hi!hi!
>>> stimes 3 (Right ":)")
Right ":)"

Instances

Instances details
Semigroup ByteArray

Since: base-4.17.0.0

Instance details

Defined in Data.Array.Byte

Semigroup All

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Any

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup Void

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup Attribute 
Instance details

Defined in Text.Blaze.Internal

Methods

(<>) :: Attribute -> Attribute -> Attribute #

sconcat :: NonEmpty Attribute -> Attribute #

stimes :: Integral b => b -> Attribute -> Attribute #

Semigroup AttributeValue 
Instance details

Defined in Text.Blaze.Internal

Methods

(<>) :: AttributeValue -> AttributeValue -> AttributeValue #

sconcat :: NonEmpty AttributeValue -> AttributeValue #

stimes :: Integral b => b -> AttributeValue -> AttributeValue #

Semigroup ChoiceString 
Instance details

Defined in Text.Blaze.Internal

Methods

(<>) :: ChoiceString -> ChoiceString -> ChoiceString #

sconcat :: NonEmpty ChoiceString -> ChoiceString #

stimes :: Integral b => b -> ChoiceString -> ChoiceString #

Semigroup Builder 
Instance details

Defined in Data.ByteString.Builder.Internal

Semigroup ByteString 
Instance details

Defined in Data.ByteString.Internal.Type

Semigroup ByteString 
Instance details

Defined in Data.ByteString.Lazy.Internal

Semigroup ShortByteString 
Instance details

Defined in Data.ByteString.Short.Internal

Semigroup Literal 
Instance details

Defined in Clay.Property

Methods

(<>) :: Literal -> Literal -> Literal #

sconcat :: NonEmpty Literal -> Literal #

stimes :: Integral b => b -> Literal -> Literal #

Semigroup Prefixed 
Instance details

Defined in Clay.Property

Methods

(<>) :: Prefixed -> Prefixed -> Prefixed #

sconcat :: NonEmpty Prefixed -> Prefixed #

stimes :: Integral b => b -> Prefixed -> Prefixed #

Semigroup Value 
Instance details

Defined in Clay.Property

Methods

(<>) :: Value -> Value -> Value #

sconcat :: NonEmpty Value -> Value #

stimes :: Integral b => b -> Value -> Value #

Semigroup Refinement 
Instance details

Defined in Clay.Selector

Methods

(<>) :: Refinement -> Refinement -> Refinement #

sconcat :: NonEmpty Refinement -> Refinement #

stimes :: Integral b => b -> Refinement -> Refinement #

Semigroup CommentText 
Instance details

Defined in Clay.Stylesheet

Methods

(<>) :: CommentText -> CommentText -> CommentText #

sconcat :: NonEmpty CommentText -> CommentText #

stimes :: Integral b => b -> CommentText -> CommentText #

Semigroup Css 
Instance details

Defined in Clay.Stylesheet

Methods

(<>) :: Css -> Css -> Css #

sconcat :: NonEmpty Css -> Css #

stimes :: Integral b => b -> Css -> Css #

Semigroup IntSet

Since: containers-0.5.7

Instance details

Defined in Data.IntSet.Internal

Semigroup Unit 
Instance details

Defined in Control.DeepSeq

Methods

(<>) :: Unit -> Unit -> Unit #

sconcat :: NonEmpty Unit -> Unit #

stimes :: Integral b => b -> Unit -> Unit #

Semigroup Name 
Instance details

Defined in Diagrams.Core.Names

Methods

(<>) :: Name -> Name -> Name #

sconcat :: NonEmpty Name -> Name #

stimes :: Integral b => b -> Name -> Name #

Semigroup FillOpacity 
Instance details

Defined in Diagrams.Attributes

Semigroup LineCap 
Instance details

Defined in Diagrams.Attributes

Semigroup LineJoin 
Instance details

Defined in Diagrams.Attributes

Semigroup LineMiterLimit 
Instance details

Defined in Diagrams.Attributes

Semigroup Opacity 
Instance details

Defined in Diagrams.Attributes

Semigroup StrokeOpacity 
Instance details

Defined in Diagrams.Attributes

Semigroup SegCount 
Instance details

Defined in Diagrams.Segment

Semigroup Ambient 
Instance details

Defined in Diagrams.ThreeD.Attributes

Semigroup Diffuse 
Instance details

Defined in Diagrams.ThreeD.Attributes

Semigroup Highlight 
Instance details

Defined in Diagrams.ThreeD.Attributes

Semigroup SurfaceColor 
Instance details

Defined in Diagrams.ThreeD.Attributes

Semigroup Crossings 
Instance details

Defined in Diagrams.TwoD.Path

Methods

(<>) :: Crossings -> Crossings -> Crossings #

sconcat :: NonEmpty Crossings -> Crossings #

stimes :: Integral b => b -> Crossings -> Crossings #

Semigroup FillRule 
Instance details

Defined in Diagrams.TwoD.Path

Semigroup Font 
Instance details

Defined in Diagrams.TwoD.Text

Methods

(<>) :: Font -> Font -> Font #

sconcat :: NonEmpty Font -> Font #

stimes :: Integral b => b -> Font -> Font #

Semigroup FontSlant 
Instance details

Defined in Diagrams.TwoD.Text

Methods

(<>) :: FontSlant -> FontSlant -> FontSlant #

sconcat :: NonEmpty FontSlant -> FontSlant #

stimes :: Integral b => b -> FontSlant -> FontSlant #

Semigroup FontWeight 
Instance details

Defined in Diagrams.TwoD.Text

Methods

(<>) :: FontWeight -> FontWeight -> FontWeight #

sconcat :: NonEmpty FontWeight -> FontWeight #

stimes :: Integral b => b -> FontWeight -> FontWeight #

Semigroup Variable 
Instance details

Defined in Text.DocTemplates.Internal

Methods

(<>) :: Variable -> Variable -> Variable #

sconcat :: NonEmpty Variable -> Variable #

stimes :: Integral b => b -> Variable -> Variable #

Semigroup OsString 
Instance details

Defined in System.OsString.Internal.Types.Hidden

Semigroup PosixString 
Instance details

Defined in System.OsString.Internal.Types.Hidden

Semigroup WindowsString 
Instance details

Defined in System.OsString.Internal.Types.Hidden

Semigroup Ordering

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Semigroup CompilerWrite 
Instance details

Defined in Hakyll.Core.Compiler.Internal

Methods

(<>) :: CompilerWrite -> CompilerWrite -> CompilerWrite #

sconcat :: NonEmpty CompilerWrite -> CompilerWrite #

stimes :: Integral b => b -> CompilerWrite -> CompilerWrite #

Semigroup Dependencies 
Instance details

Defined in Hakyll.Core.Dependencies

Methods

(<>) :: Dependencies -> Dependencies -> Dependencies #

sconcat :: NonEmpty Dependencies -> Dependencies #

stimes :: Integral b => b -> Dependencies -> Dependencies #

Semigroup Pattern 
Instance details

Defined in Hakyll.Core.Identifier.Pattern.Internal

Methods

(<>) :: Pattern -> Pattern -> Pattern #

sconcat :: NonEmpty Pattern -> Pattern #

stimes :: Integral b => b -> Pattern -> Pattern #

Semigroup Routes 
Instance details

Defined in Hakyll.Core.Routes

Methods

(<>) :: Routes -> Routes -> Routes #

sconcat :: NonEmpty Routes -> Routes #

stimes :: Integral b => b -> Routes -> Routes #

Semigroup RuleSet 
Instance details

Defined in Hakyll.Core.Rules.Internal

Methods

(<>) :: RuleSet -> RuleSet -> RuleSet #

sconcat :: NonEmpty RuleSet -> RuleSet #

stimes :: Integral b => b -> RuleSet -> RuleSet #

Semigroup OsString 
Instance details

Defined in System.OsString.Internal.Types

Methods

(<>) :: OsString -> OsString -> OsString #

sconcat :: NonEmpty OsString -> OsString #

stimes :: Integral b => b -> OsString -> OsString #

Semigroup PosixString 
Instance details

Defined in System.OsString.Internal.Types

Methods

(<>) :: PosixString -> PosixString -> PosixString #

sconcat :: NonEmpty PosixString -> PosixString #

stimes :: Integral b => b -> PosixString -> PosixString #

Semigroup WindowsString 
Instance details

Defined in System.OsString.Internal.Types

Methods

(<>) :: WindowsString -> WindowsString -> WindowsString #

sconcat :: NonEmpty WindowsString -> WindowsString #

stimes :: Integral b => b -> WindowsString -> WindowsString #

Semigroup FileTree 
Instance details

Defined in Text.Pandoc.Class.PandocPure

Methods

(<>) :: FileTree -> FileTree -> FileTree #

sconcat :: NonEmpty FileTree -> FileTree #

stimes :: Integral b => b -> FileTree -> FileTree #

Semigroup Extensions 
Instance details

Defined in Text.Pandoc.Extensions

Methods

(<>) :: Extensions -> Extensions -> Extensions #

sconcat :: NonEmpty Extensions -> Extensions #

stimes :: Integral b => b -> Extensions -> Extensions #

Semigroup ExtensionsConfig 
Instance details

Defined in Text.Pandoc.Format

Methods

(<>) :: ExtensionsConfig -> ExtensionsConfig -> ExtensionsConfig #

sconcat :: NonEmpty ExtensionsConfig -> ExtensionsConfig #

stimes :: Integral b => b -> ExtensionsConfig -> ExtensionsConfig #

Semigroup ExtensionsDiff 
Instance details

Defined in Text.Pandoc.Format

Methods

(<>) :: ExtensionsDiff -> ExtensionsDiff -> ExtensionsDiff #

sconcat :: NonEmpty ExtensionsDiff -> ExtensionsDiff #

stimes :: Integral b => b -> ExtensionsDiff -> ExtensionsDiff #

Semigroup MediaBag 
Instance details

Defined in Text.Pandoc.MediaBag

Methods

(<>) :: MediaBag -> MediaBag -> MediaBag #

sconcat :: NonEmpty MediaBag -> MediaBag #

stimes :: Integral b => b -> MediaBag -> MediaBag #

Semigroup Sources 
Instance details

Defined in Text.Pandoc.Sources

Methods

(<>) :: Sources -> Sources -> Sources #

sconcat :: NonEmpty Sources -> Sources #

stimes :: Integral b => b -> Sources -> Sources #

Semigroup Translations 
Instance details

Defined in Text.Pandoc.Translations.Types

Methods

(<>) :: Translations -> Translations -> Translations #

sconcat :: NonEmpty Translations -> Translations #

stimes :: Integral b => b -> Translations -> Translations #

Semigroup Blocks 
Instance details

Defined in Text.Pandoc.Builder

Methods

(<>) :: Blocks -> Blocks -> Blocks #

sconcat :: NonEmpty Blocks -> Blocks #

stimes :: Integral b => b -> Blocks -> Blocks #

Semigroup Inlines 
Instance details

Defined in Text.Pandoc.Builder

Methods

(<>) :: Inlines -> Inlines -> Inlines #

sconcat :: NonEmpty Inlines -> Inlines #

stimes :: Integral b => b -> Inlines -> Inlines #

Semigroup Meta 
Instance details

Defined in Text.Pandoc.Definition

Methods

(<>) :: Meta -> Meta -> Meta #

sconcat :: NonEmpty Meta -> Meta #

stimes :: Integral b => b -> Meta -> Meta #

Semigroup Pandoc 
Instance details

Defined in Text.Pandoc.Definition

Methods

(<>) :: Pandoc -> Pandoc -> Pandoc #

sconcat :: NonEmpty Pandoc -> Pandoc #

stimes :: Integral b => b -> Pandoc -> Pandoc #

Semigroup Doc 
Instance details

Defined in Text.PrettyPrint.HughesPJ

Methods

(<>) :: Doc -> Doc -> Doc #

sconcat :: NonEmpty Doc -> Doc #

stimes :: Integral b => b -> Doc -> Doc #

Semigroup Element 
Instance details

Defined in Graphics.Svg.Core

Methods

(<>) :: Element -> Element -> Element #

sconcat :: NonEmpty Element -> Element #

stimes :: Integral b => b -> Element -> Element #

Semigroup Builder 
Instance details

Defined in Data.Text.Internal.Builder

Semigroup StrictBuilder

Concatenation of StrictBuilder is right-biased: the right builder will be run first. This allows a builder to run tail-recursively when it was accumulated left-to-right.

Instance details

Defined in Data.Text.Internal.StrictBuilder

Semigroup ()

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup a => Semigroup (Active a) 
Instance details

Defined in Data.Active

Methods

(<>) :: Active a -> Active a -> Active a #

sconcat :: NonEmpty (Active a) -> Active a #

stimes :: Integral b => b -> Active a -> Active a #

Num n => Semigroup (Duration n) 
Instance details

Defined in Data.Active

Methods

(<>) :: Duration n -> Duration n -> Duration n #

sconcat :: NonEmpty (Duration n) -> Duration n #

stimes :: Integral b => b -> Duration n -> Duration n #

Semigroup a => Semigroup (Dynamic a) 
Instance details

Defined in Data.Active

Methods

(<>) :: Dynamic a -> Dynamic a -> Dynamic a #

sconcat :: NonEmpty (Dynamic a) -> Dynamic a #

stimes :: Integral b => b -> Dynamic a -> Dynamic a #

Ord n => Semigroup (Era n) 
Instance details

Defined in Data.Active

Methods

(<>) :: Era n -> Era n -> Era n #

sconcat :: NonEmpty (Era n) -> Era n #

stimes :: Integral b => b -> Era n -> Era n #

Bits a => Semigroup (And a)

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

(<>) :: And a -> And a -> And a #

sconcat :: NonEmpty (And a) -> And a #

stimes :: Integral b => b -> And a -> And a #

FiniteBits a => Semigroup (Iff a)

This constraint is arguably too strong. However, as some types (such as Natural) have undefined complement, this is the only safe choice.

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

(<>) :: Iff a -> Iff a -> Iff a #

sconcat :: NonEmpty (Iff a) -> Iff a #

stimes :: Integral b => b -> Iff a -> Iff a #

Bits a => Semigroup (Ior a)

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

(<>) :: Ior a -> Ior a -> Ior a #

sconcat :: NonEmpty (Ior a) -> Ior a #

stimes :: Integral b => b -> Ior a -> Ior a #

Bits a => Semigroup (Xor a)

Since: base-4.16

Instance details

Defined in Data.Bits

Methods

(<>) :: Xor a -> Xor a -> Xor a #

sconcat :: NonEmpty (Xor a) -> Xor a #

stimes :: Integral b => b -> Xor a -> Xor a #

Semigroup (FromMaybe b) 
Instance details

Defined in Data.Foldable1

Methods

(<>) :: FromMaybe b -> FromMaybe b -> FromMaybe b #

sconcat :: NonEmpty (FromMaybe b) -> FromMaybe b #

stimes :: Integral b0 => b0 -> FromMaybe b -> FromMaybe b #

Semigroup a => Semigroup (JoinWith a) 
Instance details

Defined in Data.Foldable1

Methods

(<>) :: JoinWith a -> JoinWith a -> JoinWith a #

sconcat :: NonEmpty (JoinWith a) -> JoinWith a #

stimes :: Integral b => b -> JoinWith a -> JoinWith a #

Semigroup (NonEmptyDList a) 
Instance details

Defined in Data.Foldable1

Methods

(<>) :: NonEmptyDList a -> NonEmptyDList a -> NonEmptyDList a #

sconcat :: NonEmpty (NonEmptyDList a) -> NonEmptyDList a #

stimes :: Integral b => b -> NonEmptyDList a -> NonEmptyDList a #

Semigroup (Comparison a)

(<>) on comparisons combines results with (<>) @Ordering. Without newtypes this equals liftA2 (liftA2 (<>)).

(<>) :: Comparison a -> Comparison a -> Comparison a
Comparison cmp <> Comparison cmp' = Comparison a a' ->
  cmp a a' <> cmp a a'
Instance details

Defined in Data.Functor.Contravariant

Semigroup (Equivalence a)

(<>) on equivalences uses logical conjunction (&&) on the results. Without newtypes this equals liftA2 (liftA2 (&&)).

(<>) :: Equivalence a -> Equivalence a -> Equivalence a
Equivalence equiv <> Equivalence equiv' = Equivalence a b ->
  equiv a b && equiv' a b
Instance details

Defined in Data.Functor.Contravariant

Semigroup (Predicate a)

(<>) on predicates uses logical conjunction (&&) on the results. Without newtypes this equals liftA2 (&&).

(<>) :: Predicate a -> Predicate a -> Predicate a
Predicate pred <> Predicate pred' = Predicate a ->
  pred a && pred' a
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Predicate a -> Predicate a -> Predicate a #

sconcat :: NonEmpty (Predicate a) -> Predicate a #

stimes :: Integral b => b -> Predicate a -> Predicate a #

Semigroup a => Semigroup (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup a => Semigroup (Down a)

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(<>) :: Down a -> Down a -> Down a #

sconcat :: NonEmpty (Down a) -> Down a #

stimes :: Integral b => b -> Down a -> Down a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Ord a => Semigroup (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Ord a => Semigroup (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Monoid m => Semigroup (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup a => Semigroup (Dual a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Endo a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Num a => Semigroup (Product a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Num a => Semigroup (Sum a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Semigroup (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup a => Semigroup (STM a)

Since: base-4.17.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

(<>) :: STM a -> STM a -> STM a #

sconcat :: NonEmpty (STM a) -> STM a #

stimes :: Integral b => b -> STM a -> STM a #

(Generic a, Semigroup (Rep a ())) => Semigroup (Generically a)

Since: base-4.17.0.0

Instance details

Defined in GHC.Generics

Semigroup p => Semigroup (Par1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: Par1 p -> Par1 p -> Par1 p #

sconcat :: NonEmpty (Par1 p) -> Par1 p #

stimes :: Integral b => b -> Par1 p -> Par1 p #

PrimType ty => Semigroup (UArray ty) 
Instance details

Defined in Basement.UArray.Base

Methods

(<>) :: UArray ty -> UArray ty -> UArray ty #

sconcat :: NonEmpty (UArray ty) -> UArray ty #

stimes :: Integral b => b -> UArray ty -> UArray ty #

Monoid a => Semigroup (MarkupM a) 
Instance details

Defined in Text.Blaze.Internal

Methods

(<>) :: MarkupM a -> MarkupM a -> MarkupM a #

sconcat :: NonEmpty (MarkupM a) -> MarkupM a #

stimes :: Integral b => b -> MarkupM a -> MarkupM a #

Semigroup s => Semigroup (CI s) 
Instance details

Defined in Data.CaseInsensitive.Internal

Methods

(<>) :: CI s -> CI s -> CI s #

sconcat :: NonEmpty (CI s) -> CI s #

stimes :: Integral b => b -> CI s -> CI s #

Semigroup (Key a) 
Instance details

Defined in Clay.Property

Methods

(<>) :: Key a -> Key a -> Key a #

sconcat :: NonEmpty (Key a) -> Key a #

stimes :: Integral b => b -> Key a -> Key a #

Semigroup (Fix SelectorF) 
Instance details

Defined in Clay.Selector

Methods

(<>) :: Fix SelectorF -> Fix SelectorF -> Fix SelectorF #

sconcat :: NonEmpty (Fix SelectorF) -> Fix SelectorF #

stimes :: Integral b => b -> Fix SelectorF -> Fix SelectorF #

Num a => Semigroup (AlphaColour a) 
Instance details

Defined in Data.Colour.Internal

Num a => Semigroup (Colour a) 
Instance details

Defined in Data.Colour.Internal

Methods

(<>) :: Colour a -> Colour a -> Colour a #

sconcat :: NonEmpty (Colour a) -> Colour a #

stimes :: Integral b => b -> Colour a -> Colour a #

Num a => Semigroup (TransferFunction a) 
Instance details

Defined in Data.Colour.RGBSpace

Methods

(<>) :: TransferFunction a -> TransferFunction a -> TransferFunction a #

sconcat :: NonEmpty (TransferFunction a) -> TransferFunction a #

stimes :: Integral b => b -> TransferFunction a -> TransferFunction a #

Semigroup (IntMap a)

Since: containers-0.5.7

Instance details

Defined in Data.IntMap.Internal

Methods

(<>) :: IntMap a -> IntMap a -> IntMap a #

sconcat :: NonEmpty (IntMap a) -> IntMap a #

stimes :: Integral b => b -> IntMap a -> IntMap a #

Semigroup (Seq a)

Since: containers-0.5.7

Instance details

Defined in Data.Sequence.Internal

Methods

(<>) :: Seq a -> Seq a -> Seq a #

sconcat :: NonEmpty (Seq a) -> Seq a #

stimes :: Integral b => b -> Seq a -> Seq a #

Ord a => Semigroup (Intersection a) 
Instance details

Defined in Data.Set.Internal

Semigroup (MergeSet a) 
Instance details

Defined in Data.Set.Internal

Methods

(<>) :: MergeSet a -> MergeSet a -> MergeSet a #

sconcat :: NonEmpty (MergeSet a) -> MergeSet a #

stimes :: Integral b => b -> MergeSet a -> MergeSet a #

Ord a => Semigroup (Set a)

Since: containers-0.5.7

Instance details

Defined in Data.Set.Internal

Methods

(<>) :: Set a -> Set a -> Set a #

sconcat :: NonEmpty (Set a) -> Set a #

stimes :: Integral b => b -> Set a -> Set a #

Ord a => Semigroup (SortedList a) 
Instance details

Defined in Diagrams.Core.Trace

Semigroup t => Semigroup (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

(<>) :: TransInv t -> TransInv t -> TransInv t #

sconcat :: NonEmpty (TransInv t) -> TransInv t #

stimes :: Integral b => b -> TransInv t -> TransInv t #

Num n => Semigroup (Angle n) 
Instance details

Defined in Diagrams.Angle

Methods

(<>) :: Angle n -> Angle n -> Angle n #

sconcat :: NonEmpty (Angle n) -> Angle n #

stimes :: Integral b => b -> Angle n -> Angle n #

Semigroup (Dashing n) 
Instance details

Defined in Diagrams.Attributes

Methods

(<>) :: Dashing n -> Dashing n -> Dashing n #

sconcat :: NonEmpty (Dashing n) -> Dashing n #

stimes :: Integral b => b -> Dashing n -> Dashing n #

Semigroup (LineWidth n) 
Instance details

Defined in Diagrams.Attributes

Methods

(<>) :: LineWidth n -> LineWidth n -> LineWidth n #

sconcat :: NonEmpty (LineWidth n) -> LineWidth n #

stimes :: Integral b => b -> LineWidth n -> LineWidth n #

(Num n, Ord n) => Semigroup (ArcLength n) 
Instance details

Defined in Diagrams.Segment

Methods

(<>) :: ArcLength n -> ArcLength n -> ArcLength n #

sconcat :: NonEmpty (ArcLength n) -> ArcLength n #

stimes :: Integral b => b -> ArcLength n -> ArcLength n #

Semigroup (FillTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

(<>) :: FillTexture n -> FillTexture n -> FillTexture n #

sconcat :: NonEmpty (FillTexture n) -> FillTexture n #

stimes :: Integral b => b -> FillTexture n -> FillTexture n #

Semigroup (LineTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

(<>) :: LineTexture n -> LineTexture n -> LineTexture n #

sconcat :: NonEmpty (LineTexture n) -> LineTexture n #

stimes :: Integral b => b -> LineTexture n -> LineTexture n #

Semigroup (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

Methods

(<>) :: Clip n -> Clip n -> Clip n #

sconcat :: NonEmpty (Clip n) -> Clip n #

stimes :: Integral b => b -> Clip n -> Clip n #

Semigroup (FontSize n) 
Instance details

Defined in Diagrams.TwoD.Text

Methods

(<>) :: FontSize n -> FontSize n -> FontSize n #

sconcat :: NonEmpty (FontSize n) -> FontSize n #

stimes :: Integral b => b -> FontSize n -> FontSize n #

Semigroup a => Semigroup (Attr a) 
Instance details

Defined in Text.DocLayout.Attributed

Methods

(<>) :: Attr a -> Attr a -> Attr a #

sconcat :: NonEmpty (Attr a) -> Attr a #

stimes :: Integral b => b -> Attr a -> Attr a #

Semigroup a => Semigroup (Attributed a) 
Instance details

Defined in Text.DocLayout.Attributed

Methods

(<>) :: Attributed a -> Attributed a -> Attributed a #

sconcat :: NonEmpty (Attributed a) -> Attributed a #

stimes :: Integral b => b -> Attributed a -> Attributed a #

Semigroup (Context a) 
Instance details

Defined in Text.DocTemplates.Internal

Methods

(<>) :: Context a -> Context a -> Context a #

sconcat :: NonEmpty (Context a) -> Context a #

stimes :: Integral b => b -> Context a -> Context a #

Semigroup (Resolved a) 
Instance details

Defined in Text.DocTemplates.Internal

Methods

(<>) :: Resolved a -> Resolved a -> Resolved a #

sconcat :: NonEmpty (Resolved a) -> Resolved a #

stimes :: Integral b => b -> Resolved a -> Resolved a #

Semigroup a => Semigroup (Template a) 
Instance details

Defined in Text.DocTemplates.Internal

Methods

(<>) :: Template a -> Template a -> Template a #

sconcat :: NonEmpty (Template a) -> Template a #

stimes :: Integral b => b -> Template a -> Template a #

Semigroup a => Semigroup (IO a)

Since: base-4.10.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Semigroup (Context a) 
Instance details

Defined in Hakyll.Web.Template.Context

Methods

(<>) :: Context a -> Context a -> Context a #

sconcat :: NonEmpty (Context a) -> Context a #

stimes :: Integral b => b -> Context a -> Context a #

Semigroup (FromMaybe b) 
Instance details

Defined in WithIndex

Methods

(<>) :: FromMaybe b -> FromMaybe b -> FromMaybe b #

sconcat :: NonEmpty (FromMaybe b) -> FromMaybe b #

stimes :: Integral b0 => b0 -> FromMaybe b -> FromMaybe b #

Ord a => Semigroup (Interval a) 
Instance details

Defined in Numeric.Interval.Kaucher

Methods

(<>) :: Interval a -> Interval a -> Interval a #

sconcat :: NonEmpty (Interval a) -> Interval a #

stimes :: Integral b => b -> Interval a -> Interval a #

Semigroup (Leftmost a) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Leftmost a -> Leftmost a -> Leftmost a #

sconcat :: NonEmpty (Leftmost a) -> Leftmost a #

stimes :: Integral b => b -> Leftmost a -> Leftmost a #

Semigroup (NonEmptyDList a) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: NonEmptyDList a -> NonEmptyDList a -> NonEmptyDList a #

sconcat :: NonEmpty (NonEmptyDList a) -> NonEmptyDList a #

stimes :: Integral b => b -> NonEmptyDList a -> NonEmptyDList a #

Semigroup (Rightmost a) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Rightmost a -> Rightmost a -> Rightmost a #

sconcat :: NonEmpty (Rightmost a) -> Rightmost a #

stimes :: Integral b => b -> Rightmost a -> Rightmost a #

Semigroup a => Semigroup (Plucker a) 
Instance details

Defined in Linear.Plucker

Methods

(<>) :: Plucker a -> Plucker a -> Plucker a #

sconcat :: NonEmpty (Plucker a) -> Plucker a #

stimes :: Integral b => b -> Plucker a -> Plucker a #

Semigroup a => Semigroup (Quaternion a) 
Instance details

Defined in Linear.Quaternion

Methods

(<>) :: Quaternion a -> Quaternion a -> Quaternion a #

sconcat :: NonEmpty (Quaternion a) -> Quaternion a #

stimes :: Integral b => b -> Quaternion a -> Quaternion a #

Semigroup (V0 a) 
Instance details

Defined in Linear.V0

Methods

(<>) :: V0 a -> V0 a -> V0 a #

sconcat :: NonEmpty (V0 a) -> V0 a #

stimes :: Integral b => b -> V0 a -> V0 a #

Semigroup a => Semigroup (V1 a) 
Instance details

Defined in Linear.V1

Methods

(<>) :: V1 a -> V1 a -> V1 a #

sconcat :: NonEmpty (V1 a) -> V1 a #

stimes :: Integral b => b -> V1 a -> V1 a #

Semigroup a => Semigroup (V2 a) 
Instance details

Defined in Linear.V2

Methods

(<>) :: V2 a -> V2 a -> V2 a #

sconcat :: NonEmpty (V2 a) -> V2 a #

stimes :: Integral b => b -> V2 a -> V2 a #

Semigroup a => Semigroup (V3 a) 
Instance details

Defined in Linear.V3

Methods

(<>) :: V3 a -> V3 a -> V3 a #

sconcat :: NonEmpty (V3 a) -> V3 a #

stimes :: Integral b => b -> V3 a -> V3 a #

Semigroup a => Semigroup (V4 a) 
Instance details

Defined in Linear.V4

Methods

(<>) :: V4 a -> V4 a -> V4 a #

sconcat :: NonEmpty (V4 a) -> V4 a #

stimes :: Integral b => b -> V4 a -> V4 a #

Semigroup a => Semigroup (Recommend a) 
Instance details

Defined in Data.Monoid.Recommend

Methods

(<>) :: Recommend a -> Recommend a -> Recommend a #

sconcat :: NonEmpty (Recommend a) -> Recommend a #

stimes :: Integral b => b -> Recommend a -> Recommend a #

Semigroup (Doc a) 
Instance details

Defined in Text.PrettyPrint.Annotated.HughesPJ

Methods

(<>) :: Doc a -> Doc a -> Doc a #

sconcat :: NonEmpty (Doc a) -> Doc a #

stimes :: Integral b => b -> Doc a -> Doc a #

Semigroup (Array a) 
Instance details

Defined in Data.Primitive.Array

Methods

(<>) :: Array a -> Array a -> Array a #

sconcat :: NonEmpty (Array a) -> Array a #

stimes :: Integral b => b -> Array a -> Array a #

Semigroup (PrimArray a) 
Instance details

Defined in Data.Primitive.PrimArray

Methods

(<>) :: PrimArray a -> PrimArray a -> PrimArray a #

sconcat :: NonEmpty (PrimArray a) -> PrimArray a #

stimes :: Integral b => b -> PrimArray a -> PrimArray a #

Semigroup (SmallArray a) 
Instance details

Defined in Data.Primitive.SmallArray

Methods

(<>) :: SmallArray a -> SmallArray a -> SmallArray a #

sconcat :: NonEmpty (SmallArray a) -> SmallArray a #

stimes :: Integral b => b -> SmallArray a -> SmallArray a #

Semigroup a => Semigroup (Maybe a) 
Instance details

Defined in Data.Strict.Maybe

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (Q a)

Since: template-haskell-2.17.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

(<>) :: Q a -> Q a -> Q a #

sconcat :: NonEmpty (Q a) -> Q a #

stimes :: Integral b => b -> Q a -> Q a #

(Hashable a, Eq a) => Semigroup (HashSet a) 
Instance details

Defined in Data.HashSet.Internal

Methods

(<>) :: HashSet a -> HashSet a -> HashSet a #

sconcat :: NonEmpty (HashSet a) -> HashSet a #

stimes :: Integral b => b -> HashSet a -> HashSet a #

Semigroup (Vector a) 
Instance details

Defined in Data.Vector

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Prim a => Semigroup (Vector a) 
Instance details

Defined in Data.Vector.Primitive

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Storable a => Semigroup (Vector a) 
Instance details

Defined in Data.Vector.Storable

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Semigroup (Vector a) 
Instance details

Defined in Data.Vector.Strict

Methods

(<>) :: Vector a -> Vector a -> Vector a #

sconcat :: NonEmpty (Vector a) -> Vector a #

stimes :: Integral b => b -> Vector a -> Vector a #

Semigroup a => Semigroup (Maybe a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (Solo a)

Since: base-4.15

Instance details

Defined in GHC.Base

Methods

(<>) :: Solo a -> Solo a -> Solo a #

sconcat :: NonEmpty (Solo a) -> Solo a #

stimes :: Integral b => b -> Solo a -> Solo a #

Semigroup [a]

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup (Either a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Either

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

Semigroup a => Semigroup (Op a b)

(<>) @(Op a b) without newtypes is (<>) @(b->a) = liftA2 (<>). This lifts the Semigroup operation (<>) over the output of a.

(<>) :: Op a b -> Op a b -> Op a b
Op f <> Op g = Op a -> f a <> g a
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Op a b -> Op a b -> Op a b #

sconcat :: NonEmpty (Op a b) -> Op a b #

stimes :: Integral b0 => b0 -> Op a b -> Op a b #

Semigroup (Proxy s)

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

(<>) :: Proxy s -> Proxy s -> Proxy s #

sconcat :: NonEmpty (Proxy s) -> Proxy s #

stimes :: Integral b => b -> Proxy s -> Proxy s #

Semigroup (U1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: U1 p -> U1 p -> U1 p #

sconcat :: NonEmpty (U1 p) -> U1 p #

stimes :: Integral b => b -> U1 p -> U1 p #

Semigroup (V1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: V1 p -> V1 p -> V1 p #

sconcat :: NonEmpty (V1 p) -> V1 p #

stimes :: Integral b => b -> V1 p -> V1 p #

Semigroup a => Semigroup (ST s a)

Since: base-4.11.0.0

Instance details

Defined in GHC.ST

Methods

(<>) :: ST s a -> ST s a -> ST s a #

sconcat :: NonEmpty (ST s a) -> ST s a #

stimes :: Integral b => b -> ST s a -> ST s a #

Ord k => Semigroup (Map k v) 
Instance details

Defined in Data.Map.Internal

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

Ord n => Semigroup (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

(<>) :: Envelope v n -> Envelope v n -> Envelope v n #

sconcat :: NonEmpty (Envelope v n) -> Envelope v n #

stimes :: Integral b => b -> Envelope v n -> Envelope v n #

Semigroup a => Semigroup (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

Methods

(<>) :: Measured n a -> Measured n a -> Measured n a #

sconcat :: NonEmpty (Measured n a) -> Measured n a #

stimes :: Integral b => b -> Measured n a -> Measured n a #

Typeable n => Semigroup (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

(<>) :: Attribute v n -> Attribute v n -> Attribute v n #

sconcat :: NonEmpty (Attribute v n) -> Attribute v n #

stimes :: Integral b => b -> Attribute v n -> Attribute v n #

Typeable n => Semigroup (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

(<>) :: Style v n -> Style v n -> Style v n #

sconcat :: NonEmpty (Style v n) -> Style v n #

stimes :: Integral b => b -> Style v n -> Style v n #

Ord n => Semigroup (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

(<>) :: Trace v n -> Trace v n -> Trace v n #

sconcat :: NonEmpty (Trace v n) -> Trace v n #

stimes :: Integral b => b -> Trace v n -> Trace v n #

Semigroup (a :-: a) 
Instance details

Defined in Diagrams.Core.Transform

Methods

(<>) :: (a :-: a) -> (a :-: a) -> a :-: a #

sconcat :: NonEmpty (a :-: a) -> a :-: a #

stimes :: Integral b => b -> (a :-: a) -> a :-: a #

(Additive v, Num n) => Semigroup (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

(Additive v, Ord n) => Semigroup (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

(<>) :: BoundingBox v n -> BoundingBox v n -> BoundingBox v n #

sconcat :: NonEmpty (BoundingBox v n) -> BoundingBox v n #

stimes :: Integral b => b -> BoundingBox v n -> BoundingBox v n #

(Additive v, Ord n) => Semigroup (NonEmptyBoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

(<>) :: NonEmptyBoundingBox v n -> NonEmptyBoundingBox v n -> NonEmptyBoundingBox v n #

sconcat :: NonEmpty (NonEmptyBoundingBox v n) -> NonEmptyBoundingBox v n #

stimes :: Integral b => b -> NonEmptyBoundingBox v n -> NonEmptyBoundingBox v n #

Semigroup (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

(<>) :: Path v n -> Path v n -> Path v n #

sconcat :: NonEmpty (Path v n) -> Path v n #

stimes :: Integral b => b -> Path v n -> Path v n #

(Metric v, OrderedField n) => Semigroup (OffsetEnvelope v n) 
Instance details

Defined in Diagrams.Segment

(Num n, Additive v) => Semigroup (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

Methods

(<>) :: TotalOffset v n -> TotalOffset v n -> TotalOffset v n #

sconcat :: NonEmpty (TotalOffset v n) -> TotalOffset v n #

stimes :: Integral b => b -> TotalOffset v n -> TotalOffset v n #

(Ord n, Floating n, Metric v) => Semigroup (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

(<>) :: SegTree v n -> SegTree v n -> SegTree v n #

sconcat :: NonEmpty (SegTree v n) -> SegTree v n #

stimes :: Integral b => b -> SegTree v n -> SegTree v n #

(OrderedField n, Metric v) => Semigroup (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

(<>) :: Trail v n -> Trail v n -> Trail v n #

sconcat :: NonEmpty (Trail v n) -> Trail v n #

stimes :: Integral b => b -> Trail v n -> Trail v n #

Measured v a => Semigroup (FingerTree v a) 
Instance details

Defined in Data.FingerTree

Methods

(<>) :: FingerTree v a -> FingerTree v a -> FingerTree v a #

sconcat :: NonEmpty (FingerTree v a) -> FingerTree v a #

stimes :: Integral b => b -> FingerTree v a -> FingerTree v a #

(Contravariant f, Applicative f) => Semigroup (Folding f a) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Folding f a -> Folding f a -> Folding f a #

sconcat :: NonEmpty (Folding f a) -> Folding f a #

stimes :: Integral b => b -> Folding f a -> Folding f a #

Monad m => Semigroup (Sequenced a m) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Sequenced a m -> Sequenced a m -> Sequenced a m #

sconcat :: NonEmpty (Sequenced a m) -> Sequenced a m #

stimes :: Integral b => b -> Sequenced a m -> Sequenced a m #

Applicative f => Semigroup (Traversed a f) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Traversed a f -> Traversed a f -> Traversed a f #

sconcat :: NonEmpty (Traversed a f) -> Traversed a f #

stimes :: Integral b => b -> Traversed a f -> Traversed a f #

Apply f => Semigroup (TraversedF a f) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: TraversedF a f -> TraversedF a f -> TraversedF a f #

sconcat :: NonEmpty (TraversedF a f) -> TraversedF a f #

stimes :: Integral b => b -> TraversedF a f -> TraversedF a f #

Semigroup (f a) => Semigroup (Indexing f a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

(<>) :: Indexing f a -> Indexing f a -> Indexing f a #

sconcat :: NonEmpty (Indexing f a) -> Indexing f a #

stimes :: Integral b => b -> Indexing f a -> Indexing f a #

Semigroup (Deepening i a) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

(<>) :: Deepening i a -> Deepening i a -> Deepening i a #

sconcat :: NonEmpty (Deepening i a) -> Deepening i a #

stimes :: Integral b => b -> Deepening i a -> Deepening i a #

Semigroup (ReifiedFold s a) 
Instance details

Defined in Control.Lens.Reified

Methods

(<>) :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a #

sconcat :: NonEmpty (ReifiedFold s a) -> ReifiedFold s a #

stimes :: Integral b => b -> ReifiedFold s a -> ReifiedFold s a #

Semigroup (f a) => Semigroup (Point f a) 
Instance details

Defined in Linear.Affine

Methods

(<>) :: Point f a -> Point f a -> Point f a #

sconcat :: NonEmpty (Point f a) -> Point f a #

stimes :: Integral b => b -> Point f a -> Point f a #

Semigroup (Either a b) 
Instance details

Defined in Data.Strict.Either

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

(Semigroup a, Semigroup b) => Semigroup (These a b) 
Instance details

Defined in Data.Strict.These

Methods

(<>) :: These a b -> These a b -> These a b #

sconcat :: NonEmpty (These a b) -> These a b #

stimes :: Integral b0 => b0 -> These a b -> These a b #

(Semigroup a, Semigroup b) => Semigroup (Pair a b) 
Instance details

Defined in Data.Strict.Tuple

Methods

(<>) :: Pair a b -> Pair a b -> Pair a b #

sconcat :: NonEmpty (Pair a b) -> Pair a b #

stimes :: Integral b0 => b0 -> Pair a b -> Pair a b #

(Semigroup a, Semigroup b) => Semigroup (These a b) 
Instance details

Defined in Data.These

Methods

(<>) :: These a b -> These a b -> These a b #

sconcat :: NonEmpty (These a b) -> These a b #

stimes :: Integral b0 => b0 -> These a b -> These a b #

(Eq k, Hashable k) => Semigroup (HashMap k v) 
Instance details

Defined in Data.HashMap.Internal

Methods

(<>) :: HashMap k v -> HashMap k v -> HashMap k v #

sconcat :: NonEmpty (HashMap k v) -> HashMap k v #

stimes :: Integral b => b -> HashMap k v -> HashMap k v #

(Semigroup a, Semigroup b) => Semigroup (a, b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b0 => b0 -> (a, b) -> (a, b) #

Semigroup b => Semigroup (a -> b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b0 => b0 -> (a -> b) -> a -> b #

Semigroup a => Semigroup (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

(Applicative f, Semigroup a) => Semigroup (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

Alternative f => Semigroup (Alt f a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

Semigroup (f p) => Semigroup (Rec1 f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: Rec1 f p -> Rec1 f p -> Rec1 f p #

sconcat :: NonEmpty (Rec1 f p) -> Rec1 f p #

stimes :: Integral b => b -> Rec1 f p -> Rec1 f p #

Semigroup m => Semigroup (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Methods

(<>) :: Query v n m -> Query v n m -> Query v n m #

sconcat :: NonEmpty (Query v n m) -> Query v n m #

stimes :: Integral b => b -> Query v n m -> Query v n m #

Semigroup (Render NullBackend v n) 
Instance details

Defined in Diagrams.Core.Types

Semigroup (Render SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(<>) :: Render SVG V2 n -> Render SVG V2 n -> Render SVG V2 n #

sconcat :: NonEmpty (Render SVG V2 n) -> Render SVG V2 n #

stimes :: Integral b => b -> Render SVG V2 n -> Render SVG V2 n #

Semigroup (Deformation v v n) 
Instance details

Defined in Diagrams.Deform

Methods

(<>) :: Deformation v v n -> Deformation v v n -> Deformation v v n #

sconcat :: NonEmpty (Deformation v v n) -> Deformation v v n #

stimes :: Integral b => b -> Deformation v v n -> Deformation v v n #

(OrderedField n, Metric v) => Semigroup (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

(<>) :: Trail' Line v n -> Trail' Line v n -> Trail' Line v n #

sconcat :: NonEmpty (Trail' Line v n) -> Trail' Line v n #

stimes :: Integral b => b -> Trail' Line v n -> Trail' Line v n #

Monad m => Semigroup (Sequenced a m) 
Instance details

Defined in WithIndex

Methods

(<>) :: Sequenced a m -> Sequenced a m -> Sequenced a m #

sconcat :: NonEmpty (Sequenced a m) -> Sequenced a m #

stimes :: Integral b => b -> Sequenced a m -> Sequenced a m #

Applicative f => Semigroup (Traversed a f) 
Instance details

Defined in WithIndex

Methods

(<>) :: Traversed a f -> Traversed a f -> Traversed a f #

sconcat :: NonEmpty (Traversed a f) -> Traversed a f #

stimes :: Integral b => b -> Traversed a f -> Traversed a f #

Semigroup (ReifiedIndexedFold i s a) 
Instance details

Defined in Control.Lens.Reified

(Dim n, Semigroup a) => Semigroup (V n a) 
Instance details

Defined in Linear.V

Methods

(<>) :: V n a -> V n a -> V n a #

sconcat :: NonEmpty (V n a) -> V n a #

stimes :: Integral b => b -> V n a -> V n a #

ArrowPlus p => Semigroup (Tambara p a b) 
Instance details

Defined in Data.Profunctor.Strong

Methods

(<>) :: Tambara p a b -> Tambara p a b -> Tambara p a b #

sconcat :: NonEmpty (Tambara p a b) -> Tambara p a b #

stimes :: Integral b0 => b0 -> Tambara p a b -> Tambara p a b #

Reifies s (ReifiedMonoid a) => Semigroup (ReflectedMonoid a s) 
Instance details

Defined in Data.Reflection

Methods

(<>) :: ReflectedMonoid a s -> ReflectedMonoid a s -> ReflectedMonoid a s #

sconcat :: NonEmpty (ReflectedMonoid a s) -> ReflectedMonoid a s #

stimes :: Integral b => b -> ReflectedMonoid a s -> ReflectedMonoid a s #

Semigroup a => Semigroup (Tagged s a) 
Instance details

Defined in Data.Tagged

Methods

(<>) :: Tagged s a -> Tagged s a -> Tagged s a #

sconcat :: NonEmpty (Tagged s a) -> Tagged s a #

stimes :: Integral b => b -> Tagged s a -> Tagged s a #

Semigroup a => Semigroup (Constant a b) 
Instance details

Defined in Data.Functor.Constant

Methods

(<>) :: Constant a b -> Constant a b -> Constant a b #

sconcat :: NonEmpty (Constant a b) -> Constant a b #

stimes :: Integral b0 => b0 -> Constant a b -> Constant a b #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b0 => b0 -> (a, b, c) -> (a, b, c) #

(Semigroup (f a), Semigroup (g a)) => Semigroup (Product f g a)

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Product

Methods

(<>) :: Product f g a -> Product f g a -> Product f g a #

sconcat :: NonEmpty (Product f g a) -> Product f g a #

stimes :: Integral b => b -> Product f g a -> Product f g a #

(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

sconcat :: NonEmpty ((f :*: g) p) -> (f :*: g) p #

stimes :: Integral b => b -> (f :*: g) p -> (f :*: g) p #

Semigroup c => Semigroup (K1 i c p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: K1 i c p -> K1 i c p -> K1 i c p #

sconcat :: NonEmpty (K1 i c p) -> K1 i c p #

stimes :: Integral b => b -> K1 i c p -> K1 i c p #

(Metric v, OrderedField n, Semigroup m) => Semigroup (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(<>) :: QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #

sconcat :: NonEmpty (QDiagram b v n m) -> QDiagram b v n m #

stimes :: Integral b0 => b0 -> QDiagram b v n m -> QDiagram b v n m #

Semigroup (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(<>) :: SubMap b v n m -> SubMap b v n m -> SubMap b v n m #

sconcat :: NonEmpty (SubMap b v n m) -> SubMap b v n m #

stimes :: Integral b0 => b0 -> SubMap b v n m -> SubMap b v n m #

Semigroup r => Semigroup (Forget r a b) 
Instance details

Defined in Data.Profunctor.Types

Methods

(<>) :: Forget r a b -> Forget r a b -> Forget r a b #

sconcat :: NonEmpty (Forget r a b) -> Forget r a b #

stimes :: Integral b0 => b0 -> Forget r a b -> Forget r a b #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b0 => b0 -> (a, b, c, d) -> (a, b, c, d) #

Semigroup (f (g a)) => Semigroup (Compose f g a)

Since: base-4.16.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(<>) :: Compose f g a -> Compose f g a -> Compose f g a #

sconcat :: NonEmpty (Compose f g a) -> Compose f g a #

stimes :: Integral b => b -> Compose f g a -> Compose f g a #

Semigroup (f (g p)) => Semigroup ((f :.: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

sconcat :: NonEmpty ((f :.: g) p) -> (f :.: g) p #

stimes :: Integral b => b -> (f :.: g) p -> (f :.: g) p #

Semigroup (f p) => Semigroup (M1 i c f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: M1 i c f p -> M1 i c f p -> M1 i c f p #

sconcat :: NonEmpty (M1 i c f p) -> M1 i c f p #

stimes :: Integral b => b -> M1 i c f p -> M1 i c f p #

Contravariant g => Semigroup (BazaarT p g a b t) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

(<>) :: BazaarT p g a b t -> BazaarT p g a b t -> BazaarT p g a b t #

sconcat :: NonEmpty (BazaarT p g a b t) -> BazaarT p g a b t #

stimes :: Integral b0 => b0 -> BazaarT p g a b t -> BazaarT p g a b t #

Contravariant g => Semigroup (BazaarT1 p g a b t) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

(<>) :: BazaarT1 p g a b t -> BazaarT1 p g a b t -> BazaarT1 p g a b t #

sconcat :: NonEmpty (BazaarT1 p g a b t) -> BazaarT1 p g a b t #

stimes :: Integral b0 => b0 -> BazaarT1 p g a b t -> BazaarT1 p g a b t #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b0 => b0 -> (a, b, c, d, e) -> (a, b, c, d, e) #

class Functor f => Applicative (f :: Type -> Type) where #

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*> and liftA2).

A minimal complete definition must include implementations of pure and of either <*> or liftA2. If it defines both, then they must behave the same as their default definitions:

(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y

Further, any definition must satisfy the following:

Identity
pure id <*> v = v
Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
Homomorphism
pure f <*> pure x = pure (f x)
Interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

It may be useful to note that supposing

forall x y. p (q x y) = f x . g y

it follows from the above that

liftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, ((<*>) | liftA2)

Methods

pure :: a -> f a #

Lift a value.

(<*>) :: f (a -> b) -> f a -> f b infixl 4 #

Sequential application.

A few functors support an implementation of <*> that is more efficient than the default one.

Example

Expand

Used in combination with (<$>), (<*>) can be used to build a record.

>>> data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>> produceFoo :: Applicative f => f Foo
>>> produceBar :: Applicative f => f Bar
>>> produceBaz :: Applicative f => f Baz
>>> mkState :: Applicative f => f MyState
>>> mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz

liftA2 :: (a -> b -> c) -> f a -> f b -> f c #

Lift a binary function to actions.

Some functors support an implementation of liftA2 that is more efficient than the default one. In particular, if fmap is an expensive operation, it is likely better to use liftA2 than to fmap over the structure and then use <*>.

This became a typeclass method in 4.10.0.0. Prior to that, it was a function defined in terms of <*> and fmap.

Example

Expand
>>> liftA2 (,) (Just 3) (Just 5)
Just (3,5)

(*>) :: f a -> f b -> f b infixl 4 #

Sequence actions, discarding the value of the first argument.

Examples

Expand

If used in conjunction with the Applicative instance for Maybe, you can chain Maybe computations, with a possible "early return" in case of Nothing.

>>> Just 2 *> Just 3
Just 3
>>> Nothing *> Just 3
Nothing

Of course a more interesting use case would be to have effectful computations instead of just returning pure values.

>>> import Data.Char
>>> import Text.ParserCombinators.ReadP
>>> let p = string "my name is " *> munch1 isAlpha <* eof
>>> readP_to_S p "my name is Simon"
[("Simon","")]

(<*) :: f a -> f b -> f a infixl 4 #

Sequence actions, discarding the value of the second argument.

Instances

Instances details
Applicative Active 
Instance details

Defined in Data.Active

Methods

pure :: a -> Active a #

(<*>) :: Active (a -> b) -> Active a -> Active b #

liftA2 :: (a -> b -> c) -> Active a -> Active b -> Active c #

(*>) :: Active a -> Active b -> Active b #

(<*) :: Active a -> Active b -> Active a #

Applicative Duration 
Instance details

Defined in Data.Active

Methods

pure :: a -> Duration a #

(<*>) :: Duration (a -> b) -> Duration a -> Duration b #

liftA2 :: (a -> b -> c) -> Duration a -> Duration b -> Duration c #

(*>) :: Duration a -> Duration b -> Duration b #

(<*) :: Duration a -> Duration b -> Duration a #

Applicative ZipList
f <$> ZipList xs1 <*> ... <*> ZipList xsN
    = ZipList (zipWithN f xs1 ... xsN)

where zipWithN refers to the zipWith function of the appropriate arity (zipWith, zipWith3, zipWith4, ...). For example:

(\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
    = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
    = ZipList {getZipList = ["a5","b6b6","c7c7c7"]}

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a -> ZipList a #

(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b #

liftA2 :: (a -> b -> c) -> ZipList a -> ZipList b -> ZipList c #

(*>) :: ZipList a -> ZipList b -> ZipList b #

(<*) :: ZipList a -> ZipList b -> ZipList a #

Applicative Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

pure :: a -> Complex a #

(<*>) :: Complex (a -> b) -> Complex a -> Complex b #

liftA2 :: (a -> b -> c) -> Complex a -> Complex b -> Complex c #

(*>) :: Complex a -> Complex b -> Complex b #

(<*) :: Complex a -> Complex b -> Complex a #

Applicative Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

pure :: a -> Identity a #

(<*>) :: Identity (a -> b) -> Identity a -> Identity b #

liftA2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

(*>) :: Identity a -> Identity b -> Identity b #

(<*) :: Identity a -> Identity b -> Identity a #

Applicative First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative Down

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

pure :: a -> Down a #

(<*>) :: Down (a -> b) -> Down a -> Down b #

liftA2 :: (a -> b -> c) -> Down a -> Down b -> Down c #

(*>) :: Down a -> Down b -> Down b #

(<*) :: Down a -> Down b -> Down a #

Applicative First

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Applicative Last

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Applicative Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Max a #

(<*>) :: Max (a -> b) -> Max a -> Max b #

liftA2 :: (a -> b -> c) -> Max a -> Max b -> Max c #

(*>) :: Max a -> Max b -> Max b #

(<*) :: Max a -> Max b -> Max a #

Applicative Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Min a #

(<*>) :: Min (a -> b) -> Min a -> Min b #

liftA2 :: (a -> b -> c) -> Min a -> Min b -> Min c #

(*>) :: Min a -> Min b -> Min b #

(<*) :: Min a -> Min b -> Min a #

Applicative Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

liftA2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Applicative Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Applicative Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Applicative NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

pure :: a -> NonEmpty a #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b #

liftA2 :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a #

Applicative STM

Since: base-4.8.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

pure :: a -> STM a #

(<*>) :: STM (a -> b) -> STM a -> STM b #

liftA2 :: (a -> b -> c) -> STM a -> STM b -> STM c #

(*>) :: STM a -> STM b -> STM b #

(<*) :: STM a -> STM b -> STM a #

Applicative NoIO

Since: base-4.8.0.0

Instance details

Defined in GHC.GHCi

Methods

pure :: a -> NoIO a #

(<*>) :: NoIO (a -> b) -> NoIO a -> NoIO b #

liftA2 :: (a -> b -> c) -> NoIO a -> NoIO b -> NoIO c #

(*>) :: NoIO a -> NoIO b -> NoIO b #

(<*) :: NoIO a -> NoIO b -> NoIO a #

Applicative Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Par1 a #

(<*>) :: Par1 (a -> b) -> Par1 a -> Par1 b #

liftA2 :: (a -> b -> c) -> Par1 a -> Par1 b -> Par1 c #

(*>) :: Par1 a -> Par1 b -> Par1 b #

(<*) :: Par1 a -> Par1 b -> Par1 a #

Applicative P

Since: base-4.5.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

pure :: a -> P a #

(<*>) :: P (a -> b) -> P a -> P b #

liftA2 :: (a -> b -> c) -> P a -> P b -> P c #

(*>) :: P a -> P b -> P b #

(<*) :: P a -> P b -> P a #

Applicative ReadP

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

pure :: a -> ReadP a #

(<*>) :: ReadP (a -> b) -> ReadP a -> ReadP b #

liftA2 :: (a -> b -> c) -> ReadP a -> ReadP b -> ReadP c #

(*>) :: ReadP a -> ReadP b -> ReadP b #

(<*) :: ReadP a -> ReadP b -> ReadP a #

Applicative ReadPrec

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

pure :: a -> ReadPrec a #

(<*>) :: ReadPrec (a -> b) -> ReadPrec a -> ReadPrec b #

liftA2 :: (a -> b -> c) -> ReadPrec a -> ReadPrec b -> ReadPrec c #

(*>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

(<*) :: ReadPrec a -> ReadPrec b -> ReadPrec a #

Applicative MarkupM 
Instance details

Defined in Text.Blaze.Internal

Methods

pure :: a -> MarkupM a #

(<*>) :: MarkupM (a -> b) -> MarkupM a -> MarkupM b #

liftA2 :: (a -> b -> c) -> MarkupM a -> MarkupM b -> MarkupM c #

(*>) :: MarkupM a -> MarkupM b -> MarkupM b #

(<*) :: MarkupM a -> MarkupM b -> MarkupM a #

Applicative Put 
Instance details

Defined in Data.ByteString.Builder.Internal

Methods

pure :: a -> Put a #

(<*>) :: Put (a -> b) -> Put a -> Put b #

liftA2 :: (a -> b -> c) -> Put a -> Put b -> Put c #

(*>) :: Put a -> Put b -> Put b #

(<*) :: Put a -> Put b -> Put a #

Applicative StyleM 
Instance details

Defined in Clay.Stylesheet

Methods

pure :: a -> StyleM a #

(<*>) :: StyleM (a -> b) -> StyleM a -> StyleM b #

liftA2 :: (a -> b -> c) -> StyleM a -> StyleM b -> StyleM c #

(*>) :: StyleM a -> StyleM b -> StyleM b #

(<*) :: StyleM a -> StyleM b -> StyleM a #

Applicative RGB 
Instance details

Defined in Data.Colour.RGB

Methods

pure :: a -> RGB a #

(<*>) :: RGB (a -> b) -> RGB a -> RGB b #

liftA2 :: (a -> b -> c) -> RGB a -> RGB b -> RGB c #

(*>) :: RGB a -> RGB b -> RGB b #

(<*) :: RGB a -> RGB b -> RGB a #

Applicative Seq

Since: containers-0.5.4

Instance details

Defined in Data.Sequence.Internal

Methods

pure :: a -> Seq a #

(<*>) :: Seq (a -> b) -> Seq a -> Seq b #

liftA2 :: (a -> b -> c) -> Seq a -> Seq b -> Seq c #

(*>) :: Seq a -> Seq b -> Seq b #

(<*) :: Seq a -> Seq b -> Seq a #

Applicative Tree 
Instance details

Defined in Data.Tree

Methods

pure :: a -> Tree a #

(<*>) :: Tree (a -> b) -> Tree a -> Tree b #

liftA2 :: (a -> b -> c) -> Tree a -> Tree b -> Tree c #

(*>) :: Tree a -> Tree b -> Tree b #

(<*) :: Tree a -> Tree b -> Tree a #

Applicative Angle 
Instance details

Defined in Diagrams.Angle

Methods

pure :: a -> Angle a #

(<*>) :: Angle (a -> b) -> Angle a -> Angle b #

liftA2 :: (a -> b -> c) -> Angle a -> Angle b -> Angle c #

(*>) :: Angle a -> Angle b -> Angle b #

(<*) :: Angle a -> Angle b -> Angle a #

Applicative IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

liftA2 :: (a -> b -> c) -> IO a -> IO b -> IO c #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

Applicative Compiler 
Instance details

Defined in Hakyll.Core.Compiler.Internal

Methods

pure :: a -> Compiler a #

(<*>) :: Compiler (a -> b) -> Compiler a -> Compiler b #

liftA2 :: (a -> b -> c) -> Compiler a -> Compiler b -> Compiler c #

(*>) :: Compiler a -> Compiler b -> Compiler b #

(<*) :: Compiler a -> Compiler b -> Compiler a #

Applicative Rules 
Instance details

Defined in Hakyll.Core.Rules.Internal

Methods

pure :: a -> Rules a #

(<*>) :: Rules (a -> b) -> Rules a -> Rules b #

liftA2 :: (a -> b -> c) -> Rules a -> Rules b -> Rules c #

(*>) :: Rules a -> Rules b -> Rules b #

(<*) :: Rules a -> Rules b -> Rules a #

Applicative Interval 
Instance details

Defined in Numeric.Interval.Kaucher

Methods

pure :: a -> Interval a #

(<*>) :: Interval (a -> b) -> Interval a -> Interval b #

liftA2 :: (a -> b -> c) -> Interval a -> Interval b -> Interval c #

(*>) :: Interval a -> Interval b -> Interval b #

(<*) :: Interval a -> Interval b -> Interval a #

Applicative Plucker 
Instance details

Defined in Linear.Plucker

Methods

pure :: a -> Plucker a #

(<*>) :: Plucker (a -> b) -> Plucker a -> Plucker b #

liftA2 :: (a -> b -> c) -> Plucker a -> Plucker b -> Plucker c #

(*>) :: Plucker a -> Plucker b -> Plucker b #

(<*) :: Plucker a -> Plucker b -> Plucker a #

Applicative Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

pure :: a -> Quaternion a #

(<*>) :: Quaternion (a -> b) -> Quaternion a -> Quaternion b #

liftA2 :: (a -> b -> c) -> Quaternion a -> Quaternion b -> Quaternion c #

(*>) :: Quaternion a -> Quaternion b -> Quaternion b #

(<*) :: Quaternion a -> Quaternion b -> Quaternion a #

Applicative V0 
Instance details

Defined in Linear.V0

Methods

pure :: a -> V0 a #

(<*>) :: V0 (a -> b) -> V0 a -> V0 b #

liftA2 :: (a -> b -> c) -> V0 a -> V0 b -> V0 c #

(*>) :: V0 a -> V0 b -> V0 b #

(<*) :: V0 a -> V0 b -> V0 a #

Applicative V1 
Instance details

Defined in Linear.V1

Methods

pure :: a -> V1 a #

(<*>) :: V1 (a -> b) -> V1 a -> V1 b #

liftA2 :: (a -> b -> c) -> V1 a -> V1 b -> V1 c #

(*>) :: V1 a -> V1 b -> V1 b #

(<*) :: V1 a -> V1 b -> V1 a #

Applicative V2 
Instance details

Defined in Linear.V2

Methods

pure :: a -> V2 a #

(<*>) :: V2 (a -> b) -> V2 a -> V2 b #

liftA2 :: (a -> b -> c) -> V2 a -> V2 b -> V2 c #

(*>) :: V2 a -> V2 b -> V2 b #

(<*) :: V2 a -> V2 b -> V2 a #

Applicative V3 
Instance details

Defined in Linear.V3

Methods

pure :: a -> V3 a #

(<*>) :: V3 (a -> b) -> V3 a -> V3 b #

liftA2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

(*>) :: V3 a -> V3 b -> V3 b #

(<*) :: V3 a -> V3 b -> V3 a #

Applicative V4 
Instance details

Defined in Linear.V4

Methods

pure :: a -> V4 a #

(<*>) :: V4 (a -> b) -> V4 a -> V4 b #

liftA2 :: (a -> b -> c) -> V4 a -> V4 b -> V4 c #

(*>) :: V4 a -> V4 b -> V4 b #

(<*) :: V4 a -> V4 b -> V4 a #

Applicative PandocPure 
Instance details

Defined in Text.Pandoc.Class.PandocPure

Methods

pure :: a -> PandocPure a #

(<*>) :: PandocPure (a -> b) -> PandocPure a -> PandocPure b #

liftA2 :: (a -> b -> c) -> PandocPure a -> PandocPure b -> PandocPure c #

(*>) :: PandocPure a -> PandocPure b -> PandocPure b #

(<*) :: PandocPure a -> PandocPure b -> PandocPure a #

Applicative Array 
Instance details

Defined in Data.Primitive.Array

Methods

pure :: a -> Array a #

(<*>) :: Array (a -> b) -> Array a -> Array b #

liftA2 :: (a -> b -> c) -> Array a -> Array b -> Array c #

(*>) :: Array a -> Array b -> Array b #

(<*) :: Array a -> Array b -> Array a #

Applicative SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Methods

pure :: a -> SmallArray a #

(<*>) :: SmallArray (a -> b) -> SmallArray a -> SmallArray b #

liftA2 :: (a -> b -> c) -> SmallArray a -> SmallArray b -> SmallArray c #

(*>) :: SmallArray a -> SmallArray b -> SmallArray b #

(<*) :: SmallArray a -> SmallArray b -> SmallArray a #

Applicative Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

pure :: a -> Q a #

(<*>) :: Q (a -> b) -> Q a -> Q b #

liftA2 :: (a -> b -> c) -> Q a -> Q b -> Q c #

(*>) :: Q a -> Q b -> Q b #

(<*) :: Q a -> Q b -> Q a #

Applicative Vector 
Instance details

Defined in Data.Vector

Methods

pure :: a -> Vector a #

(<*>) :: Vector (a -> b) -> Vector a -> Vector b #

liftA2 :: (a -> b -> c) -> Vector a -> Vector b -> Vector c #

(*>) :: Vector a -> Vector b -> Vector b #

(<*) :: Vector a -> Vector b -> Vector a #

Applicative Vector 
Instance details

Defined in Data.Vector.Strict

Methods

pure :: a -> Vector a #

(<*>) :: Vector (a -> b) -> Vector a -> Vector b #

liftA2 :: (a -> b -> c) -> Vector a -> Vector b -> Vector c #

(*>) :: Vector a -> Vector b -> Vector b #

(<*) :: Vector a -> Vector b -> Vector a #

Applicative Stream 
Instance details

Defined in Codec.Compression.Zlib.Stream

Methods

pure :: a -> Stream a #

(<*>) :: Stream (a -> b) -> Stream a -> Stream b #

liftA2 :: (a -> b -> c) -> Stream a -> Stream b -> Stream c #

(*>) :: Stream a -> Stream b -> Stream b #

(<*) :: Stream a -> Stream b -> Stream a #

Applicative Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Applicative Solo

Since: base-4.15

Instance details

Defined in GHC.Base

Methods

pure :: a -> Solo a #

(<*>) :: Solo (a -> b) -> Solo a -> Solo b #

liftA2 :: (a -> b -> c) -> Solo a -> Solo b -> Solo c #

(*>) :: Solo a -> Solo b -> Solo b #

(<*) :: Solo a -> Solo b -> Solo a #

Applicative []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> [a] #

(<*>) :: [a -> b] -> [a] -> [b] #

liftA2 :: (a -> b -> c) -> [a] -> [b] -> [c] #

(*>) :: [a] -> [b] -> [b] #

(<*) :: [a] -> [b] -> [a] #

Representable f => Applicative (Co f) 
Instance details

Defined in Data.Functor.Rep

Methods

pure :: a -> Co f a #

(<*>) :: Co f (a -> b) -> Co f a -> Co f b #

liftA2 :: (a -> b -> c) -> Co f a -> Co f b -> Co f c #

(*>) :: Co f a -> Co f b -> Co f b #

(<*) :: Co f a -> Co f b -> Co f a #

Monad m => Applicative (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a -> WrappedMonad m a #

(<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c #

(*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

(<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Applicative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

pure :: a0 -> ArrowMonad a a0 #

(<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c #

(*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

(<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Applicative (Either e)

Since: base-3.0

Instance details

Defined in Data.Either

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

liftA2 :: (a -> b -> c) -> Either e a -> Either e b -> Either e c #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Applicative (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

pure :: a -> Proxy a #

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b #

liftA2 :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c #

(*>) :: Proxy a -> Proxy b -> Proxy b #

(<*) :: Proxy a -> Proxy b -> Proxy a #

Applicative (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> U1 a #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b #

liftA2 :: (a -> b -> c) -> U1 a -> U1 b -> U1 c #

(*>) :: U1 a -> U1 b -> U1 b #

(<*) :: U1 a -> U1 b -> U1 a #

Applicative (ST s)

Since: base-4.4.0.0

Instance details

Defined in GHC.ST

Methods

pure :: a -> ST s a #

(<*>) :: ST s (a -> b) -> ST s a -> ST s b #

liftA2 :: (a -> b -> c) -> ST s a -> ST s b -> ST s c #

(*>) :: ST s a -> ST s b -> ST s b #

(<*) :: ST s a -> ST s b -> ST s a #

Applicative (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

pure :: a -> Measured n a #

(<*>) :: Measured n (a -> b) -> Measured n a -> Measured n b #

liftA2 :: (a -> b -> c) -> Measured n a -> Measured n b -> Measured n c #

(*>) :: Measured n a -> Measured n b -> Measured n b #

(<*) :: Measured n a -> Measured n b -> Measured n a #

Alternative f => Applicative (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

pure :: a -> Cofree f a #

(<*>) :: Cofree f (a -> b) -> Cofree f a -> Cofree f b #

liftA2 :: (a -> b -> c) -> Cofree f a -> Cofree f b -> Cofree f c #

(*>) :: Cofree f a -> Cofree f b -> Cofree f b #

(<*) :: Cofree f a -> Cofree f b -> Cofree f a #

Functor f => Applicative (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

pure :: a -> Free f a #

(<*>) :: Free f (a -> b) -> Free f a -> Free f b #

liftA2 :: (a -> b -> c) -> Free f a -> Free f b -> Free f c #

(*>) :: Free f a -> Free f b -> Free f b #

(<*) :: Free f a -> Free f b -> Free f a #

Applicative f => Applicative (Yoneda f) 
Instance details

Defined in Data.Functor.Yoneda

Methods

pure :: a -> Yoneda f a #

(<*>) :: Yoneda f (a -> b) -> Yoneda f a -> Yoneda f b #

liftA2 :: (a -> b -> c) -> Yoneda f a -> Yoneda f b -> Yoneda f c #

(*>) :: Yoneda f a -> Yoneda f b -> Yoneda f b #

(<*) :: Yoneda f a -> Yoneda f b -> Yoneda f a #

Applicative f => Applicative (Indexing f) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

pure :: a -> Indexing f a #

(<*>) :: Indexing f (a -> b) -> Indexing f a -> Indexing f b #

liftA2 :: (a -> b -> c) -> Indexing f a -> Indexing f b -> Indexing f c #

(*>) :: Indexing f a -> Indexing f b -> Indexing f b #

(<*) :: Indexing f a -> Indexing f b -> Indexing f a #

Applicative f => Applicative (Indexing64 f) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

pure :: a -> Indexing64 f a #

(<*>) :: Indexing64 f (a -> b) -> Indexing64 f a -> Indexing64 f b #

liftA2 :: (a -> b -> c) -> Indexing64 f a -> Indexing64 f b -> Indexing64 f c #

(*>) :: Indexing64 f a -> Indexing64 f b -> Indexing64 f b #

(<*) :: Indexing64 f a -> Indexing64 f b -> Indexing64 f a #

Applicative (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

pure :: a -> ReifiedFold s a #

(<*>) :: ReifiedFold s (a -> b) -> ReifiedFold s a -> ReifiedFold s b #

liftA2 :: (a -> b -> c) -> ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s c #

(*>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b #

(<*) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s a #

Applicative (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

pure :: a -> ReifiedGetter s a #

(<*>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b #

liftA2 :: (a -> b -> c) -> ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s c #

(*>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b #

(<*) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a #

Applicative f => Applicative (Point f) 
Instance details

Defined in Linear.Affine

Methods

pure :: a -> Point f a #

(<*>) :: Point f (a -> b) -> Point f a -> Point f b #

liftA2 :: (a -> b -> c) -> Point f a -> Point f b -> Point f c #

(*>) :: Point f a -> Point f b -> Point f b #

(<*) :: Point f a -> Point f b -> Point f a #

Applicative m => Applicative (WithDefaultPartials m) 
Instance details

Defined in Text.Pandoc.Templates

Methods

pure :: a -> WithDefaultPartials m a #

(<*>) :: WithDefaultPartials m (a -> b) -> WithDefaultPartials m a -> WithDefaultPartials m b #

liftA2 :: (a -> b -> c) -> WithDefaultPartials m a -> WithDefaultPartials m b -> WithDefaultPartials m c #

(*>) :: WithDefaultPartials m a -> WithDefaultPartials m b -> WithDefaultPartials m b #

(<*) :: WithDefaultPartials m a -> WithDefaultPartials m b -> WithDefaultPartials m a #

Applicative m => Applicative (WithPartials m) 
Instance details

Defined in Text.Pandoc.Templates

Methods

pure :: a -> WithPartials m a #

(<*>) :: WithPartials m (a -> b) -> WithPartials m a -> WithPartials m b #

liftA2 :: (a -> b -> c) -> WithPartials m a -> WithPartials m b -> WithPartials m c #

(*>) :: WithPartials m a -> WithPartials m b -> WithPartials m b #

(<*) :: WithPartials m a -> WithPartials m b -> WithPartials m a #

Apply f => Applicative (MaybeApply f) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

pure :: a -> MaybeApply f a #

(<*>) :: MaybeApply f (a -> b) -> MaybeApply f a -> MaybeApply f b #

liftA2 :: (a -> b -> c) -> MaybeApply f a -> MaybeApply f b -> MaybeApply f c #

(*>) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f b #

(<*) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f a #

Applicative f => Applicative (WrappedApplicative f) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

pure :: a -> WrappedApplicative f a #

(<*>) :: WrappedApplicative f (a -> b) -> WrappedApplicative f a -> WrappedApplicative f b #

liftA2 :: (a -> b -> c) -> WrappedApplicative f a -> WrappedApplicative f b -> WrappedApplicative f c #

(*>) :: WrappedApplicative f a -> WrappedApplicative f b -> WrappedApplicative f b #

(<*) :: WrappedApplicative f a -> WrappedApplicative f b -> WrappedApplicative f a #

Semigroup a => Applicative (These a) 
Instance details

Defined in Data.Strict.These

Methods

pure :: a0 -> These a a0 #

(<*>) :: These a (a0 -> b) -> These a a0 -> These a b #

liftA2 :: (a0 -> b -> c) -> These a a0 -> These a b -> These a c #

(*>) :: These a a0 -> These a b -> These a b #

(<*) :: These a a0 -> These a b -> These a a0 #

Applicative (IParser t) 
Instance details

Defined in Data.Text.Internal.Read

Methods

pure :: a -> IParser t a #

(<*>) :: IParser t (a -> b) -> IParser t a -> IParser t b #

liftA2 :: (a -> b -> c) -> IParser t a -> IParser t b -> IParser t c #

(*>) :: IParser t a -> IParser t b -> IParser t b #

(<*) :: IParser t a -> IParser t b -> IParser t a #

Semigroup a => Applicative (These a) 
Instance details

Defined in Data.These

Methods

pure :: a0 -> These a a0 #

(<*>) :: These a (a0 -> b) -> These a a0 -> These a b #

liftA2 :: (a0 -> b -> c) -> These a a0 -> These a b -> These a c #

(*>) :: These a a0 -> These a b -> These a b #

(<*) :: These a a0 -> These a b -> These a a0 #

Applicative f => Applicative (Lift f)

A combination is Pure only if both parts are.

Instance details

Defined in Control.Applicative.Lift

Methods

pure :: a -> Lift f a #

(<*>) :: Lift f (a -> b) -> Lift f a -> Lift f b #

liftA2 :: (a -> b -> c) -> Lift f a -> Lift f b -> Lift f c #

(*>) :: Lift f a -> Lift f b -> Lift f b #

(<*) :: Lift f a -> Lift f b -> Lift f a #

(Functor m, Monad m) => Applicative (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

pure :: a -> MaybeT m a #

(<*>) :: MaybeT m (a -> b) -> MaybeT m a -> MaybeT m b #

liftA2 :: (a -> b -> c) -> MaybeT m a -> MaybeT m b -> MaybeT m c #

(*>) :: MaybeT m a -> MaybeT m b -> MaybeT m b #

(<*) :: MaybeT m a -> MaybeT m b -> MaybeT m a #

Monoid a => Applicative ((,) a)

For tuples, the Monoid constraint on a determines how the first values merge. For example, Strings concatenate:

("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a0 -> (a, a0) #

(<*>) :: (a, a0 -> b) -> (a, a0) -> (a, b) #

liftA2 :: (a0 -> b -> c) -> (a, a0) -> (a, b) -> (a, c) #

(*>) :: (a, a0) -> (a, b) -> (a, b) #

(<*) :: (a, a0) -> (a, b) -> (a, a0) #

Arrow a => Applicative (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

pure :: a0 -> WrappedArrow a b a0 #

(<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 #

liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c #

(*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 #

(<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 #

Applicative m => Applicative (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in Control.Arrow

Methods

pure :: a0 -> Kleisli m a a0 #

(<*>) :: Kleisli m a (a0 -> b) -> Kleisli m a a0 -> Kleisli m a b #

liftA2 :: (a0 -> b -> c) -> Kleisli m a a0 -> Kleisli m a b -> Kleisli m a c #

(*>) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a b #

(<*) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a a0 #

Monoid m => Applicative (Const m :: Type -> Type)

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Applicative f => Applicative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Applicative f => Applicative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Alt f a #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

(*>) :: Alt f a -> Alt f b -> Alt f b #

(<*) :: Alt f a -> Alt f b -> Alt f a #

(Generic1 f, Applicative (Rep1 f)) => Applicative (Generically1 f)

Since: base-4.17.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Generically1 f a #

(<*>) :: Generically1 f (a -> b) -> Generically1 f a -> Generically1 f b #

liftA2 :: (a -> b -> c) -> Generically1 f a -> Generically1 f b -> Generically1 f c #

(*>) :: Generically1 f a -> Generically1 f b -> Generically1 f b #

(<*) :: Generically1 f a -> Generically1 f b -> Generically1 f a #

Applicative f => Applicative (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Rec1 f a #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b #

liftA2 :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a #

Biapplicative p => Applicative (Fix p) 
Instance details

Defined in Data.Bifunctor.Fix

Methods

pure :: a -> Fix p a #

(<*>) :: Fix p (a -> b) -> Fix p a -> Fix p b #

liftA2 :: (a -> b -> c) -> Fix p a -> Fix p b -> Fix p c #

(*>) :: Fix p a -> Fix p b -> Fix p b #

(<*) :: Fix p a -> Fix p b -> Fix p a #

Biapplicative p => Applicative (Join p) 
Instance details

Defined in Data.Bifunctor.Join

Methods

pure :: a -> Join p a #

(<*>) :: Join p (a -> b) -> Join p a -> Join p b #

liftA2 :: (a -> b -> c) -> Join p a -> Join p b -> Join p c #

(*>) :: Join p a -> Join p b -> Join p b #

(<*) :: Join p a -> Join p b -> Join p a #

(Applicative f, Monad f) => Applicative (WhenMissing f x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)).

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

pure :: a -> WhenMissing f x a #

(<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b #

liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c #

(*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b #

(<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a #

Applicative (Query v n) 
Instance details

Defined in Diagrams.Core.Query

Methods

pure :: a -> Query v n a #

(<*>) :: Query v n (a -> b) -> Query v n a -> Query v n b #

liftA2 :: (a -> b -> c) -> Query v n a -> Query v n b -> Query v n c #

(*>) :: Query v n a -> Query v n b -> Query v n b #

(<*) :: Query v n a -> Query v n b -> Query v n a #

(Alternative f, Applicative w) => Applicative (CofreeT f w) 
Instance details

Defined in Control.Comonad.Trans.Cofree

Methods

pure :: a -> CofreeT f w a #

(<*>) :: CofreeT f w (a -> b) -> CofreeT f w a -> CofreeT f w b #

liftA2 :: (a -> b -> c) -> CofreeT f w a -> CofreeT f w b -> CofreeT f w c #

(*>) :: CofreeT f w a -> CofreeT f w b -> CofreeT f w b #

(<*) :: CofreeT f w a -> CofreeT f w b -> CofreeT f w a #

(Functor f, Monad m) => Applicative (FreeT f m) 
Instance details

Defined in Control.Monad.Trans.Free

Methods

pure :: a -> FreeT f m a #

(<*>) :: FreeT f m (a -> b) -> FreeT f m a -> FreeT f m b #

liftA2 :: (a -> b -> c) -> FreeT f m a -> FreeT f m b -> FreeT f m c #

(*>) :: FreeT f m a -> FreeT f m b -> FreeT f m b #

(<*) :: FreeT f m a -> FreeT f m b -> FreeT f m a #

Applicative f => Applicative (Indexing f) 
Instance details

Defined in WithIndex

Methods

pure :: a -> Indexing f a #

(<*>) :: Indexing f (a -> b) -> Indexing f a -> Indexing f b #

liftA2 :: (a -> b -> c) -> Indexing f a -> Indexing f b -> Indexing f c #

(*>) :: Indexing f a -> Indexing f b -> Indexing f b #

(<*) :: Indexing f a -> Indexing f b -> Indexing f a #

(Applicative f, Applicative g) => Applicative (Day f g) 
Instance details

Defined in Data.Functor.Day

Methods

pure :: a -> Day f g a #

(<*>) :: Day f g (a -> b) -> Day f g a -> Day f g b #

liftA2 :: (a -> b -> c) -> Day f g a -> Day f g b -> Day f g c #

(*>) :: Day f g a -> Day f g b -> Day f g b #

(<*) :: Day f g a -> Day f g b -> Day f g a #

(Functor g, g ~ h) => Applicative (Curried g h) 
Instance details

Defined in Data.Functor.Day.Curried

Methods

pure :: a -> Curried g h a #

(<*>) :: Curried g h (a -> b) -> Curried g h a -> Curried g h b #

liftA2 :: (a -> b -> c) -> Curried g h a -> Curried g h b -> Curried g h c #

(*>) :: Curried g h a -> Curried g h b -> Curried g h b #

(<*) :: Curried g h a -> Curried g h b -> Curried g h a #

Applicative (Indexed i a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

pure :: a0 -> Indexed i a a0 #

(<*>) :: Indexed i a (a0 -> b) -> Indexed i a a0 -> Indexed i a b #

liftA2 :: (a0 -> b -> c) -> Indexed i a a0 -> Indexed i a b -> Indexed i a c #

(*>) :: Indexed i a a0 -> Indexed i a b -> Indexed i a b #

(<*) :: Indexed i a a0 -> Indexed i a b -> Indexed i a a0 #

Applicative (Flows i b) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

pure :: a -> Flows i b a #

(<*>) :: Flows i b (a -> b0) -> Flows i b a -> Flows i b b0 #

liftA2 :: (a -> b0 -> c) -> Flows i b a -> Flows i b b0 -> Flows i b c #

(*>) :: Flows i b a -> Flows i b b0 -> Flows i b b0 #

(<*) :: Flows i b a -> Flows i b b0 -> Flows i b a #

Applicative (Mafic a b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

pure :: a0 -> Mafic a b a0 #

(<*>) :: Mafic a b (a0 -> b0) -> Mafic a b a0 -> Mafic a b b0 #

liftA2 :: (a0 -> b0 -> c) -> Mafic a b a0 -> Mafic a b b0 -> Mafic a b c #

(*>) :: Mafic a b a0 -> Mafic a b b0 -> Mafic a b b0 #

(<*) :: Mafic a b a0 -> Mafic a b b0 -> Mafic a b a0 #

Monoid m => Applicative (Holes t m) 
Instance details

Defined in Control.Lens.Traversal

Methods

pure :: a -> Holes t m a #

(<*>) :: Holes t m (a -> b) -> Holes t m a -> Holes t m b #

liftA2 :: (a -> b -> c) -> Holes t m a -> Holes t m b -> Holes t m c #

(*>) :: Holes t m a -> Holes t m b -> Holes t m b #

(<*) :: Holes t m a -> Holes t m b -> Holes t m a #

Dim n => Applicative (V n) 
Instance details

Defined in Linear.V

Methods

pure :: a -> V n a #

(<*>) :: V n (a -> b) -> V n a -> V n b #

liftA2 :: (a -> b -> c) -> V n a -> V n b -> V n c #

(*>) :: V n a -> V n b -> V n b #

(<*) :: V n a -> V n b -> V n a #

(Applicative (Rep p), Representable p) => Applicative (Prep p) 
Instance details

Defined in Data.Profunctor.Rep

Methods

pure :: a -> Prep p a #

(<*>) :: Prep p (a -> b) -> Prep p a -> Prep p b #

liftA2 :: (a -> b -> c) -> Prep p a -> Prep p b -> Prep p c #

(*>) :: Prep p a -> Prep p b -> Prep p b #

(<*) :: Prep p a -> Prep p b -> Prep p a #

(Profunctor p, Arrow p) => Applicative (Tambara p a) 
Instance details

Defined in Data.Profunctor.Strong

Methods

pure :: a0 -> Tambara p a a0 #

(<*>) :: Tambara p a (a0 -> b) -> Tambara p a a0 -> Tambara p a b #

liftA2 :: (a0 -> b -> c) -> Tambara p a a0 -> Tambara p a b -> Tambara p a c #

(*>) :: Tambara p a a0 -> Tambara p a b -> Tambara p a b #

(<*) :: Tambara p a a0 -> Tambara p a b -> Tambara p a a0 #

Applicative (Tagged s) 
Instance details

Defined in Data.Tagged

Methods

pure :: a -> Tagged s a #

(<*>) :: Tagged s (a -> b) -> Tagged s a -> Tagged s b #

liftA2 :: (a -> b -> c) -> Tagged s a -> Tagged s b -> Tagged s c #

(*>) :: Tagged s a -> Tagged s b -> Tagged s b #

(<*) :: Tagged s a -> Tagged s b -> Tagged s a #

Applicative f => Applicative (Backwards f)

Apply f-actions in the reverse order.

Instance details

Defined in Control.Applicative.Backwards

Methods

pure :: a -> Backwards f a #

(<*>) :: Backwards f (a -> b) -> Backwards f a -> Backwards f b #

liftA2 :: (a -> b -> c) -> Backwards f a -> Backwards f b -> Backwards f c #

(*>) :: Backwards f a -> Backwards f b -> Backwards f b #

(<*) :: Backwards f a -> Backwards f b -> Backwards f a #

(Monoid w, Functor m, Monad m) => Applicative (AccumT w m) 
Instance details

Defined in Control.Monad.Trans.Accum

Methods

pure :: a -> AccumT w m a #

(<*>) :: AccumT w m (a -> b) -> AccumT w m a -> AccumT w m b #

liftA2 :: (a -> b -> c) -> AccumT w m a -> AccumT w m b -> AccumT w m c #

(*>) :: AccumT w m a -> AccumT w m b -> AccumT w m b #

(<*) :: AccumT w m a -> AccumT w m b -> AccumT w m a #

(Functor m, Monad m) => Applicative (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

pure :: a -> ExceptT e m a #

(<*>) :: ExceptT e m (a -> b) -> ExceptT e m a -> ExceptT e m b #

liftA2 :: (a -> b -> c) -> ExceptT e m a -> ExceptT e m b -> ExceptT e m c #

(*>) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m b #

(<*) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m a #

Applicative m => Applicative (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

pure :: a -> IdentityT m a #

(<*>) :: IdentityT m (a -> b) -> IdentityT m a -> IdentityT m b #

liftA2 :: (a -> b -> c) -> IdentityT m a -> IdentityT m b -> IdentityT m c #

(*>) :: IdentityT m a -> IdentityT m b -> IdentityT m b #

(<*) :: IdentityT m a -> IdentityT m b -> IdentityT m a #

Applicative m => Applicative (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

pure :: a -> ReaderT r m a #

(<*>) :: ReaderT r m (a -> b) -> ReaderT r m a -> ReaderT r m b #

liftA2 :: (a -> b -> c) -> ReaderT r m a -> ReaderT r m b -> ReaderT r m c #

(*>) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m b #

(<*) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m a #

(Functor m, Monad m) => Applicative (SelectT r m) 
Instance details

Defined in Control.Monad.Trans.Select

Methods

pure :: a -> SelectT r m a #

(<*>) :: SelectT r m (a -> b) -> SelectT r m a -> SelectT r m b #

liftA2 :: (a -> b -> c) -> SelectT r m a -> SelectT r m b -> SelectT r m c #

(*>) :: SelectT r m a -> SelectT r m b -> SelectT r m b #

(<*) :: SelectT r m a -> SelectT r m b -> SelectT r m a #

(Functor m, Monad m) => Applicative (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

pure :: a -> StateT s m a #

(<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b #

liftA2 :: (a -> b -> c) -> StateT s m a -> StateT s m b -> StateT s m c #

(*>) :: StateT s m a -> StateT s m b -> StateT s m b #

(<*) :: StateT s m a -> StateT s m b -> StateT s m a #

(Functor m, Monad m) => Applicative (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Strict

Methods

pure :: a -> StateT s m a #

(<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b #

liftA2 :: (a -> b -> c) -> StateT s m a -> StateT s m b -> StateT s m c #

(*>) :: StateT s m a -> StateT s m b -> StateT s m b #

(<*) :: StateT s m a -> StateT s m b -> StateT s m a #

(Functor m, Monad m) => Applicative (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.CPS

Methods

pure :: a -> WriterT w m a #

(<*>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b #

liftA2 :: (a -> b -> c) -> WriterT w m a -> WriterT w m b -> WriterT w m c #

(*>) :: WriterT w m a -> WriterT w m b -> WriterT w m b #

(<*) :: WriterT w m a -> WriterT w m b -> WriterT w m a #

(Monoid w, Applicative m) => Applicative (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

pure :: a -> WriterT w m a #

(<*>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b #

liftA2 :: (a -> b -> c) -> WriterT w m a -> WriterT w m b -> WriterT w m c #

(*>) :: WriterT w m a -> WriterT w m b -> WriterT w m b #

(<*) :: WriterT w m a -> WriterT w m b -> WriterT w m a #

(Monoid w, Applicative m) => Applicative (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Strict

Methods

pure :: a -> WriterT w m a #

(<*>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b #

liftA2 :: (a -> b -> c) -> WriterT w m a -> WriterT w m b -> WriterT w m c #

(*>) :: WriterT w m a -> WriterT w m b -> WriterT w m b #

(<*) :: WriterT w m a -> WriterT w m b -> WriterT w m a #

Monoid a => Applicative (Constant a :: Type -> Type) 
Instance details

Defined in Data.Functor.Constant

Methods

pure :: a0 -> Constant a a0 #

(<*>) :: Constant a (a0 -> b) -> Constant a a0 -> Constant a b #

liftA2 :: (a0 -> b -> c) -> Constant a a0 -> Constant a b -> Constant a c #

(*>) :: Constant a a0 -> Constant a b -> Constant a b #

(<*) :: Constant a a0 -> Constant a b -> Constant a a0 #

Applicative f => Applicative (Reverse f)

Derived instance.

Instance details

Defined in Data.Functor.Reverse

Methods

pure :: a -> Reverse f a #

(<*>) :: Reverse f (a -> b) -> Reverse f a -> Reverse f b #

liftA2 :: (a -> b -> c) -> Reverse f a -> Reverse f b -> Reverse f c #

(*>) :: Reverse f a -> Reverse f b -> Reverse f b #

(<*) :: Reverse f a -> Reverse f b -> Reverse f a #

(Monoid a, Monoid b) => Applicative ((,,) a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

pure :: a0 -> (a, b, a0) #

(<*>) :: (a, b, a0 -> b0) -> (a, b, a0) -> (a, b, b0) #

liftA2 :: (a0 -> b0 -> c) -> (a, b, a0) -> (a, b, b0) -> (a, b, c) #

(*>) :: (a, b, a0) -> (a, b, b0) -> (a, b, b0) #

(<*) :: (a, b, a0) -> (a, b, b0) -> (a, b, a0) #

(Applicative f, Applicative g) => Applicative (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

pure :: a -> Product f g a #

(<*>) :: Product f g (a -> b) -> Product f g a -> Product f g b #

liftA2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c #

(*>) :: Product f g a -> Product f g b -> Product f g b #

(<*) :: Product f g a -> Product f g b -> Product f g a #

(Applicative f, Applicative g) => Applicative (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :*: g) a #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b #

liftA2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a #

Monoid c => Applicative (K1 i c :: Type -> Type)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> K1 i c a #

(<*>) :: K1 i c (a -> b) -> K1 i c a -> K1 i c b #

liftA2 :: (a -> b -> c0) -> K1 i c a -> K1 i c b -> K1 i c c0 #

(*>) :: K1 i c a -> K1 i c b -> K1 i c b #

(<*) :: K1 i c a -> K1 i c b -> K1 i c a #

(Monad f, Applicative f) => Applicative (WhenMatched f x y)

Equivalent to ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

pure :: a -> WhenMatched f x y a #

(<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b #

liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c #

(*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b #

(<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a #

(Applicative f, Monad f) => Applicative (WhenMissing f k x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)) .

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

pure :: a -> WhenMissing f k x a #

(<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b #

liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c #

(*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b #

(<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a #

Applicative (Bazaar p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

pure :: a0 -> Bazaar p a b a0 #

(<*>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0 #

liftA2 :: (a0 -> b0 -> c) -> Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b c #

(*>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0 #

(<*) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0 #

Applicative (Molten i a b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

pure :: a0 -> Molten i a b a0 #

(<*>) :: Molten i a b (a0 -> b0) -> Molten i a b a0 -> Molten i a b b0 #

liftA2 :: (a0 -> b0 -> c) -> Molten i a b a0 -> Molten i a b b0 -> Molten i a b c #

(*>) :: Molten i a b a0 -> Molten i a b b0 -> Molten i a b b0 #

(<*) :: Molten i a b a0 -> Molten i a b b0 -> Molten i a b a0 #

Applicative (Costar f a) 
Instance details

Defined in Data.Profunctor.Types

Methods

pure :: a0 -> Costar f a a0 #

(<*>) :: Costar f a (a0 -> b) -> Costar f a a0 -> Costar f a b #

liftA2 :: (a0 -> b -> c) -> Costar f a a0 -> Costar f a b -> Costar f a c #

(*>) :: Costar f a a0 -> Costar f a b -> Costar f a b #

(<*) :: Costar f a a0 -> Costar f a b -> Costar f a a0 #

Applicative f => Applicative (Star f a) 
Instance details

Defined in Data.Profunctor.Types

Methods

pure :: a0 -> Star f a a0 #

(<*>) :: Star f a (a0 -> b) -> Star f a a0 -> Star f a b #

liftA2 :: (a0 -> b -> c) -> Star f a a0 -> Star f a b -> Star f a c #

(*>) :: Star f a a0 -> Star f a b -> Star f a b #

(<*) :: Star f a a0 -> Star f a b -> Star f a a0 #

Applicative (ContT r m) 
Instance details

Defined in Control.Monad.Trans.Cont

Methods

pure :: a -> ContT r m a #

(<*>) :: ContT r m (a -> b) -> ContT r m a -> ContT r m b #

liftA2 :: (a -> b -> c) -> ContT r m a -> ContT r m b -> ContT r m c #

(*>) :: ContT r m a -> ContT r m b -> ContT r m b #

(<*) :: ContT r m a -> ContT r m b -> ContT r m a #

(Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

pure :: a0 -> (a, b, c, a0) #

(<*>) :: (a, b, c, a0 -> b0) -> (a, b, c, a0) -> (a, b, c, b0) #

liftA2 :: (a0 -> b0 -> c0) -> (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, c0) #

(*>) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, b0) #

(<*) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, a0) #

Applicative ((->) r)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

pure :: a -> r -> a #

(<*>) :: (r -> (a -> b)) -> (r -> a) -> r -> b #

liftA2 :: (a -> b -> c) -> (r -> a) -> (r -> b) -> r -> c #

(*>) :: (r -> a) -> (r -> b) -> r -> b #

(<*) :: (r -> a) -> (r -> b) -> r -> a #

(Applicative f, Applicative g) => Applicative (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

pure :: a -> Compose f g a #

(<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b #

liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c #

(*>) :: Compose f g a -> Compose f g b -> Compose f g b #

(<*) :: Compose f g a -> Compose f g b -> Compose f g a #

(Applicative f, Applicative g) => Applicative (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :.: g) a #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b #

liftA2 :: (a -> b -> c) -> (f :.: g) a -> (f :.: g) b -> (f :.: g) c #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a #

Applicative f => Applicative (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> M1 i c f a #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b #

liftA2 :: (a -> b -> c0) -> M1 i c f a -> M1 i c f b -> M1 i c f c0 #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a #

(Monad f, Applicative f) => Applicative (WhenMatched f k x y)

Equivalent to ReaderT k (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

pure :: a -> WhenMatched f k x y a #

(<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b #

liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c #

(*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b #

(<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a #

Applicative (BazaarT p g a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

pure :: a0 -> BazaarT p g a b a0 #

(<*>) :: BazaarT p g a b (a0 -> b0) -> BazaarT p g a b a0 -> BazaarT p g a b b0 #

liftA2 :: (a0 -> b0 -> c) -> BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b c #

(*>) :: BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b b0 #

(<*) :: BazaarT p g a b a0 -> BazaarT p g a b b0 -> BazaarT p g a b a0 #

Applicative (TakingWhile p f a b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

pure :: a0 -> TakingWhile p f a b a0 #

(<*>) :: TakingWhile p f a b (a0 -> b0) -> TakingWhile p f a b a0 -> TakingWhile p f a b b0 #

liftA2 :: (a0 -> b0 -> c) -> TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b c #

(*>) :: TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b b0 #

(<*) :: TakingWhile p f a b a0 -> TakingWhile p f a b b0 -> TakingWhile p f a b a0 #

Reifies s (ReifiedApplicative f) => Applicative (ReflectedApplicative f s) 
Instance details

Defined in Data.Reflection

Methods

pure :: a -> ReflectedApplicative f s a #

(<*>) :: ReflectedApplicative f s (a -> b) -> ReflectedApplicative f s a -> ReflectedApplicative f s b #

liftA2 :: (a -> b -> c) -> ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s c #

(*>) :: ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s b #

(<*) :: ReflectedApplicative f s a -> ReflectedApplicative f s b -> ReflectedApplicative f s a #

(Functor m, Monad m) => Applicative (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.CPS

Methods

pure :: a -> RWST r w s m a #

(<*>) :: RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b #

liftA2 :: (a -> b -> c) -> RWST r w s m a -> RWST r w s m b -> RWST r w s m c #

(*>) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m b #

(<*) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m a #

(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.Lazy

Methods

pure :: a -> RWST r w s m a #

(<*>) :: RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b #

liftA2 :: (a -> b -> c) -> RWST r w s m a -> RWST r w s m b -> RWST r w s m c #

(*>) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m b #

(<*) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m a #

(Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.Strict

Methods

pure :: a -> RWST r w s m a #

(<*>) :: RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b #

liftA2 :: (a -> b -> c) -> RWST r w s m a -> RWST r w s m b -> RWST r w s m c #

(*>) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m b #

(<*) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m a #

type D (v :: Type -> Type) n = QDiagram NullBackend v n Any #

(<$) :: Functor f => a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Examples

Expand

Perform a computation with Maybe and replace the result with a constant value if it is Just:

>>> 'a' <$ Just 2
Just 'a'
>>> 'a' <$ Nothing
Nothing

liftA :: Applicative f => (a -> b) -> f a -> f b #

Lift a function to actions. Equivalent to Functor's fmap but implemented using only Applicative's methods: liftA f a = pure f <*> a

As such this function may be used to implement a Functor instance from an Applicative one.

Examples

Expand

Using the Applicative instance for Lists:

>>> liftA (+1) [1, 2]
[2,3]

Or the Applicative instance for Maybe

>>> liftA (+1) (Just 3)
Just 4

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #

Lift a ternary function to actions.

uncons :: Cons s s a a => s -> Maybe (a, s) #

unsnoc :: Snoc s s a a => s -> Maybe (s, a) #

rotate :: (InSpace V2 n t, Transformable t, Floating n) => Angle n -> t -> t #

adjust :: (N t ~ n, Sectionable t, HasArcLength t, Fractional n) => t -> AdjustOpts n -> t #

clamp :: Active a -> Active a #

(<&>) :: Functor f => f a -> (a -> b) -> f b infixl 1 #

Flipped version of <$>.

(<&>) = flip fmap

Examples

Expand

Apply (+1) to a list, a Just and a Right:

>>> Just 2 <&> (+1)
Just 3
>>> [1,2,3] <&> (+1)
[2,3,4]
>>> Right 3 <&> (+1)
Right 4

Since: base-4.11.0.0

(&) :: a -> (a -> b) -> b infixl 1 #

& is a reverse application operator. This provides notational convenience. Its precedence is one higher than that of the forward application operator $, which allows & to be nested in $.

This is a version of flip id, where id is specialized from a -> a to (a -> b) -> (a -> b) which by the associativity of (->) is (a -> b) -> a -> b. flipping this yields a -> (a -> b) -> b which is the type signature of &

Examples

Expand
>>> 5 & (+1) & show
"6"
>>> sqrt $ [1 / n^2 | n <- [1..1000]] & sum & (*6)
3.1406380562059946

Since: base-4.8.0.0

data (a :: k) :~: (b :: k) where infix 4 #

Propositional equality. If a :~: b is inhabited by some terminating value, then the type a is the same as the type b. To use this equality in practice, pattern-match on the a :~: b to get out the Refl constructor; in the body of the pattern-match, the compiler knows that a ~ b.

Since: base-4.7.0.0

Constructors

Refl :: forall {k} (a :: k). a :~: a 

Instances

Instances details
Category ((:~:) :: k -> k -> Type)

Since: base-4.7.0.0

Instance details

Defined in Control.Category

Methods

id :: forall (a :: k). a :~: a #

(.) :: forall (b :: k) (c :: k) (a :: k). (b :~: c) -> (a :~: b) -> a :~: c #

TestCoercion ((:~:) a :: k -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Coercion

Methods

testCoercion :: forall (a0 :: k) (b :: k). (a :~: a0) -> (a :~: b) -> Maybe (Coercion a0 b) #

TestEquality ((:~:) a :: k -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

testEquality :: forall (a0 :: k) (b :: k). (a :~: a0) -> (a :~: b) -> Maybe (a0 :~: b) #

NFData2 ((:~:) :: Type -> Type -> Type)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> (a :~: b) -> () #

NFData1 ((:~:) a)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a0 -> ()) -> (a :~: a0) -> () #

(a ~ b, Data a) => Data (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) #

toConstr :: (a :~: b) -> Constr #

dataTypeOf :: (a :~: b) -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r #

gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) #

a ~ b => Bounded (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

minBound :: a :~: b #

maxBound :: a :~: b #

a ~ b => Enum (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

succ :: (a :~: b) -> a :~: b #

pred :: (a :~: b) -> a :~: b #

toEnum :: Int -> a :~: b #

fromEnum :: (a :~: b) -> Int #

enumFrom :: (a :~: b) -> [a :~: b] #

enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] #

a ~ b => Read (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

readsPrec :: Int -> ReadS (a :~: b) #

readList :: ReadS [a :~: b] #

readPrec :: ReadPrec (a :~: b) #

readListPrec :: ReadPrec [a :~: b] #

Show (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

showsPrec :: Int -> (a :~: b) -> ShowS #

show :: (a :~: b) -> String #

showList :: [a :~: b] -> ShowS #

NFData (a :~: b)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: (a :~: b) -> () #

Eq (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

(==) :: (a :~: b) -> (a :~: b) -> Bool #

(/=) :: (a :~: b) -> (a :~: b) -> Bool #

Ord (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

compare :: (a :~: b) -> (a :~: b) -> Ordering #

(<) :: (a :~: b) -> (a :~: b) -> Bool #

(<=) :: (a :~: b) -> (a :~: b) -> Bool #

(>) :: (a :~: b) -> (a :~: b) -> Bool #

(>=) :: (a :~: b) -> (a :~: b) -> Bool #

max :: (a :~: b) -> (a :~: b) -> a :~: b #

min :: (a :~: b) -> (a :~: b) -> a :~: b #

apply :: Transformation v n -> v n -> v n #

outer :: (Functor f, Functor g, Num a) => f a -> g a -> f (g a) #

newtype Min a #

The Min Monoid and Semigroup always choose the smaller element as by the Ord instance and min of the contained type.

Examples

Expand
>>> Min 42 <> Min 3
Min 3
>>> sconcat $ Min 1 :| [ Min n | n <- [2 .. 100]]
Min {getMin = 1}

Constructors

Min 

Fields

Instances

Instances details
MonadFix Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mfix :: (a -> Min a) -> Min a #

Foldable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Min m -> m #

foldMap :: Monoid m => (a -> m) -> Min a -> m #

foldMap' :: Monoid m => (a -> m) -> Min a -> m #

foldr :: (a -> b -> b) -> b -> Min a -> b #

foldr' :: (a -> b -> b) -> b -> Min a -> b #

foldl :: (b -> a -> b) -> b -> Min a -> b #

foldl' :: (b -> a -> b) -> b -> Min a -> b #

foldr1 :: (a -> a -> a) -> Min a -> a #

foldl1 :: (a -> a -> a) -> Min a -> a #

toList :: Min a -> [a] #

null :: Min a -> Bool #

length :: Min a -> Int #

elem :: Eq a => a -> Min a -> Bool #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

sum :: Num a => Min a -> a #

product :: Num a => Min a -> a #

Foldable1 Min

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Min m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Min a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Min a -> m #

toNonEmpty :: Min a -> NonEmpty a #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

head :: Min a -> a #

last :: Min a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Min a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Min a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Min a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Min a -> b #

Traversable Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Applicative Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Min a #

(<*>) :: Min (a -> b) -> Min a -> Min b #

liftA2 :: (a -> b -> c) -> Min a -> Min b -> Min c #

(*>) :: Min a -> Min b -> Min b #

(<*) :: Min a -> Min b -> Min a #

Functor Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Min a -> Min b #

(<$) :: a -> Min b -> Min a #

Monad Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Min a -> (a -> Min b) -> Min b #

(>>) :: Min a -> Min b -> Min b #

return :: a -> Min a #

NFData1 Min

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Min a -> () #

Apply Min 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Min (a -> b) -> Min a -> Min b

(.>) :: Min a -> Min b -> Min b

(<.) :: Min a -> Min b -> Min a

liftF2 :: (a -> b -> c) -> Min a -> Min b -> Min c

Bind Min 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Min a -> (a -> Min b) -> Min b

join :: Min (Min a) -> Min a

Traversable1 Min 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Min a -> f (Min b) #

sequence1 :: Apply f => Min (f b) -> f (Min b)

Generic1 Min 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Min = D1 ('MetaData "Min" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Min" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMin") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Min a -> Rep1 Min a #

to1 :: Rep1 Min a -> Min a #

Unbox a => Vector Vector (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Min a) -> ST s (Vector (Min a))

basicUnsafeThaw :: Vector (Min a) -> ST s (Mutable Vector s (Min a))

basicLength :: Vector (Min a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Min a) -> Vector (Min a)

basicUnsafeIndexM :: Vector (Min a) -> Int -> Box (Min a)

basicUnsafeCopy :: Mutable Vector s (Min a) -> Vector (Min a) -> ST s ()

elemseq :: Vector (Min a) -> Min a -> b -> b

Unbox a => MVector MVector (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Min a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Min a) -> MVector s (Min a)

basicOverlaps :: MVector s (Min a) -> MVector s (Min a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Min a))

basicInitialize :: MVector s (Min a) -> ST s ()

basicUnsafeReplicate :: Int -> Min a -> ST s (MVector s (Min a))

basicUnsafeRead :: MVector s (Min a) -> Int -> ST s (Min a)

basicUnsafeWrite :: MVector s (Min a) -> Int -> Min a -> ST s ()

basicClear :: MVector s (Min a) -> ST s ()

basicSet :: MVector s (Min a) -> Min a -> ST s ()

basicUnsafeCopy :: MVector s (Min a) -> MVector s (Min a) -> ST s ()

basicUnsafeMove :: MVector s (Min a) -> MVector s (Min a) -> ST s ()

basicUnsafeGrow :: MVector s (Min a) -> Int -> ST s (MVector s (Min a))

Data a => Data (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) #

toConstr :: Min a -> Constr #

dataTypeOf :: Min a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) #

gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

(Ord a, Bounded a) => Monoid (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

Ord a => Semigroup (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Bounded a => Bounded (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: Min a #

maxBound :: Min a #

Enum a => Enum (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: Min a -> Min a #

pred :: Min a -> Min a #

toEnum :: Int -> Min a #

fromEnum :: Min a -> Int #

enumFrom :: Min a -> [Min a] #

enumFromThen :: Min a -> Min a -> [Min a] #

enumFromTo :: Min a -> Min a -> [Min a] #

enumFromThenTo :: Min a -> Min a -> Min a -> [Min a] #

Generic (Min a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Min a) = D1 ('MetaData "Min" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Min" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMin") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Num a => Num (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Min a -> Min a -> Min a #

(-) :: Min a -> Min a -> Min a #

(*) :: Min a -> Min a -> Min a #

negate :: Min a -> Min a #

abs :: Min a -> Min a #

signum :: Min a -> Min a #

fromInteger :: Integer -> Min a #

Read a => Read (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show a => Show (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Min a -> ShowS #

show :: Min a -> String #

showList :: [Min a] -> ShowS #

Binary a => Binary (Min a)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Min a -> Put #

get :: Get (Min a) #

putList :: [Min a] -> Put #

NFData a => NFData (Min a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Min a -> () #

Eq a => Eq (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Ord a => Ord (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

compare :: Min a -> Min a -> Ordering #

(<) :: Min a -> Min a -> Bool #

(<=) :: Min a -> Min a -> Bool #

(>) :: Min a -> Min a -> Bool #

(>=) :: Min a -> Min a -> Bool #

max :: Min a -> Min a -> Min a #

min :: Min a -> Min a -> Min a #

Hashable a => Hashable (Min a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Min a -> Int

hash :: Min a -> Int

Wrapped (Min a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Min a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Min a) = a

Methods

_Wrapped' :: Iso' (Min a) (Unwrapped (Min a)) #

Unbox a => Unbox (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Min b => Rewrapped (Min a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep1 Min

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Min = D1 ('MetaData "Min" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Min" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMin") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Min a) = MV_Min (MVector s a)
type Rep (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Min a) = D1 ('MetaData "Min" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Min" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMin") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (Min a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Min a) = a
newtype Vector (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Min a) = V_Min (Vector a)

newtype Max a #

The Max Monoid and Semigroup always choose the bigger element as by the Ord instance and max of the contained type.

Examples

Expand
>>> Max 42 <> Max 3
Max 42
>>> sconcat $ Max 1 :| [ Max n | n <- [2 .. 100]]
Max {getMax = 100}

Constructors

Max 

Fields

Instances

Instances details
MonadFix Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mfix :: (a -> Max a) -> Max a #

Foldable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Max m -> m #

foldMap :: Monoid m => (a -> m) -> Max a -> m #

foldMap' :: Monoid m => (a -> m) -> Max a -> m #

foldr :: (a -> b -> b) -> b -> Max a -> b #

foldr' :: (a -> b -> b) -> b -> Max a -> b #

foldl :: (b -> a -> b) -> b -> Max a -> b #

foldl' :: (b -> a -> b) -> b -> Max a -> b #

foldr1 :: (a -> a -> a) -> Max a -> a #

foldl1 :: (a -> a -> a) -> Max a -> a #

toList :: Max a -> [a] #

null :: Max a -> Bool #

length :: Max a -> Int #

elem :: Eq a => a -> Max a -> Bool #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

sum :: Num a => Max a -> a #

product :: Num a => Max a -> a #

Foldable1 Max

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Max m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Max a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Max a -> m #

toNonEmpty :: Max a -> NonEmpty a #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

head :: Max a -> a #

last :: Max a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Max a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Max a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Max a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Max a -> b #

Traversable Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Applicative Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Max a #

(<*>) :: Max (a -> b) -> Max a -> Max b #

liftA2 :: (a -> b -> c) -> Max a -> Max b -> Max c #

(*>) :: Max a -> Max b -> Max b #

(<*) :: Max a -> Max b -> Max a #

Functor Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Max a -> Max b #

(<$) :: a -> Max b -> Max a #

Monad Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Max a -> (a -> Max b) -> Max b #

(>>) :: Max a -> Max b -> Max b #

return :: a -> Max a #

NFData1 Max

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Max a -> () #

Apply Max 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Max (a -> b) -> Max a -> Max b

(.>) :: Max a -> Max b -> Max b

(<.) :: Max a -> Max b -> Max a

liftF2 :: (a -> b -> c) -> Max a -> Max b -> Max c

Bind Max 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Max a -> (a -> Max b) -> Max b

join :: Max (Max a) -> Max a

Traversable1 Max 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Max a -> f (Max b) #

sequence1 :: Apply f => Max (f b) -> f (Max b)

Generic1 Max 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Max = D1 ('MetaData "Max" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Max" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMax") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Max a -> Rep1 Max a #

to1 :: Rep1 Max a -> Max a #

Unbox a => Vector Vector (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Max a) -> ST s (Vector (Max a))

basicUnsafeThaw :: Vector (Max a) -> ST s (Mutable Vector s (Max a))

basicLength :: Vector (Max a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Max a) -> Vector (Max a)

basicUnsafeIndexM :: Vector (Max a) -> Int -> Box (Max a)

basicUnsafeCopy :: Mutable Vector s (Max a) -> Vector (Max a) -> ST s ()

elemseq :: Vector (Max a) -> Max a -> b -> b

Unbox a => MVector MVector (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Max a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Max a) -> MVector s (Max a)

basicOverlaps :: MVector s (Max a) -> MVector s (Max a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Max a))

basicInitialize :: MVector s (Max a) -> ST s ()

basicUnsafeReplicate :: Int -> Max a -> ST s (MVector s (Max a))

basicUnsafeRead :: MVector s (Max a) -> Int -> ST s (Max a)

basicUnsafeWrite :: MVector s (Max a) -> Int -> Max a -> ST s ()

basicClear :: MVector s (Max a) -> ST s ()

basicSet :: MVector s (Max a) -> Max a -> ST s ()

basicUnsafeCopy :: MVector s (Max a) -> MVector s (Max a) -> ST s ()

basicUnsafeMove :: MVector s (Max a) -> MVector s (Max a) -> ST s ()

basicUnsafeGrow :: MVector s (Max a) -> Int -> ST s (MVector s (Max a))

Data a => Data (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) #

toConstr :: Max a -> Constr #

dataTypeOf :: Max a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) #

gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

(Ord a, Bounded a) => Monoid (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Ord a => Semigroup (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Bounded a => Bounded (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

minBound :: Max a #

maxBound :: Max a #

Enum a => Enum (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

succ :: Max a -> Max a #

pred :: Max a -> Max a #

toEnum :: Int -> Max a #

fromEnum :: Max a -> Int #

enumFrom :: Max a -> [Max a] #

enumFromThen :: Max a -> Max a -> [Max a] #

enumFromTo :: Max a -> Max a -> [Max a] #

enumFromThenTo :: Max a -> Max a -> Max a -> [Max a] #

Generic (Max a) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Max a) = D1 ('MetaData "Max" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Max" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMax") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Num a => Num (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Max a -> Max a -> Max a #

(-) :: Max a -> Max a -> Max a #

(*) :: Max a -> Max a -> Max a #

negate :: Max a -> Max a #

abs :: Max a -> Max a #

signum :: Max a -> Max a #

fromInteger :: Integer -> Max a #

Read a => Read (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show a => Show (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Max a -> ShowS #

show :: Max a -> String #

showList :: [Max a] -> ShowS #

Binary a => Binary (Max a)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Max a -> Put #

get :: Get (Max a) #

putList :: [Max a] -> Put #

NFData a => NFData (Max a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Max a -> () #

Eq a => Eq (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Ord a => Ord (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

compare :: Max a -> Max a -> Ordering #

(<) :: Max a -> Max a -> Bool #

(<=) :: Max a -> Max a -> Bool #

(>) :: Max a -> Max a -> Bool #

(>=) :: Max a -> Max a -> Bool #

max :: Max a -> Max a -> Max a #

min :: Max a -> Max a -> Max a #

Hashable a => Hashable (Max a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Max a -> Int

hash :: Max a -> Int

Wrapped (Max a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Max a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Max a) = a

Methods

_Wrapped' :: Iso' (Max a) (Unwrapped (Max a)) #

Unbox a => Unbox (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Max b => Rewrapped (Max a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep1 Max

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 Max = D1 ('MetaData "Max" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Max" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMax") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Max a) = MV_Max (MVector s a)
type Rep (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (Max a) = D1 ('MetaData "Max" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Max" 'PrefixI 'True) (S1 ('MetaSel ('Just "getMax") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (Max a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Max a) = a
newtype Vector (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Max a) = V_Max (Vector a)

from :: AnIso s t a b -> Iso b a t s #

to :: (Profunctor p, Contravariant f) => (s -> a) -> Optic' p f s a #

class R1 (t :: Type -> Type) where #

Methods

_x :: Lens' (t a) a #

Instances

Instances details
R1 Identity 
Instance details

Defined in Linear.V1

Methods

_x :: Lens' (Identity a) a #

R1 Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

_x :: Lens' (Quaternion a) a #

R1 V1 
Instance details

Defined in Linear.V1

Methods

_x :: Lens' (V1 a) a #

R1 V2 
Instance details

Defined in Linear.V2

Methods

_x :: Lens' (V2 a) a #

R1 V3 
Instance details

Defined in Linear.V3

Methods

_x :: Lens' (V3 a) a #

R1 V4 
Instance details

Defined in Linear.V4

Methods

_x :: Lens' (V4 a) a #

R1 f => R1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

_x :: Lens' (Point f a) a #

newtype All #

Boolean monoid under conjunction (&&).

All x <> All y = All (x && y)

Examples

Expand
>>> All True <> mempty <> All False)
All {getAll = False}
>>> mconcat (map (\x -> All (even x)) [2,4,6,7,8])
All {getAll = False}
>>> All True <> mempty
All {getAll = True}

Constructors

All 

Fields

Instances

Instances details
Data All

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All #

toConstr :: All -> Constr #

dataTypeOf :: All -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) #

gmapT :: (forall b. Data b => b -> b) -> All -> All #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQ :: (forall d. Data d => d -> u) -> All -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

Monoid All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Semigroup All

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Bounded All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: All #

maxBound :: All #

Generic All 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep All

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep All = D1 ('MetaData "All" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "All" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAll") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Read All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Binary All

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: All -> Put #

get :: Get All #

putList :: [All] -> Put #

Default All 
Instance details

Defined in Data.Default.Class

Methods

def :: All #

NFData All

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: All -> () #

Eq All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Ord All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

AsEmpty All 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' All () #

Wrapped All 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped All 
Instance details

Defined in Control.Lens.Wrapped

Unbox All 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ All => Rewrapped All t 
Instance details

Defined in Control.Lens.Wrapped

Vector Vector All 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s All -> ST s (Vector All)

basicUnsafeThaw :: Vector All -> ST s (Mutable Vector s All)

basicLength :: Vector All -> Int

basicUnsafeSlice :: Int -> Int -> Vector All -> Vector All

basicUnsafeIndexM :: Vector All -> Int -> Box All

basicUnsafeCopy :: Mutable Vector s All -> Vector All -> ST s ()

elemseq :: Vector All -> All -> b -> b

MVector MVector All 
Instance details

Defined in Data.Vector.Unboxed.Base

RealFloat n => HasQuery (Clip n) All 
Instance details

Defined in Diagrams.TwoD.Path

Methods

getQuery :: Clip n -> Query (V (Clip n)) (N (Clip n)) All #

type Rep All

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep All = D1 ('MetaData "All" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "All" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAll") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))
type Unwrapped All 
Instance details

Defined in Control.Lens.Wrapped

newtype Vector All 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector All = V_All (Vector Bool)
newtype MVector s All 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s All = MV_All (MVector s Bool)

newtype Endo a #

The monoid of endomorphisms under composition.

Endo f <> Endo g == Endo (f . g)

Examples

Expand
>>> let computation = Endo ("Hello, " ++) <> Endo (++ "!")
>>> appEndo computation "Haskell"
"Hello, Haskell!"
>>> let computation = Endo (*3) <> Endo (+1)
>>> appEndo computation 1
6

Constructors

Endo 

Fields

Instances

Instances details
Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Semigroup (Endo a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Generic (Endo a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Endo a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Endo a) = D1 ('MetaData "Endo" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Endo" 'PrefixI 'True) (S1 ('MetaSel ('Just "appEndo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> a))))

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Default (Endo a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Endo a #

Wrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Endo a) = a -> a

Methods

_Wrapped' :: Iso' (Endo a) (Unwrapped (Endo a)) #

t ~ Endo b => Rewrapped (Endo a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep (Endo a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Endo a) = D1 ('MetaData "Endo" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Endo" 'PrefixI 'True) (S1 ('MetaSel ('Just "appEndo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> a))))
type Unwrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Endo a) = a -> a

newtype Dual a #

The dual of a Monoid, obtained by swapping the arguments of (<>).

Dual a <> Dual b == Dual (b <> a)

Examples

Expand
>>> Dual "Hello" <> Dual "World"
Dual {getDual = "WorldHello"}
>>> Dual (Dual "Hello") <> Dual (Dual "World")
Dual {getDual = Dual {getDual = "HelloWorld"}}

Constructors

Dual 

Fields

Instances

Instances details
Representable Dual 
Instance details

Defined in Data.Functor.Rep

Associated Types

type Rep Dual 
Instance details

Defined in Data.Functor.Rep

type Rep Dual = ()

Methods

tabulate :: (Rep Dual -> a) -> Dual a

index :: Dual a -> Rep Dual -> a

MonadFix Dual

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> Dual a) -> Dual a #

MonadZip Dual

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Dual a -> Dual b -> Dual (a, b) #

mzipWith :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

munzip :: Dual (a, b) -> (Dual a, Dual b) #

Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldMap' :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Foldable1 Dual

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Dual m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Dual a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Dual a -> m #

toNonEmpty :: Dual a -> NonEmpty a #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

head :: Dual a -> a #

last :: Dual a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Dual a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Dual a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Dual a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Dual a -> b #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Applicative Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

liftA2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

NFData1 Dual

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Dual a -> () #

Apply Dual 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Dual (a -> b) -> Dual a -> Dual b

(.>) :: Dual a -> Dual b -> Dual b

(<.) :: Dual a -> Dual b -> Dual a

liftF2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c

Bind Dual 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Dual a -> (a -> Dual b) -> Dual b

join :: Dual (Dual a) -> Dual a

Traversable1 Dual 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Dual a -> f (Dual b) #

sequence1 :: Apply f => Dual (f b) -> f (Dual b)

Generic1 Dual 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Dual

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Dual a -> Rep1 Dual a #

to1 :: Rep1 Dual a -> Dual a #

Unbox a => Vector Vector (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Dual a) -> ST s (Vector (Dual a))

basicUnsafeThaw :: Vector (Dual a) -> ST s (Mutable Vector s (Dual a))

basicLength :: Vector (Dual a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Dual a) -> Vector (Dual a)

basicUnsafeIndexM :: Vector (Dual a) -> Int -> Box (Dual a)

basicUnsafeCopy :: Mutable Vector s (Dual a) -> Vector (Dual a) -> ST s ()

elemseq :: Vector (Dual a) -> Dual a -> b -> b

Unbox a => MVector MVector (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Dual a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Dual a) -> MVector s (Dual a)

basicOverlaps :: MVector s (Dual a) -> MVector s (Dual a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Dual a))

basicInitialize :: MVector s (Dual a) -> ST s ()

basicUnsafeReplicate :: Int -> Dual a -> ST s (MVector s (Dual a))

basicUnsafeRead :: MVector s (Dual a) -> Int -> ST s (Dual a)

basicUnsafeWrite :: MVector s (Dual a) -> Int -> Dual a -> ST s ()

basicClear :: MVector s (Dual a) -> ST s ()

basicSet :: MVector s (Dual a) -> Dual a -> ST s ()

basicUnsafeCopy :: MVector s (Dual a) -> MVector s (Dual a) -> ST s ()

basicUnsafeMove :: MVector s (Dual a) -> MVector s (Dual a) -> ST s ()

basicUnsafeGrow :: MVector s (Dual a) -> Int -> ST s (MVector s (Dual a))

Data a => Data (Dual a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) #

toConstr :: Dual a -> Constr #

dataTypeOf :: Dual a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) #

gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Semigroup a => Semigroup (Dual a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Bounded a => Bounded (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Dual a #

maxBound :: Dual a #

Generic (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Dual a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Dual a) = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Read a => Read (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Binary a => Binary (Dual a)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Dual a -> Put #

get :: Get (Dual a) #

putList :: [Dual a] -> Put #

Default a => Default (Dual a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Dual a #

NFData a => NFData (Dual a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Dual a -> () #

Eq a => Eq (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Ord a => Ord (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

AsEmpty a => AsEmpty (Dual a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Dual a) () #

Wrapped (Dual a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Dual a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Dual a) = a

Methods

_Wrapped' :: Iso' (Dual a) (Unwrapped (Dual a)) #

Unbox a => Unbox (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Dual b => Rewrapped (Dual a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep Dual 
Instance details

Defined in Data.Functor.Rep

type Rep Dual = ()
type Rep1 Dual

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Dual a) = MV_Dual (MVector s a)
type Rep (Dual a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

type Rep (Dual a) = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (Dual a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Dual a) = a
newtype Vector (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Dual a) = V_Dual (Vector a)

stimesMonoid :: (Integral b, Monoid a) => b -> a -> a #

This is a valid definition of stimes for a Monoid.

Unlike the default definition of stimes, it is defined for 0 and so it should be preferred where possible.

newtype Const a (b :: k) #

The Const functor.

Constructors

Const 

Fields

Instances

Instances details
Generic1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from1 :: forall (a0 :: k). Const a a0 -> Rep1 (Const a :: k -> Type) a0 #

to1 :: forall (a0 :: k). Rep1 (Const a :: k -> Type) a0 -> Const a a0 #

FoldableWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> Const e a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> Const e a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> Const e a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> Const e a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> Const e a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> Const e a -> b #

FunctorWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> Const e a -> Const e b #

TraversableWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> Const e a -> f (Const e b) #

Unbox a => Vector Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Const a b) -> ST s (Vector (Const a b))

basicUnsafeThaw :: Vector (Const a b) -> ST s (Mutable Vector s (Const a b))

basicLength :: Vector (Const a b) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b)

basicUnsafeIndexM :: Vector (Const a b) -> Int -> Box (Const a b)

basicUnsafeCopy :: Mutable Vector s (Const a b) -> Vector (Const a b) -> ST s ()

elemseq :: Vector (Const a b) -> Const a b -> b0 -> b0

Unbox a => MVector MVector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Const a b) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b)

basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Const a b))

basicInitialize :: MVector s (Const a b) -> ST s ()

basicUnsafeReplicate :: Int -> Const a b -> ST s (MVector s (Const a b))

basicUnsafeRead :: MVector s (Const a b) -> Int -> ST s (Const a b)

basicUnsafeWrite :: MVector s (Const a b) -> Int -> Const a b -> ST s ()

basicClear :: MVector s (Const a b) -> ST s ()

basicSet :: MVector s (Const a b) -> Const a b -> ST s ()

basicUnsafeCopy :: MVector s (Const a b) -> MVector s (Const a b) -> ST s ()

basicUnsafeMove :: MVector s (Const a b) -> MVector s (Const a b) -> ST s ()

basicUnsafeGrow :: MVector s (Const a b) -> Int -> ST s (MVector s (Const a b))

Bifoldable (Const :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Const m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Const a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Const a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Const a b -> c #

Bifoldable1 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Bifoldable1

Methods

bifold1 :: Semigroup m => Const m m -> m #

bifoldMap1 :: Semigroup m => (a -> m) -> (b -> m) -> Const a b -> m #

Bifunctor (Const :: Type -> Type -> Type)

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Const a c -> Const b d #

first :: (a -> b) -> Const a c -> Const b c #

second :: (b -> c) -> Const a b -> Const a c #

Bitraversable (Const :: Type -> Type -> Type)

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) #

Eq2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool #

Ord2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering #

Read2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] #

Show2 (Const :: Type -> Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS #

NFData2 (Const :: Type -> Type -> Type)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> Const a b -> () #

Hashable2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt2 :: (Int -> a -> Int) -> (Int -> b -> Int) -> Int -> Const a b -> Int

Biapply (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<<.>>) :: Const (a -> b) (c -> d) -> Const a c -> Const b d

(.>>) :: Const a b -> Const c d -> Const c d

(<<.) :: Const a b -> Const c d -> Const a b

Bitraversable1 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Const a c -> f (Const b d)

bisequence1 :: Apply f => Const (f a) (f b) -> f (Const a b)

Foldable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Eq a => Eq1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool #

Ord a => Ord1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering #

Read a => Read1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] #

Show a => Show1 (Const a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS #

Contravariant (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a0) -> Const a a0 -> Const a a' #

(>$) :: b -> Const a b -> Const a a0 #

Traversable (Const m :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Monoid m => Applicative (Const m :: Type -> Type)

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Functor (Const m :: Type -> Type)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

NFData a => NFData1 (Const a :: Type -> Type)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a0 -> ()) -> Const a a0 -> () #

Hashable a => Hashable1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a0 -> Int) -> Int -> Const a a0 -> Int

Semigroup m => Apply (Const m :: Type -> Type) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Const m (a -> b) -> Const m a -> Const m b

(.>) :: Const m a -> Const m b -> Const m b

(<.) :: Const m a -> Const m b -> Const m a

liftF2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c

(Typeable k, Data a, Typeable b) => Data (Const a b)

Since: base-4.10.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) #

toConstr :: Const a b -> Constr #

dataTypeOf :: Const a b -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) #

IsString a => IsString (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b #

Storable a => Storable (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

sizeOf :: Const a b -> Int #

alignment :: Const a b -> Int #

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) #

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () #

peekByteOff :: Ptr b0 -> Int -> IO (Const a b) #

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () #

peek :: Ptr (Const a b) -> IO (Const a b) #

poke :: Ptr (Const a b) -> Const a b -> IO () #

Monoid a => Monoid (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

Semigroup a => Semigroup (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

Bits a => Bits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(.&.) :: Const a b -> Const a b -> Const a b #

(.|.) :: Const a b -> Const a b -> Const a b #

xor :: Const a b -> Const a b -> Const a b #

complement :: Const a b -> Const a b #

shift :: Const a b -> Int -> Const a b #

rotate :: Const a b -> Int -> Const a b #

zeroBits :: Const a b #

bit :: Int -> Const a b #

setBit :: Const a b -> Int -> Const a b #

clearBit :: Const a b -> Int -> Const a b #

complementBit :: Const a b -> Int -> Const a b #

testBit :: Const a b -> Int -> Bool #

bitSizeMaybe :: Const a b -> Maybe Int #

bitSize :: Const a b -> Int #

isSigned :: Const a b -> Bool #

shiftL :: Const a b -> Int -> Const a b #

unsafeShiftL :: Const a b -> Int -> Const a b #

shiftR :: Const a b -> Int -> Const a b #

unsafeShiftR :: Const a b -> Int -> Const a b #

rotateL :: Const a b -> Int -> Const a b #

rotateR :: Const a b -> Int -> Const a b #

popCount :: Const a b -> Int #

FiniteBits a => FiniteBits (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Bounded a => Bounded (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

Enum a => Enum (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Floating a => Floating (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

RealFloat a => RealFloat (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

Generic (Const a b) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Const a b -> Rep (Const a b) x #

to :: Rep (Const a b) x -> Const a b #

Ix a => Ix (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b] #

index :: (Const a b, Const a b) -> Const a b -> Int #

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int #

inRange :: (Const a b, Const a b) -> Const a b -> Bool #

rangeSize :: (Const a b, Const a b) -> Int #

unsafeRangeSize :: (Const a b, Const a b) -> Int #

Num a => Num (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

Read a => Read (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Fractional a => Fractional (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Integral a => Integral (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

Real a => Real (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

RealFrac a => RealFrac (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

Show a => Show (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS #

show :: Const a b -> String #

showList :: [Const a b] -> ShowS #

NFData a => NFData (Const a b)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Const a b -> () #

Eq a => Eq (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Ord a => Ord (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering #

(<) :: Const a b -> Const a b -> Bool #

(<=) :: Const a b -> Const a b -> Bool #

(>) :: Const a b -> Const a b -> Bool #

(>=) :: Const a b -> Const a b -> Bool #

max :: Const a b -> Const a b -> Const a b #

min :: Const a b -> Const a b -> Const a b #

Hashable a => Hashable (Const a b) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Const a b -> Int

hash :: Const a b -> Int

Wrapped (Const a x) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Const a x) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Const a x) = a

Methods

_Wrapped' :: Iso' (Const a x) (Unwrapped (Const a x)) #

Unbox a => Unbox (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Const a' x' => Rewrapped (Const a x) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
newtype MVector s (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Const a b) = MV_Const (MVector s a)
type Rep (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Unwrapped (Const a x) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Const a x) = a
newtype Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Const a b) = V_Const (Vector a)

union :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n #

data Dynamic a #

Constructors

Dynamic 

Fields

Instances

Instances details
Functor Dynamic 
Instance details

Defined in Data.Active

Methods

fmap :: (a -> b) -> Dynamic a -> Dynamic b #

(<$) :: a -> Dynamic b -> Dynamic a #

Apply Dynamic 
Instance details

Defined in Data.Active

Methods

(<.>) :: Dynamic (a -> b) -> Dynamic a -> Dynamic b

(.>) :: Dynamic a -> Dynamic b -> Dynamic b

(<.) :: Dynamic a -> Dynamic b -> Dynamic a

liftF2 :: (a -> b -> c) -> Dynamic a -> Dynamic b -> Dynamic c

Semigroup a => Semigroup (Dynamic a) 
Instance details

Defined in Data.Active

Methods

(<>) :: Dynamic a -> Dynamic a -> Dynamic a #

sconcat :: NonEmpty (Dynamic a) -> Dynamic a #

stimes :: Integral b => b -> Dynamic a -> Dynamic a #

newtype Identity a #

Identity functor and monad. (a non-strict monad)

Since: base-4.8.0.0

Constructors

Identity 

Fields

Instances

Instances details
Representable Identity 
Instance details

Defined in Data.Functor.Rep

Associated Types

type Rep Identity 
Instance details

Defined in Data.Functor.Rep

type Rep Identity = ()

Methods

tabulate :: (Rep Identity -> a) -> Identity a

index :: Identity a -> Rep Identity -> a

MonadFix Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

mfix :: (a -> Identity a) -> Identity a #

MonadZip Identity

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Identity a -> Identity b -> Identity (a, b) #

mzipWith :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

munzip :: Identity (a, b) -> (Identity a, Identity b) #

Foldable Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fold :: Monoid m => Identity m -> m #

foldMap :: Monoid m => (a -> m) -> Identity a -> m #

foldMap' :: Monoid m => (a -> m) -> Identity a -> m #

foldr :: (a -> b -> b) -> b -> Identity a -> b #

foldr' :: (a -> b -> b) -> b -> Identity a -> b #

foldl :: (b -> a -> b) -> b -> Identity a -> b #

foldl' :: (b -> a -> b) -> b -> Identity a -> b #

foldr1 :: (a -> a -> a) -> Identity a -> a #

foldl1 :: (a -> a -> a) -> Identity a -> a #

toList :: Identity a -> [a] #

null :: Identity a -> Bool #

length :: Identity a -> Int #

elem :: Eq a => a -> Identity a -> Bool #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

sum :: Num a => Identity a -> a #

product :: Num a => Identity a -> a #

Foldable1 Identity

Since: base-4.18.0.0

Instance details

Defined in Data.Foldable1

Methods

fold1 :: Semigroup m => Identity m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Identity a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Identity a -> m #

toNonEmpty :: Identity a -> NonEmpty a #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

head :: Identity a -> a #

last :: Identity a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Identity a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Identity a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Identity a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Identity a -> b #

Eq1 Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a -> b -> Bool) -> Identity a -> Identity b -> Bool #

Ord1 Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a -> b -> Ordering) -> Identity a -> Identity b -> Ordering #

Read1 Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Identity a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Identity a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Identity a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Identity a] #

Show1 Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Identity a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Identity a] -> ShowS #

Traversable Identity

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Applicative Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

pure :: a -> Identity a #

(<*>) :: Identity (a -> b) -> Identity a -> Identity b #

liftA2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

(*>) :: Identity a -> Identity b -> Identity b #

(<*) :: Identity a -> Identity b -> Identity a #

Functor Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

Monad Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b #

(>>) :: Identity a -> Identity b -> Identity b #

return :: a -> Identity a #

NFData1 Identity

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Identity a -> () #

TemplateMonad Identity 
Instance details

Defined in Text.DocTemplates.Internal

Hashable1 Identity 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Identity a -> Int

Settable Identity 
Instance details

Defined in Control.Lens.Internal.Setter

Methods

untainted :: Identity a -> a

untaintedDot :: Profunctor p => p a (Identity b) -> p a b

taintedDot :: Profunctor p => p a b -> p a (Identity b)

Affine Identity 
Instance details

Defined in Linear.Affine

Associated Types

type Diff Identity 
Instance details

Defined in Linear.Affine

Methods

(.-.) :: Num a => Identity a -> Identity a -> Diff Identity a #

(.+^) :: Num a => Identity a -> Diff Identity a -> Identity a #

(.-^) :: Num a => Identity a -> Diff Identity a -> Identity a #

Metric Identity 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => Identity a -> Identity a -> a #

quadrance :: Num a => Identity a -> a #

qd :: Num a => Identity a -> Identity a -> a #

distance :: Floating a => Identity a -> Identity a -> a #

norm :: Floating a => Identity a -> a #

signorm :: Floating a => Identity a -> Identity a #

R1 Identity 
Instance details

Defined in Linear.V1

Methods

_x :: Lens' (Identity a) a #

Additive Identity 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Identity a #

(^+^) :: Num a => Identity a -> Identity a -> Identity a #

(^-^) :: Num a => Identity a -> Identity a -> Identity a #

lerp :: Num a => a -> Identity a -> Identity a -> Identity a #

liftU2 :: (a -> a -> a) -> Identity a -> Identity a -> Identity a #

liftI2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

Apply Identity 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Identity (a -> b) -> Identity a -> Identity b

(.>) :: Identity a -> Identity b -> Identity b

(<.) :: Identity a -> Identity b -> Identity a

liftF2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c

Bind Identity 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: Identity a -> (a -> Identity b) -> Identity b

join :: Identity (Identity a) -> Identity a

Traversable1 Identity 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Identity a -> f (Identity b) #

sequence1 :: Apply f => Identity (f b) -> f (Identity b)

Generic1 Identity 
Instance details

Defined in Data.Functor.Identity

Associated Types

type Rep1 Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

type Rep1 Identity = D1 ('MetaData "Identity" "Data.Functor.Identity" "base" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

Methods

from1 :: Identity a -> Rep1 Identity a #

to1 :: Rep1 Identity a -> Identity a #

FoldableWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Identity a -> m #

ifoldMap' :: Monoid m => (() -> a -> m) -> Identity a -> m #

ifoldr :: (() -> a -> b -> b) -> b -> Identity a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Identity a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Identity a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Identity a -> b #

FunctorWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Identity a -> Identity b #

TraversableWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Identity a -> f (Identity b) #

Cosieve ReifiedGetter Identity 
Instance details

Defined in Control.Lens.Reified

Methods

cosieve :: ReifiedGetter a b -> Identity a -> b

Sieve ReifiedGetter Identity 
Instance details

Defined in Control.Lens.Reified

Methods

sieve :: ReifiedGetter a b -> a -> Identity b

Unbox a => Vector Vector (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Identity a) -> ST s (Vector (Identity a))

basicUnsafeThaw :: Vector (Identity a) -> ST s (Mutable Vector s (Identity a))

basicLength :: Vector (Identity a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Identity a) -> Vector (Identity a)

basicUnsafeIndexM :: Vector (Identity a) -> Int -> Box (Identity a)

basicUnsafeCopy :: Mutable Vector s (Identity a) -> Vector (Identity a) -> ST s ()

elemseq :: Vector (Identity a) -> Identity a -> b -> b

Unbox a => MVector MVector (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Data a => Data (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) #

toConstr :: Identity a -> Constr #

dataTypeOf :: Identity a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) #

gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) #

IsString a => IsString (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.String

Methods

fromString :: String -> Identity a #

Storable a => Storable (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

sizeOf :: Identity a -> Int #

alignment :: Identity a -> Int #

peekElemOff :: Ptr (Identity a) -> Int -> IO (Identity a) #

pokeElemOff :: Ptr (Identity a) -> Int -> Identity a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Identity a) #

pokeByteOff :: Ptr b -> Int -> Identity a -> IO () #

peek :: Ptr (Identity a) -> IO (Identity a) #

poke :: Ptr (Identity a) -> Identity a -> IO () #

Monoid a => Monoid (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Semigroup a => Semigroup (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Bits a => Bits (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

FiniteBits a => FiniteBits (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Bounded a => Bounded (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Enum a => Enum (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Floating a => Floating (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

RealFloat a => RealFloat (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Generic (Identity a) 
Instance details

Defined in Data.Functor.Identity

Associated Types

type Rep (Identity a)

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

type Rep (Identity a) = D1 ('MetaData "Identity" "Data.Functor.Identity" "base" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Ix a => Ix (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Num a => Num (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Read a => Read (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Fractional a => Fractional (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Integral a => Integral (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Real a => Real (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

toRational :: Identity a -> Rational #

RealFrac a => RealFrac (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) #

truncate :: Integral b => Identity a -> b #

round :: Integral b => Identity a -> b #

ceiling :: Integral b => Identity a -> b #

floor :: Integral b => Identity a -> b #

Show a => Show (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

showsPrec :: Int -> Identity a -> ShowS #

show :: Identity a -> String #

showList :: [Identity a] -> ShowS #

Binary a => Binary (Identity a) 
Instance details

Defined in Data.Binary.Class

Methods

put :: Identity a -> Put #

get :: Get (Identity a) #

putList :: [Identity a] -> Put #

NFData a => NFData (Identity a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Identity a -> () #

Eq a => Eq (Identity a)

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(==) :: Identity a -> Identity a -> Bool #

(/=) :: Identity a -> Identity a -> Bool #

Ord a => Ord (Identity a)

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

compare :: Identity a -> Identity a -> Ordering #

(<) :: Identity a -> Identity a -> Bool #

(<=) :: Identity a -> Identity a -> Bool #

(>) :: Identity a -> Identity a -> Bool #

(>=) :: Identity a -> Identity a -> Bool #

max :: Identity a -> Identity a -> Identity a #

min :: Identity a -> Identity a -> Identity a #

Hashable a => Hashable (Identity a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Identity a -> Int

hash :: Identity a -> Int

Ixed (Identity a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Identity a) -> Traversal' (Identity a) (IxValue (Identity a)) #

Wrapped (Identity a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Identity a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Identity a) = a
Unbox a => Unbox (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ Identity b => Rewrapped (Identity a) t 
Instance details

Defined in Control.Lens.Wrapped

Each (Identity a) (Identity b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Identity a) (Identity b) a b #

Field1 (Identity a) (Identity b) a b 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (Identity a) (Identity b) a b #

type Rep Identity 
Instance details

Defined in Data.Functor.Rep

type Rep Identity = ()
type Diff Identity 
Instance details

Defined in Linear.Affine

type Rep1 Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

type Rep1 Identity = D1 ('MetaData "Identity" "Data.Functor.Identity" "base" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Identity a) = MV_Identity (MVector s a)
type Rep (Identity a)

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

type Rep (Identity a) = D1 ('MetaData "Identity" "Data.Functor.Identity" "base" 'True) (C1 ('MetaCons "Identity" 'PrefixI 'True) (S1 ('MetaSel ('Just "runIdentity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Index (Identity a) 
Instance details

Defined in Control.Lens.At

type Index (Identity a) = ()
type IxValue (Identity a) 
Instance details

Defined in Control.Lens.At

type IxValue (Identity a) = a
type Unwrapped (Identity a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Identity a) = a
newtype Vector (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Identity a) = V_Identity (Vector a)

(<|) :: Cons s s a a => a -> s -> s #

cons :: Cons s s a a => a -> s -> s #

newtype WrappedMonoid m #

Provide a Semigroup for an arbitrary Monoid.

NOTE: This is not needed anymore since Semigroup became a superclass of Monoid in base-4.11 and this newtype be deprecated at some point in the future.

Constructors

WrapMonoid 

Fields

Instances

Instances details
NFData1 WrappedMonoid

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> WrappedMonoid a -> () #

Generic1 WrappedMonoid 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 WrappedMonoid

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 WrappedMonoid = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
Unbox a => Vector Vector (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Data m => Data (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) #

toConstr :: WrappedMonoid m -> Constr #

dataTypeOf :: WrappedMonoid m -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) #

gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u #

gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

Monoid m => Monoid (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Monoid m => Semigroup (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Bounded m => Bounded (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Enum a => Enum (WrappedMonoid a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Generic (WrappedMonoid m) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (WrappedMonoid m) = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)))
Read m => Read (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show m => Show (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Binary m => Binary (WrappedMonoid m)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

NFData m => NFData (WrappedMonoid m)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: WrappedMonoid m -> () #

Eq m => Eq (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Ord m => Ord (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Hashable a => Hashable (WrappedMonoid a) 
Instance details

Defined in Data.Hashable.Class

Wrapped (WrappedMonoid a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedMonoid a) 
Instance details

Defined in Control.Lens.Wrapped

Unbox a => Unbox (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

t ~ WrappedMonoid b => Rewrapped (WrappedMonoid a) t 
Instance details

Defined in Control.Lens.Wrapped

type Rep1 WrappedMonoid

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep1 WrappedMonoid = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))
newtype MVector s (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

type Rep (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

type Rep (WrappedMonoid m) = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)))
type Unwrapped (WrappedMonoid a) 
Instance details

Defined in Control.Lens.Wrapped

newtype Vector (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

type ArgMax a b = Max (Arg a b) #

Examples

Expand
>>> Max (Arg 0 ()) <> Max (Arg 1 ())
Max {getMax = Arg 1 ()}
>>> maximum [ Arg (length name) name | name <- ["violencia", "lea", "pixie"]]
Arg 9 "violencia"

type ArgMin a b = Min (Arg a b) #

Examples

Expand
>>> Min (Arg 0 ()) <> Min (Arg 1 ())
Min {getMin = Arg 0 ()}
>>> minimum [ Arg (length name) name | name <- ["violencia", "lea", "pixie"]]
Arg 3 "lea"

data Arg a b #

Arg isn't itself a Semigroup in its own right, but it can be placed inside Min and Max to compute an arg min or arg max.

Examples

Expand
>>> minimum [ Arg (x * x) x | x <- [-10 .. 10] ]
Arg 0 0
>>> maximum [ Arg (-0.2*x^2 + 1.5*x + 1) x | x <- [-10 .. 10] ]
Arg 3.8 4.0
>>> minimum [ Arg (-0.2*x^2 + 1.5*x + 1) x | x <- [-10 .. 10] ]
Arg (-34.0) (-10.0)

Constructors

Arg 

Fields

  • a

    The argument used for comparisons in Eq and Ord.

  • b

    The "value" exposed via the Functor, Foldable etc. instances.

Instances

Instances details
Bifoldable Arg

Since: base-4.10.0.0

Instance details

Defined in Data.Semigroup

Methods

bifold :: Monoid m => Arg m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Arg a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Arg a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Arg a b -> c #

Bifoldable1 Arg 
Instance details

Defined in Data.Bifoldable1

Methods

bifold1 :: Semigroup m => Arg m m -> m #

bifoldMap1 :: Semigroup m => (a -> m) -> (b -> m) -> Arg a b -> m #

Bifunctor Arg

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

bimap :: (a -> b) -> (c -> d) -> Arg a c -> Arg b d #

first :: (a -> b) -> Arg a c -> Arg b c #

second :: (b -> c) -> Arg a b -> Arg a c #

Bitraversable Arg

Since: base-4.10.0.0

Instance details

Defined in Data.Semigroup

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Arg a b -> f (Arg c d) #

NFData2 Arg

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> Arg a b -> () #

Biapply Arg 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<<.>>) :: Arg (a -> b) (c -> d) -> Arg a c -> Arg b d

(.>>) :: Arg a b -> Arg c d -> Arg c d

(<<.) :: Arg a b -> Arg c d -> Arg a b

Bitraversable1 Arg 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Arg a c -> f (Arg b d)

bisequence1 :: Apply f => Arg (f a) (f b) -> f (Arg a b)

Generic1 (Arg a :: Type -> Type) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 (Arg a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

from1 :: Arg a a0 -> Rep1 (Arg a) a0 #

to1 :: Rep1 (Arg a) a0 -> Arg a a0 #

(Unbox a, Unbox b) => Vector Vector (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Arg a b) -> ST s (Vector (Arg a b))

basicUnsafeThaw :: Vector (Arg a b) -> ST s (Mutable Vector s (Arg a b))

basicLength :: Vector (Arg a b) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Arg a b) -> Vector (Arg a b)

basicUnsafeIndexM :: Vector (Arg a b) -> Int -> Box (Arg a b)

basicUnsafeCopy :: Mutable Vector s (Arg a b) -> Vector (Arg a b) -> ST s ()

elemseq :: Vector (Arg a b) -> Arg a b -> b0 -> b0

(Unbox a, Unbox b) => MVector MVector (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Arg a b) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Arg a b) -> MVector s (Arg a b)

basicOverlaps :: MVector s (Arg a b) -> MVector s (Arg a b) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Arg a b))

basicInitialize :: MVector s (Arg a b) -> ST s ()

basicUnsafeReplicate :: Int -> Arg a b -> ST s (MVector s (Arg a b))

basicUnsafeRead :: MVector s (Arg a b) -> Int -> ST s (Arg a b)

basicUnsafeWrite :: MVector s (Arg a b) -> Int -> Arg a b -> ST s ()

basicClear :: MVector s (Arg a b) -> ST s ()

basicSet :: MVector s (Arg a b) -> Arg a b -> ST s ()

basicUnsafeCopy :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s ()

basicUnsafeMove :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s ()

basicUnsafeGrow :: MVector s (Arg a b) -> Int -> ST s (MVector s (Arg a b))

Foldable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Arg a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m #

foldMap' :: Monoid m => (a0 -> m) -> Arg a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 #

toList :: Arg a a0 -> [a0] #

null :: Arg a a0 -> Bool #

length :: Arg a a0 -> Int #

elem :: Eq a0 => a0 -> Arg a a0 -> Bool #

maximum :: Ord a0 => Arg a a0 -> a0 #

minimum :: Ord a0 => Arg a a0 -> a0 #

sum :: Num a0 => Arg a a0 -> a0 #

product :: Num a0 => Arg a a0 -> a0 #

Traversable (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a0 -> f b) -> Arg a a0 -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a0) -> f (Arg a a0) #

mapM :: Monad m => (a0 -> m b) -> Arg a a0 -> m (Arg a b) #

sequence :: Monad m => Arg a (m a0) -> m (Arg a a0) #

Functor (Arg a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a0 -> b) -> Arg a a0 -> Arg a b #

(<$) :: a0 -> Arg a b -> Arg a a0 #

NFData a => NFData1 (Arg a)

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a0 -> ()) -> Arg a a0 -> () #

(Data a, Data b) => Data (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) #

toConstr :: Arg a b -> Constr #

dataTypeOf :: Arg a b -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

Generic (Arg a b) 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

(Read a, Read b) => Read (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

readsPrec :: Int -> ReadS (Arg a b) #

readList :: ReadS [Arg a b] #

readPrec :: ReadPrec (Arg a b) #

readListPrec :: ReadPrec [Arg a b] #

(Show a, Show b) => Show (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Arg a b -> ShowS #

show :: Arg a b -> String #

showList :: [Arg a b] -> ShowS #

(Binary a, Binary b) => Binary (Arg a b)

Since: binary-0.8.4.0

Instance details

Defined in Data.Binary.Class

Methods

put :: Arg a b -> Put #

get :: Get (Arg a b) #

putList :: [Arg a b] -> Put #

(NFData a, NFData b) => NFData (Arg a b)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Arg a b -> () #

Eq a => Eq (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Arg a b -> Arg a b -> Bool #

(/=) :: Arg a b -> Arg a b -> Bool #

Ord a => Ord (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

compare :: Arg a b -> Arg a b -> Ordering #

(<) :: Arg a b -> Arg a b -> Bool #

(<=) :: Arg a b -> Arg a b -> Bool #

(>) :: Arg a b -> Arg a b -> Bool #

(>=) :: Arg a b -> Arg a b -> Bool #

max :: Arg a b -> Arg a b -> Arg a b #

min :: Arg a b -> Arg a b -> Arg a b #

Hashable a => Hashable (Arg a b) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Arg a b -> Int

hash :: Arg a b -> Int

(Unbox a, Unbox b) => Unbox (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

type Rep1 (Arg a :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

newtype MVector s (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Arg a b) = MV_Arg (MVector s (a, b))
type Rep (Arg a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

newtype Vector (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Arg a b) = V_Arg (Vector (a, b))

cycle1 :: Semigroup m => m -> m #

A generalization of cycle to an arbitrary Semigroup. May fail to terminate for some values in some semigroups.

Examples

Expand
>>> take 10 $ cycle1 [1, 2, 3]
[1,2,3,1,2,3,1,2,3,1]
>>> cycle1 (Right 1)
Right 1
>>> cycle1 (Left 1)
* hangs forever *

diff :: Semigroup m => m -> Endo m #

This lets you use a difference list of a Semigroup as a Monoid.

Examples

Expand
let hello = diff "Hello, "
>>> appEndo hello "World!"
"Hello, World!"
>>> appEndo (hello <> mempty) "World!"
"Hello, World!"
>>> appEndo (mempty <> hello) "World!"
"Hello, World!"
let world = diff "World"
let excl = diff "!"
>>> appEndo (hello <> (world <> excl)) mempty
"Hello, World!"
>>> appEndo ((hello <> world) <> excl) mempty
"Hello, World!"

mtimesDefault :: (Integral b, Monoid a) => b -> a -> a #

Repeat a value n times.

mtimesDefault n a = a <> a <> ... <> a  -- using <> (n-1) times

In many cases, stimes 0 a for a Monoid will produce mempty. However, there are situations when it cannot do so. In particular, the following situation is fairly common:

data T a = ...

class Constraint1 a
class Constraint1 a => Constraint2 a
instance Constraint1 a => Semigroup (T a)
instance Constraint2 a => Monoid (T a)

Since Constraint1 is insufficient to implement mempty, stimes for T a cannot do so.

When working with such a type, or when working polymorphically with Semigroup instances, mtimesDefault should be used when the multiplier might be zero. It is implemented using stimes when the multiplier is nonzero and mempty when it is zero.

Examples

Expand
>>> mtimesDefault 0 "bark"
[]
>>> mtimesDefault 3 "meow"
"meowmeowmeow"

conjugate :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Transformation v n -> Transformation v n #

class Contravariant (f :: Type -> Type) where #

The class of contravariant functors.

Whereas in Haskell, one can think of a Functor as containing or producing values, a contravariant functor is a functor that can be thought of as consuming values.

As an example, consider the type of predicate functions a -> Bool. One such predicate might be negative x = x < 0, which classifies integers as to whether they are negative. However, given this predicate, we can re-use it in other situations, providing we have a way to map values to integers. For instance, we can use the negative predicate on a person's bank balance to work out if they are currently overdrawn:

newtype Predicate a = Predicate { getPredicate :: a -> Bool }

instance Contravariant Predicate where
  contramap :: (a' -> a) -> (Predicate a -> Predicate a')
  contramap f (Predicate p) = Predicate (p . f)
                                         |   `- First, map the input...
                                         `----- then apply the predicate.

overdrawn :: Predicate Person
overdrawn = contramap personBankBalance negative

Any instance should be subject to the following laws:

Identity
contramap id = id
Composition
contramap (g . f) = contramap f . contramap g

Note, that the second law follows from the free theorem of the type of contramap and the first law, so you need only check that the former condition holds.

Minimal complete definition

contramap

Methods

contramap :: (a' -> a) -> f a -> f a' #

(>$) :: b -> f b -> f a infixl 4 #

Replace all locations in the output with the same value. The default definition is contramap . const, but this may be overridden with a more efficient version.

Instances

Instances details
Contravariant Comparison

A Comparison is a Contravariant Functor, because contramap can apply its function argument to each input of the comparison function.

Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Comparison a -> Comparison a' #

(>$) :: b -> Comparison b -> Comparison a #

Contravariant Equivalence

Equivalence relations are Contravariant, because you can apply the contramapped function to each input to the equivalence relation.

Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Equivalence a -> Equivalence a' #

(>$) :: b -> Equivalence b -> Equivalence a #

Contravariant Predicate

A Predicate is a Contravariant Functor, because contramap can apply its function argument to the input of the predicate.

Without newtypes contramap f equals precomposing with f (= (. f)).

contramap :: (a' -> a) -> (Predicate a -> Predicate a')
contramap f (Predicate g) = Predicate (g . f)
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Predicate a -> Predicate a' #

(>$) :: b -> Predicate b -> Predicate a #

Contravariant (Op a) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a0) -> Op a a0 -> Op a a' #

(>$) :: b -> Op a b -> Op a a0 #

Contravariant (Proxy :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Proxy a -> Proxy a' #

(>$) :: b -> Proxy b -> Proxy a #

Contravariant (U1 :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> U1 a -> U1 a' #

(>$) :: b -> U1 b -> U1 a #

Contravariant (V1 :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> V1 a -> V1 a' #

(>$) :: b -> V1 b -> V1 a #

Contravariant f => Contravariant (Indexing f) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

contramap :: (a' -> a) -> Indexing f a -> Indexing f a' #

(>$) :: b -> Indexing f b -> Indexing f a #

Contravariant f => Contravariant (Indexing64 f) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

contramap :: (a' -> a) -> Indexing64 f a -> Indexing64 f a' #

(>$) :: b -> Indexing64 f b -> Indexing64 f a #

Contravariant m => Contravariant (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

contramap :: (a' -> a) -> MaybeT m a -> MaybeT m a' #

(>$) :: b -> MaybeT m b -> MaybeT m a #

Contravariant (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a0) -> Const a a0 -> Const a a' #

(>$) :: b -> Const a b -> Const a a0 #

Contravariant f => Contravariant (Alt f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Alt f a -> Alt f a' #

(>$) :: b -> Alt f b -> Alt f a #

Contravariant f => Contravariant (Rec1 f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Rec1 f a -> Rec1 f a' #

(>$) :: b -> Rec1 f b -> Rec1 f a #

Contravariant f => Contravariant (AlongsideLeft f b) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

contramap :: (a' -> a) -> AlongsideLeft f b a -> AlongsideLeft f b a' #

(>$) :: b0 -> AlongsideLeft f b b0 -> AlongsideLeft f b a #

Contravariant f => Contravariant (AlongsideRight f a) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

contramap :: (a' -> a0) -> AlongsideRight f a a0 -> AlongsideRight f a a' #

(>$) :: b -> AlongsideRight f a b -> AlongsideRight f a a0 #

Contravariant f => Contravariant (Backwards f)

Derived instance.

Instance details

Defined in Control.Applicative.Backwards

Methods

contramap :: (a' -> a) -> Backwards f a -> Backwards f a' #

(>$) :: b -> Backwards f b -> Backwards f a #

Contravariant m => Contravariant (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

contramap :: (a' -> a) -> ExceptT e m a -> ExceptT e m a' #

(>$) :: b -> ExceptT e m b -> ExceptT e m a #

Contravariant f => Contravariant (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

contramap :: (a' -> a) -> IdentityT f a -> IdentityT f a' #

(>$) :: b -> IdentityT f b -> IdentityT f a #

Contravariant m => Contravariant (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

contramap :: (a' -> a) -> ReaderT r m a -> ReaderT r m a' #

(>$) :: b -> ReaderT r m b -> ReaderT r m a #

Contravariant m => Contravariant (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

contramap :: (a' -> a) -> StateT s m a -> StateT s m a' #

(>$) :: b -> StateT s m b -> StateT s m a #

Contravariant m => Contravariant (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Strict

Methods

contramap :: (a' -> a) -> StateT s m a -> StateT s m a' #

(>$) :: b -> StateT s m b -> StateT s m a #

Contravariant m => Contravariant (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

contramap :: (a' -> a) -> WriterT w m a -> WriterT w m a' #

(>$) :: b -> WriterT w m b -> WriterT w m a #

Contravariant m => Contravariant (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Strict

Methods

contramap :: (a' -> a) -> WriterT w m a -> WriterT w m a' #

(>$) :: b -> WriterT w m b -> WriterT w m a #

Contravariant (Constant a :: Type -> Type) 
Instance details

Defined in Data.Functor.Constant

Methods

contramap :: (a' -> a0) -> Constant a a0 -> Constant a a' #

(>$) :: b -> Constant a b -> Constant a a0 #

Contravariant f => Contravariant (Reverse f)

Derived instance.

Instance details

Defined in Data.Functor.Reverse

Methods

contramap :: (a' -> a) -> Reverse f a -> Reverse f a' #

(>$) :: b -> Reverse f b -> Reverse f a #

(Contravariant f, Contravariant g) => Contravariant (Product f g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Product f g a -> Product f g a' #

(>$) :: b -> Product f g b -> Product f g a #

(Contravariant f, Contravariant g) => Contravariant (Sum f g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Sum f g a -> Sum f g a' #

(>$) :: b -> Sum f g b -> Sum f g a #

(Contravariant f, Contravariant g) => Contravariant (f :*: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> (f :*: g) a -> (f :*: g) a' #

(>$) :: b -> (f :*: g) b -> (f :*: g) a #

(Contravariant f, Contravariant g) => Contravariant (f :+: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> (f :+: g) a -> (f :+: g) a' #

(>$) :: b -> (f :+: g) b -> (f :+: g) a #

Contravariant (K1 i c :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> K1 i c a -> K1 i c a' #

(>$) :: b -> K1 i c b -> K1 i c a #

Contravariant (Forget r a :: Type -> Type) 
Instance details

Defined in Data.Profunctor.Types

Methods

contramap :: (a' -> a0) -> Forget r a a0 -> Forget r a a' #

(>$) :: b -> Forget r a b -> Forget r a a0 #

Contravariant f => Contravariant (Star f a) 
Instance details

Defined in Data.Profunctor.Types

Methods

contramap :: (a' -> a0) -> Star f a a0 -> Star f a a' #

(>$) :: b -> Star f a b -> Star f a a0 #

(Functor f, Contravariant g) => Contravariant (Compose f g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Compose f g a -> Compose f g a' #

(>$) :: b -> Compose f g b -> Compose f g a #

(Functor f, Contravariant g) => Contravariant (f :.: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> (f :.: g) a -> (f :.: g) a' #

(>$) :: b -> (f :.: g) b -> (f :.: g) a #

Contravariant f => Contravariant (M1 i c f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> M1 i c f a -> M1 i c f a' #

(>$) :: b -> M1 i c f b -> M1 i c f a #

(Profunctor p, Contravariant g) => Contravariant (BazaarT p g a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

contramap :: (a' -> a0) -> BazaarT p g a b a0 -> BazaarT p g a b a' #

(>$) :: b0 -> BazaarT p g a b b0 -> BazaarT p g a b a0 #

(Profunctor p, Contravariant g) => Contravariant (BazaarT1 p g a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

contramap :: (a' -> a0) -> BazaarT1 p g a b a0 -> BazaarT1 p g a b a' #

(>$) :: b0 -> BazaarT1 p g a b b0 -> BazaarT1 p g a b a0 #

(Profunctor p, Contravariant g) => Contravariant (PretextT p g a b) 
Instance details

Defined in Control.Lens.Internal.Context

Methods

contramap :: (a' -> a0) -> PretextT p g a b a0 -> PretextT p g a b a' #

(>$) :: b0 -> PretextT p g a b b0 -> PretextT p g a b a0 #

Contravariant f => Contravariant (TakingWhile p f a b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

contramap :: (a' -> a0) -> TakingWhile p f a b a0 -> TakingWhile p f a b a' #

(>$) :: b0 -> TakingWhile p f a b b0 -> TakingWhile p f a b a0 #

Contravariant m => Contravariant (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.Lazy

Methods

contramap :: (a' -> a) -> RWST r w s m a -> RWST r w s m a' #

(>$) :: b -> RWST r w s m b -> RWST r w s m a #

Contravariant m => Contravariant (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.Strict

Methods

contramap :: (a' -> a) -> RWST r w s m a -> RWST r w s m a' #

(>$) :: b -> RWST r w s m b -> RWST r w s m a #

phantom :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Monoid' m, Enveloped a, Traced a) => a -> QDiagram b v n m #

size :: (V a ~ v, N a ~ n, Enveloped a, HasBasis v) => a -> v n #

(#.) :: Coercible c b => (b -> c) -> (a -> b) -> a -> c #

atMost :: Ord n => Measure n -> Measure n -> Measure n #

newtype E (t :: Type -> Type) #

Constructors

E 

Fields

Instances

Instances details
FoldableWithIndex (E Plucker) Plucker 
Instance details

Defined in Linear.Plucker

Methods

ifoldMap :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m #

ifoldMap' :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m #

ifoldr :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b #

ifoldl :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b #

ifoldr' :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b #

ifoldl' :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b #

FoldableWithIndex (E Quaternion) Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

ifoldMap :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m #

ifoldMap' :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m #

ifoldr :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b #

ifoldl :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b #

ifoldr' :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b #

ifoldl' :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b #

FoldableWithIndex (E V0) V0 
Instance details

Defined in Linear.V0

Methods

ifoldMap :: Monoid m => (E V0 -> a -> m) -> V0 a -> m #

ifoldMap' :: Monoid m => (E V0 -> a -> m) -> V0 a -> m #

ifoldr :: (E V0 -> a -> b -> b) -> b -> V0 a -> b #

ifoldl :: (E V0 -> b -> a -> b) -> b -> V0 a -> b #

ifoldr' :: (E V0 -> a -> b -> b) -> b -> V0 a -> b #

ifoldl' :: (E V0 -> b -> a -> b) -> b -> V0 a -> b #

FoldableWithIndex (E V1) V1 
Instance details

Defined in Linear.V1

Methods

ifoldMap :: Monoid m => (E V1 -> a -> m) -> V1 a -> m #

ifoldMap' :: Monoid m => (E V1 -> a -> m) -> V1 a -> m #

ifoldr :: (E V1 -> a -> b -> b) -> b -> V1 a -> b #

ifoldl :: (E V1 -> b -> a -> b) -> b -> V1 a -> b #

ifoldr' :: (E V1 -> a -> b -> b) -> b -> V1 a -> b #

ifoldl' :: (E V1 -> b -> a -> b) -> b -> V1 a -> b #

FoldableWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

ifoldMap :: Monoid m => (E V2 -> a -> m) -> V2 a -> m #

ifoldMap' :: Monoid m => (E V2 -> a -> m) -> V2 a -> m #

ifoldr :: (E V2 -> a -> b -> b) -> b -> V2 a -> b #

ifoldl :: (E V2 -> b -> a -> b) -> b -> V2 a -> b #

ifoldr' :: (E V2 -> a -> b -> b) -> b -> V2 a -> b #

ifoldl' :: (E V2 -> b -> a -> b) -> b -> V2 a -> b #

FoldableWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

ifoldMap :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifoldMap' :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifoldr :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

ifoldr' :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl' :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

FoldableWithIndex (E V4) V4 
Instance details

Defined in Linear.V4

Methods

ifoldMap :: Monoid m => (E V4 -> a -> m) -> V4 a -> m #

ifoldMap' :: Monoid m => (E V4 -> a -> m) -> V4 a -> m #

ifoldr :: (E V4 -> a -> b -> b) -> b -> V4 a -> b #

ifoldl :: (E V4 -> b -> a -> b) -> b -> V4 a -> b #

ifoldr' :: (E V4 -> a -> b -> b) -> b -> V4 a -> b #

ifoldl' :: (E V4 -> b -> a -> b) -> b -> V4 a -> b #

FunctorWithIndex (E Plucker) Plucker 
Instance details

Defined in Linear.Plucker

Methods

imap :: (E Plucker -> a -> b) -> Plucker a -> Plucker b #

FunctorWithIndex (E Quaternion) Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

imap :: (E Quaternion -> a -> b) -> Quaternion a -> Quaternion b #

FunctorWithIndex (E V0) V0 
Instance details

Defined in Linear.V0

Methods

imap :: (E V0 -> a -> b) -> V0 a -> V0 b #

FunctorWithIndex (E V1) V1 
Instance details

Defined in Linear.V1

Methods

imap :: (E V1 -> a -> b) -> V1 a -> V1 b #

FunctorWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

imap :: (E V2 -> a -> b) -> V2 a -> V2 b #

FunctorWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

imap :: (E V3 -> a -> b) -> V3 a -> V3 b #

FunctorWithIndex (E V4) V4 
Instance details

Defined in Linear.V4

Methods

imap :: (E V4 -> a -> b) -> V4 a -> V4 b #

TraversableWithIndex (E Plucker) Plucker 
Instance details

Defined in Linear.Plucker

Methods

itraverse :: Applicative f => (E Plucker -> a -> f b) -> Plucker a -> f (Plucker b) #

TraversableWithIndex (E Quaternion) Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

itraverse :: Applicative f => (E Quaternion -> a -> f b) -> Quaternion a -> f (Quaternion b) #

TraversableWithIndex (E V0) V0 
Instance details

Defined in Linear.V0

Methods

itraverse :: Applicative f => (E V0 -> a -> f b) -> V0 a -> f (V0 b) #

TraversableWithIndex (E V1) V1 
Instance details

Defined in Linear.V1

Methods

itraverse :: Applicative f => (E V1 -> a -> f b) -> V1 a -> f (V1 b) #

TraversableWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

itraverse :: Applicative f => (E V2 -> a -> f b) -> V2 a -> f (V2 b) #

TraversableWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

itraverse :: Applicative f => (E V3 -> a -> f b) -> V3 a -> f (V3 b) #

TraversableWithIndex (E V4) V4 
Instance details

Defined in Linear.V4

Methods

itraverse :: Applicative f => (E V4 -> a -> f b) -> V4 a -> f (V4 b) #

value :: forall m b (v :: Type -> Type) n. Monoid m => m -> QDiagram b v n Any -> QDiagram b v n m #

snoc :: Snoc s s a a => s -> a -> s #

class Backend b (v :: Type -> Type) n where #

Minimal complete definition

renderRTree

Associated Types

data Render b (v :: Type -> Type) n #

type Result b (v :: Type -> Type) n #

data Options b (v :: Type -> Type) n #

Methods

adjustDia :: (Additive v, Monoid' m, Num n) => b -> Options b v n -> QDiagram b v n m -> (Options b v n, Transformation v n, QDiagram b v n m) #

renderRTree :: b -> Options b v n -> RTree b v n Annotation -> Result b v n #

Instances

Instances details
Backend NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

Associated Types

data Render NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

type Result NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

type Result NullBackend v n = ()
data Options NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

SVGFloat n => Backend SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

Associated Types

newtype Render SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n = R (SvgRenderM n)
type Result SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type Result SVG V2 n = Element
data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

Methods

adjustDia :: (Additive V2, Monoid' m, Num n) => SVG -> Options SVG V2 n -> QDiagram SVG V2 n m -> (Options SVG V2 n, Transformation V2 n, QDiagram SVG V2 n m) #

renderRTree :: SVG -> Options SVG V2 n -> RTree SVG V2 n Annotation -> Result SVG V2 n #

newtype Point (f :: Type -> Type) a #

Constructors

P (f a) 

Instances

Instances details
Generic1 (Point f :: Type -> Type) 
Instance details

Defined in Linear.Affine

Associated Types

type Rep1 (Point f :: Type -> Type) 
Instance details

Defined in Linear.Affine

type Rep1 (Point f :: Type -> Type) = D1 ('MetaData "Point" "Linear.Affine" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'True) (C1 ('MetaCons "P" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))

Methods

from1 :: Point f a -> Rep1 (Point f) a #

to1 :: Rep1 (Point f) a -> Point f a #

Unbox (f a) => Vector Vector (Point f a) 
Instance details

Defined in Linear.Affine

Methods

basicUnsafeFreeze :: Mutable Vector s (Point f a) -> ST s (Vector (Point f a))

basicUnsafeThaw :: Vector (Point f a) -> ST s (Mutable Vector s (Point f a))

basicLength :: Vector (Point f a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Point f a) -> Vector (Point f a)

basicUnsafeIndexM :: Vector (Point f a) -> Int -> Box (Point f a)

basicUnsafeCopy :: Mutable Vector s (Point f a) -> Vector (Point f a) -> ST s ()

elemseq :: Vector (Point f a) -> Point f a -> b -> b

Unbox (f a) => MVector MVector (Point f a) 
Instance details

Defined in Linear.Affine

Methods

basicLength :: MVector s (Point f a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Point f a) -> MVector s (Point f a)

basicOverlaps :: MVector s (Point f a) -> MVector s (Point f a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Point f a))

basicInitialize :: MVector s (Point f a) -> ST s ()

basicUnsafeReplicate :: Int -> Point f a -> ST s (MVector s (Point f a))

basicUnsafeRead :: MVector s (Point f a) -> Int -> ST s (Point f a)

basicUnsafeWrite :: MVector s (Point f a) -> Int -> Point f a -> ST s ()

basicClear :: MVector s (Point f a) -> ST s ()

basicSet :: MVector s (Point f a) -> Point f a -> ST s ()

basicUnsafeCopy :: MVector s (Point f a) -> MVector s (Point f a) -> ST s ()

basicUnsafeMove :: MVector s (Point f a) -> MVector s (Point f a) -> ST s ()

basicUnsafeGrow :: MVector s (Point f a) -> Int -> ST s (MVector s (Point f a))

Representable f => Representable (Point f) 
Instance details

Defined in Linear.Affine

Associated Types

type Rep (Point f) 
Instance details

Defined in Linear.Affine

type Rep (Point f) = Rep f

Methods

tabulate :: (Rep (Point f) -> a) -> Point f a

index :: Point f a -> Rep (Point f) -> a

Foldable f => Foldable (Point f) 
Instance details

Defined in Linear.Affine

Methods

fold :: Monoid m => Point f m -> m #

foldMap :: Monoid m => (a -> m) -> Point f a -> m #

foldMap' :: Monoid m => (a -> m) -> Point f a -> m #

foldr :: (a -> b -> b) -> b -> Point f a -> b #

foldr' :: (a -> b -> b) -> b -> Point f a -> b #

foldl :: (b -> a -> b) -> b -> Point f a -> b #

foldl' :: (b -> a -> b) -> b -> Point f a -> b #

foldr1 :: (a -> a -> a) -> Point f a -> a #

foldl1 :: (a -> a -> a) -> Point f a -> a #

toList :: Point f a -> [a] #

null :: Point f a -> Bool #

length :: Point f a -> Int #

elem :: Eq a => a -> Point f a -> Bool #

maximum :: Ord a => Point f a -> a #

minimum :: Ord a => Point f a -> a #

sum :: Num a => Point f a -> a #

product :: Num a => Point f a -> a #

Eq1 f => Eq1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

liftEq :: (a -> b -> Bool) -> Point f a -> Point f b -> Bool #

Ord1 f => Ord1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

liftCompare :: (a -> b -> Ordering) -> Point f a -> Point f b -> Ordering #

Read1 f => Read1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Point f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Point f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Point f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Point f a] #

Show1 f => Show1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Point f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Point f a] -> ShowS #

Traversable f => Traversable (Point f) 
Instance details

Defined in Linear.Affine

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Point f a -> f0 (Point f b) #

sequenceA :: Applicative f0 => Point f (f0 a) -> f0 (Point f a) #

mapM :: Monad m => (a -> m b) -> Point f a -> m (Point f b) #

sequence :: Monad m => Point f (m a) -> m (Point f a) #

Applicative f => Applicative (Point f) 
Instance details

Defined in Linear.Affine

Methods

pure :: a -> Point f a #

(<*>) :: Point f (a -> b) -> Point f a -> Point f b #

liftA2 :: (a -> b -> c) -> Point f a -> Point f b -> Point f c #

(*>) :: Point f a -> Point f b -> Point f b #

(<*) :: Point f a -> Point f b -> Point f a #

Functor f => Functor (Point f) 
Instance details

Defined in Linear.Affine

Methods

fmap :: (a -> b) -> Point f a -> Point f b #

(<$) :: a -> Point f b -> Point f a #

Monad f => Monad (Point f) 
Instance details

Defined in Linear.Affine

Methods

(>>=) :: Point f a -> (a -> Point f b) -> Point f b #

(>>) :: Point f a -> Point f b -> Point f b #

return :: a -> Point f a #

Serial1 f => Serial1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

serializeWith :: MonadPut m => (a -> m ()) -> Point f a -> m ()

deserializeWith :: MonadGet m => m a -> m (Point f a)

HasPhi v => HasPhi (Point v) 
Instance details

Defined in Diagrams.Angle

Methods

_phi :: RealFloat n => Lens' (Point v n) (Angle n) #

HasTheta v => HasTheta (Point v) 
Instance details

Defined in Diagrams.Angle

Methods

_theta :: RealFloat n => Lens' (Point v n) (Angle n) #

(Metric v, OrderedField n) => TrailLike [Point v n] 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V [Point v n]) (N [Point v n])) -> [Point v n] #

HasR v => HasR (Point v) 
Instance details

Defined in Diagrams.TwoD.Types

Methods

_r :: RealFloat n => Lens' (Point v n) n #

Distributive f => Distributive (Point f) 
Instance details

Defined in Linear.Affine

Methods

distribute :: Functor f0 => f0 (Point f a) -> Point f (f0 a)

collect :: Functor f0 => (a -> Point f b) -> f0 a -> Point f (f0 b)

distributeM :: Monad m => m (Point f a) -> Point f (m a)

collectM :: Monad m => (a -> Point f b) -> m a -> Point f (m b)

Hashable1 f => Hashable1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Point f a -> Int

Additive f => Affine (Point f) 
Instance details

Defined in Linear.Affine

Associated Types

type Diff (Point f) 
Instance details

Defined in Linear.Affine

type Diff (Point f) = f

Methods

(.-.) :: Num a => Point f a -> Point f a -> Diff (Point f) a #

(.+^) :: Num a => Point f a -> Diff (Point f) a -> Point f a #

(.-^) :: Num a => Point f a -> Diff (Point f) a -> Point f a #

Metric f => Metric (Point f) 
Instance details

Defined in Linear.Affine

Methods

dot :: Num a => Point f a -> Point f a -> a #

quadrance :: Num a => Point f a -> a #

qd :: Num a => Point f a -> Point f a -> a #

distance :: Floating a => Point f a -> Point f a -> a #

norm :: Floating a => Point f a -> a #

signorm :: Floating a => Point f a -> Point f a #

Finite f => Finite (Point f) 
Instance details

Defined in Linear.Affine

Associated Types

type Size (Point f) 
Instance details

Defined in Linear.Affine

type Size (Point f) = Size f

Methods

toV :: Point f a -> V (Size (Point f)) a

fromV :: V (Size (Point f)) a -> Point f a

R1 f => R1 (Point f) 
Instance details

Defined in Linear.Affine

Methods

_x :: Lens' (Point f a) a #

R2 f => R2 (Point f) 
Instance details

Defined in Linear.Affine

Methods

_y :: Lens' (Point f a) a #

_xy :: Lens' (Point f a) (V2 a) #

R3 f => R3 (Point f) 
Instance details

Defined in Linear.Affine

Methods

_z :: Lens' (Point f a) a #

_xyz :: Lens' (Point f a) (V3 a) #

R4 f => R4 (Point f) 
Instance details

Defined in Linear.Affine

Methods

_w :: Lens' (Point f a) a

_xyzw :: Lens' (Point f a) (V4 a)

Additive f => Additive (Point f) 
Instance details

Defined in Linear.Affine

Methods

zero :: Num a => Point f a #

(^+^) :: Num a => Point f a -> Point f a -> Point f a #

(^-^) :: Num a => Point f a -> Point f a -> Point f a #

lerp :: Num a => a -> Point f a -> Point f a -> Point f a #

liftU2 :: (a -> a -> a) -> Point f a -> Point f a -> Point f a #

liftI2 :: (a -> b -> c) -> Point f a -> Point f b -> Point f c #

Apply f => Apply (Point f) 
Instance details

Defined in Linear.Affine

Methods

(<.>) :: Point f (a -> b) -> Point f a -> Point f b

(.>) :: Point f a -> Point f b -> Point f b

(<.) :: Point f a -> Point f b -> Point f a

liftF2 :: (a -> b -> c) -> Point f a -> Point f b -> Point f c

Bind f => Bind (Point f) 
Instance details

Defined in Linear.Affine

Methods

(>>-) :: Point f a -> (a -> Point f b) -> Point f b

join :: Point f (Point f a) -> Point f a

Functor v => Cosieve (Query v) (Point v) 
Instance details

Defined in Diagrams.Core.Query

Methods

cosieve :: Query v a b -> Point v a -> b

(Typeable f, Typeable a, Data (f a)) => Data (Point f a) 
Instance details

Defined in Linear.Affine

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Point f a -> c (Point f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Point f a) #

toConstr :: Point f a -> Constr #

dataTypeOf :: Point f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Point f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Point f a)) #

gmapT :: (forall b. Data b => b -> b) -> Point f a -> Point f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Point f a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Point f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Point f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Point f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Point f a -> m (Point f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Point f a -> m (Point f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Point f a -> m (Point f a) #

Storable (f a) => Storable (Point f a) 
Instance details

Defined in Linear.Affine

Methods

sizeOf :: Point f a -> Int #

alignment :: Point f a -> Int #

peekElemOff :: Ptr (Point f a) -> Int -> IO (Point f a) #

pokeElemOff :: Ptr (Point f a) -> Int -> Point f a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Point f a) #

pokeByteOff :: Ptr b -> Int -> Point f a -> IO () #

peek :: Ptr (Point f a) -> IO (Point f a) #

poke :: Ptr (Point f a) -> Point f a -> IO () #

Monoid (f a) => Monoid (Point f a) 
Instance details

Defined in Linear.Affine

Methods

mempty :: Point f a #

mappend :: Point f a -> Point f a -> Point f a #

mconcat :: [Point f a] -> Point f a #

Semigroup (f a) => Semigroup (Point f a) 
Instance details

Defined in Linear.Affine

Methods

(<>) :: Point f a -> Point f a -> Point f a #

sconcat :: NonEmpty (Point f a) -> Point f a #

stimes :: Integral b => b -> Point f a -> Point f a #

Generic (Point f a) 
Instance details

Defined in Linear.Affine

Associated Types

type Rep (Point f a) 
Instance details

Defined in Linear.Affine

type Rep (Point f a) = D1 ('MetaData "Point" "Linear.Affine" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'True) (C1 ('MetaCons "P" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

Methods

from :: Point f a -> Rep (Point f a) x #

to :: Rep (Point f a) x -> Point f a #

Ix (f a) => Ix (Point f a) 
Instance details

Defined in Linear.Affine

Methods

range :: (Point f a, Point f a) -> [Point f a] #

index :: (Point f a, Point f a) -> Point f a -> Int #

unsafeIndex :: (Point f a, Point f a) -> Point f a -> Int #

inRange :: (Point f a, Point f a) -> Point f a -> Bool #

rangeSize :: (Point f a, Point f a) -> Int #

unsafeRangeSize :: (Point f a, Point f a) -> Int #

Num (f a) => Num (Point f a) 
Instance details

Defined in Linear.Affine

Methods

(+) :: Point f a -> Point f a -> Point f a #

(-) :: Point f a -> Point f a -> Point f a #

(*) :: Point f a -> Point f a -> Point f a #

negate :: Point f a -> Point f a #

abs :: Point f a -> Point f a #

signum :: Point f a -> Point f a #

fromInteger :: Integer -> Point f a #

Read (f a) => Read (Point f a) 
Instance details

Defined in Linear.Affine

Fractional (f a) => Fractional (Point f a) 
Instance details

Defined in Linear.Affine

Methods

(/) :: Point f a -> Point f a -> Point f a #

recip :: Point f a -> Point f a #

fromRational :: Rational -> Point f a #

Show (f a) => Show (Point f a) 
Instance details

Defined in Linear.Affine

Methods

showsPrec :: Int -> Point f a -> ShowS #

show :: Point f a -> String #

showList :: [Point f a] -> ShowS #

Binary (f a) => Binary (Point f a) 
Instance details

Defined in Linear.Affine

Methods

put :: Point f a -> Put #

get :: Get (Point f a) #

putList :: [Point f a] -> Put #

Serial (f a) => Serial (Point f a) 
Instance details

Defined in Linear.Affine

Methods

serialize :: MonadPut m => Point f a -> m ()

deserialize :: MonadGet m => m (Point f a)

Serialize (f a) => Serialize (Point f a) 
Instance details

Defined in Linear.Affine

Methods

put :: Putter (Point f a)

get :: Get (Point f a)

NFData (f a) => NFData (Point f a) 
Instance details

Defined in Linear.Affine

Methods

rnf :: Point f a -> () #

(OrderedField n, Metric v) => Enveloped (Point v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: Point v n -> Envelope (V (Point v n)) (N (Point v n)) #

(Additive v, Num n) => HasOrigin (Point v n) 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V (Point v n)) (N (Point v n)) -> Point v n -> Point v n #

(Additive v, Ord n) => Traced (Point v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: Point v n -> Trace (V (Point v n)) (N (Point v n)) #

(Additive v, Num n) => Transformable (Point v n) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (Point v n)) (N (Point v n)) -> Point v n -> Point v n #

Coordinates (v n) => Coordinates (Point v n) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (Point v n) = FinalCoord (v n)
type PrevDim (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (Point v n) = PrevDim (v n)
type Decomposition (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (Point v n) = Decomposition (v n)

Methods

(^&) :: PrevDim (Point v n) -> FinalCoord (Point v n) -> Point v n #

pr :: PrevDim (Point v n) -> FinalCoord (Point v n) -> Point v n #

coords :: Point v n -> Decomposition (Point v n) #

Eq (f a) => Eq (Point f a) 
Instance details

Defined in Linear.Affine

Methods

(==) :: Point f a -> Point f a -> Bool #

(/=) :: Point f a -> Point f a -> Bool #

Ord (f a) => Ord (Point f a) 
Instance details

Defined in Linear.Affine

Methods

compare :: Point f a -> Point f a -> Ordering #

(<) :: Point f a -> Point f a -> Bool #

(<=) :: Point f a -> Point f a -> Bool #

(>) :: Point f a -> Point f a -> Bool #

(>=) :: Point f a -> Point f a -> Bool #

max :: Point f a -> Point f a -> Point f a #

min :: Point f a -> Point f a -> Point f a #

Hashable (f a) => Hashable (Point f a) 
Instance details

Defined in Linear.Affine

Methods

hashWithSalt :: Int -> Point f a -> Int

hash :: Point f a -> Int

Ixed (f a) => Ixed (Point f a) 
Instance details

Defined in Linear.Affine

Methods

ix :: Index (Point f a) -> Traversal' (Point f a) (IxValue (Point f a)) #

Wrapped (Point f a) 
Instance details

Defined in Linear.Affine

Associated Types

type Unwrapped (Point f a) 
Instance details

Defined in Linear.Affine

type Unwrapped (Point f a) = f a

Methods

_Wrapped' :: Iso' (Point f a) (Unwrapped (Point f a)) #

Epsilon (f a) => Epsilon (Point f a) 
Instance details

Defined in Linear.Affine

Methods

nearZero :: Point f a -> Bool

Random (f a) => Random (Point f a) 
Instance details

Defined in Linear.Affine

Methods

randomR :: RandomGen g => (Point f a, Point f a) -> g -> (Point f a, g)

random :: RandomGen g => g -> (Point f a, g)

randomRs :: RandomGen g => (Point f a, Point f a) -> g -> [Point f a]

randoms :: RandomGen g => g -> [Point f a]

Unbox (f a) => Unbox (Point f a) 
Instance details

Defined in Linear.Affine

r ~ Point u n => Deformable (Point v n) r 
Instance details

Defined in Diagrams.Deform

Methods

deform' :: N (Point v n) -> Deformation (V (Point v n)) (V r) (N (Point v n)) -> Point v n -> r #

deform :: Deformation (V (Point v n)) (V r) (N (Point v n)) -> Point v n -> r #

(Additive v, Num n, r ~ Point u n) => AffineMappable (Point v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (Point v n)) (V r) (N r) -> Point v n -> r

t ~ Point g b => Rewrapped (Point f a) t 
Instance details

Defined in Linear.Affine

LinearMappable (Point v n) (Point u m) 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (Point v n) -> Vn (Point u m)) -> Point v n -> Point u m

Traversable f => Each (Point f a) (Point f b) a b 
Instance details

Defined in Linear.Affine

Methods

each :: Traversal (Point f a) (Point f b) a b #

(Additive v', Foldable v', Ord n') => Each (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') 
Instance details

Defined in Diagrams.BoundingBox

Methods

each :: Traversal (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') #

Each (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') 
Instance details

Defined in Diagrams.Segment

Methods

each :: Traversal (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') #

type Rep1 (Point f :: Type -> Type) 
Instance details

Defined in Linear.Affine

type Rep1 (Point f :: Type -> Type) = D1 ('MetaData "Point" "Linear.Affine" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'True) (C1 ('MetaCons "P" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
newtype MVector s (Point f a) 
Instance details

Defined in Linear.Affine

newtype MVector s (Point f a) = MV_P (MVector s (f a))
type Rep (Point f) 
Instance details

Defined in Linear.Affine

type Rep (Point f) = Rep f
type Diff (Point f) 
Instance details

Defined in Linear.Affine

type Diff (Point f) = f
type Size (Point f) 
Instance details

Defined in Linear.Affine

type Size (Point f) = Size f
type Rep (Point f a) 
Instance details

Defined in Linear.Affine

type Rep (Point f a) = D1 ('MetaData "Point" "Linear.Affine" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'True) (C1 ('MetaCons "P" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))
type N (Point v n) 
Instance details

Defined in Diagrams.Core.Points

type N (Point v n) = n
type V (Point v n) 
Instance details

Defined in Diagrams.Core.Points

type V (Point v n) = v
type Decomposition (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (Point v n) = Decomposition (v n)
type FinalCoord (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (Point v n) = FinalCoord (v n)
type PrevDim (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (Point v n) = PrevDim (v n)
type Index (Point f a) 
Instance details

Defined in Linear.Affine

type Index (Point f a) = Index (f a)
type IxValue (Point f a) 
Instance details

Defined in Linear.Affine

type IxValue (Point f a) = IxValue (f a)
type Unwrapped (Point f a) 
Instance details

Defined in Linear.Affine

type Unwrapped (Point f a) = f a
newtype Vector (Point f a) 
Instance details

Defined in Linear.Affine

newtype Vector (Point f a) = V_P (Vector (f a))

pattern Empty :: AsEmpty s => s #

type family Result b (v :: Type -> Type) n #

Instances

Instances details
type Result NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

type Result NullBackend v n = ()
type Result SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type Result SVG V2 n = Element

difference :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n #

intersection :: (CsgPrim a, CsgPrim b) => a n -> b n -> CSG n #

pattern (:>) :: Snoc a a b b => a -> b -> a #

pattern (:<) :: Cons b b a a => a -> b -> b #

(|>) :: Snoc s s a a => s -> a -> s #

iterateN :: Int -> (a -> a) -> a -> [a] #

pattern Strict :: Strict s t => t -> s #

pattern Lazy :: Strict t s => t -> s #

class Functor f => Additive (f :: Type -> Type) where #

Minimal complete definition

Nothing

Methods

zero :: Num a => f a #

(^+^) :: Num a => f a -> f a -> f a #

(^-^) :: Num a => f a -> f a -> f a #

lerp :: Num a => a -> f a -> f a -> f a #

liftU2 :: (a -> a -> a) -> f a -> f a -> f a #

liftI2 :: (a -> b -> c) -> f a -> f b -> f c #

Instances

Instances details
Additive Duration 
Instance details

Defined in Data.Active

Methods

zero :: Num a => Duration a #

(^+^) :: Num a => Duration a -> Duration a -> Duration a #

(^-^) :: Num a => Duration a -> Duration a -> Duration a #

lerp :: Num a => a -> Duration a -> Duration a -> Duration a #

liftU2 :: (a -> a -> a) -> Duration a -> Duration a -> Duration a #

liftI2 :: (a -> b -> c) -> Duration a -> Duration b -> Duration c #

Additive ZipList 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => ZipList a #

(^+^) :: Num a => ZipList a -> ZipList a -> ZipList a #

(^-^) :: Num a => ZipList a -> ZipList a -> ZipList a #

lerp :: Num a => a -> ZipList a -> ZipList a -> ZipList a #

liftU2 :: (a -> a -> a) -> ZipList a -> ZipList a -> ZipList a #

liftI2 :: (a -> b -> c) -> ZipList a -> ZipList b -> ZipList c #

Additive Complex 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Complex a #

(^+^) :: Num a => Complex a -> Complex a -> Complex a #

(^-^) :: Num a => Complex a -> Complex a -> Complex a #

lerp :: Num a => a -> Complex a -> Complex a -> Complex a #

liftU2 :: (a -> a -> a) -> Complex a -> Complex a -> Complex a #

liftI2 :: (a -> b -> c) -> Complex a -> Complex b -> Complex c #

Additive Identity 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Identity a #

(^+^) :: Num a => Identity a -> Identity a -> Identity a #

(^-^) :: Num a => Identity a -> Identity a -> Identity a #

lerp :: Num a => a -> Identity a -> Identity a -> Identity a #

liftU2 :: (a -> a -> a) -> Identity a -> Identity a -> Identity a #

liftI2 :: (a -> b -> c) -> Identity a -> Identity b -> Identity c #

Additive IntMap 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => IntMap a #

(^+^) :: Num a => IntMap a -> IntMap a -> IntMap a #

(^-^) :: Num a => IntMap a -> IntMap a -> IntMap a #

lerp :: Num a => a -> IntMap a -> IntMap a -> IntMap a #

liftU2 :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a #

liftI2 :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c #

Additive Angle 
Instance details

Defined in Diagrams.Angle

Methods

zero :: Num a => Angle a #

(^+^) :: Num a => Angle a -> Angle a -> Angle a #

(^-^) :: Num a => Angle a -> Angle a -> Angle a #

lerp :: Num a => a -> Angle a -> Angle a -> Angle a #

liftU2 :: (a -> a -> a) -> Angle a -> Angle a -> Angle a #

liftI2 :: (a -> b -> c) -> Angle a -> Angle b -> Angle c #

Additive Plucker 
Instance details

Defined in Linear.Plucker

Methods

zero :: Num a => Plucker a #

(^+^) :: Num a => Plucker a -> Plucker a -> Plucker a #

(^-^) :: Num a => Plucker a -> Plucker a -> Plucker a #

lerp :: Num a => a -> Plucker a -> Plucker a -> Plucker a #

liftU2 :: (a -> a -> a) -> Plucker a -> Plucker a -> Plucker a #

liftI2 :: (a -> b -> c) -> Plucker a -> Plucker b -> Plucker c #

Additive Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

zero :: Num a => Quaternion a #

(^+^) :: Num a => Quaternion a -> Quaternion a -> Quaternion a #

(^-^) :: Num a => Quaternion a -> Quaternion a -> Quaternion a #

lerp :: Num a => a -> Quaternion a -> Quaternion a -> Quaternion a #

liftU2 :: (a -> a -> a) -> Quaternion a -> Quaternion a -> Quaternion a #

liftI2 :: (a -> b -> c) -> Quaternion a -> Quaternion b -> Quaternion c #

Additive V0 
Instance details

Defined in Linear.V0

Methods

zero :: Num a => V0 a #

(^+^) :: Num a => V0 a -> V0 a -> V0 a #

(^-^) :: Num a => V0 a -> V0 a -> V0 a #

lerp :: Num a => a -> V0 a -> V0 a -> V0 a #

liftU2 :: (a -> a -> a) -> V0 a -> V0 a -> V0 a #

liftI2 :: (a -> b -> c) -> V0 a -> V0 b -> V0 c #

Additive V1 
Instance details

Defined in Linear.V1

Methods

zero :: Num a => V1 a #

(^+^) :: Num a => V1 a -> V1 a -> V1 a #

(^-^) :: Num a => V1 a -> V1 a -> V1 a #

lerp :: Num a => a -> V1 a -> V1 a -> V1 a #

liftU2 :: (a -> a -> a) -> V1 a -> V1 a -> V1 a #

liftI2 :: (a -> b -> c) -> V1 a -> V1 b -> V1 c #

Additive V2 
Instance details

Defined in Linear.V2

Methods

zero :: Num a => V2 a #

(^+^) :: Num a => V2 a -> V2 a -> V2 a #

(^-^) :: Num a => V2 a -> V2 a -> V2 a #

lerp :: Num a => a -> V2 a -> V2 a -> V2 a #

liftU2 :: (a -> a -> a) -> V2 a -> V2 a -> V2 a #

liftI2 :: (a -> b -> c) -> V2 a -> V2 b -> V2 c #

Additive V3 
Instance details

Defined in Linear.V3

Methods

zero :: Num a => V3 a #

(^+^) :: Num a => V3 a -> V3 a -> V3 a #

(^-^) :: Num a => V3 a -> V3 a -> V3 a #

lerp :: Num a => a -> V3 a -> V3 a -> V3 a #

liftU2 :: (a -> a -> a) -> V3 a -> V3 a -> V3 a #

liftI2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

Additive V4 
Instance details

Defined in Linear.V4

Methods

zero :: Num a => V4 a #

(^+^) :: Num a => V4 a -> V4 a -> V4 a #

(^-^) :: Num a => V4 a -> V4 a -> V4 a #

lerp :: Num a => a -> V4 a -> V4 a -> V4 a #

liftU2 :: (a -> a -> a) -> V4 a -> V4 a -> V4 a #

liftI2 :: (a -> b -> c) -> V4 a -> V4 b -> V4 c #

Additive Vector 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Vector a #

(^+^) :: Num a => Vector a -> Vector a -> Vector a #

(^-^) :: Num a => Vector a -> Vector a -> Vector a #

lerp :: Num a => a -> Vector a -> Vector a -> Vector a #

liftU2 :: (a -> a -> a) -> Vector a -> Vector a -> Vector a #

liftI2 :: (a -> b -> c) -> Vector a -> Vector b -> Vector c #

Additive Maybe 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Maybe a #

(^+^) :: Num a => Maybe a -> Maybe a -> Maybe a #

(^-^) :: Num a => Maybe a -> Maybe a -> Maybe a #

lerp :: Num a => a -> Maybe a -> Maybe a -> Maybe a #

liftU2 :: (a -> a -> a) -> Maybe a -> Maybe a -> Maybe a #

liftI2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

Additive [] 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => [a] #

(^+^) :: Num a => [a] -> [a] -> [a] #

(^-^) :: Num a => [a] -> [a] -> [a] #

lerp :: Num a => a -> [a] -> [a] -> [a] #

liftU2 :: (a -> a -> a) -> [a] -> [a] -> [a] #

liftI2 :: (a -> b -> c) -> [a] -> [b] -> [c] #

Ord k => Additive (Map k) 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Map k a #

(^+^) :: Num a => Map k a -> Map k a -> Map k a #

(^-^) :: Num a => Map k a -> Map k a -> Map k a #

lerp :: Num a => a -> Map k a -> Map k a -> Map k a #

liftU2 :: (a -> a -> a) -> Map k a -> Map k a -> Map k a #

liftI2 :: (a -> b -> c) -> Map k a -> Map k b -> Map k c #

Additive (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

zero :: Num a => Measured n a #

(^+^) :: Num a => Measured n a -> Measured n a -> Measured n a #

(^-^) :: Num a => Measured n a -> Measured n a -> Measured n a #

lerp :: Num a => a -> Measured n a -> Measured n a -> Measured n a #

liftU2 :: (a -> a -> a) -> Measured n a -> Measured n a -> Measured n a #

liftI2 :: (a -> b -> c) -> Measured n a -> Measured n b -> Measured n c #

Additive f => Additive (Point f) 
Instance details

Defined in Linear.Affine

Methods

zero :: Num a => Point f a #

(^+^) :: Num a => Point f a -> Point f a -> Point f a #

(^-^) :: Num a => Point f a -> Point f a -> Point f a #

lerp :: Num a => a -> Point f a -> Point f a -> Point f a #

liftU2 :: (a -> a -> a) -> Point f a -> Point f a -> Point f a #

liftI2 :: (a -> b -> c) -> Point f a -> Point f b -> Point f c #

(Eq k, Hashable k) => Additive (HashMap k) 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => HashMap k a #

(^+^) :: Num a => HashMap k a -> HashMap k a -> HashMap k a #

(^-^) :: Num a => HashMap k a -> HashMap k a -> HashMap k a #

lerp :: Num a => a -> HashMap k a -> HashMap k a -> HashMap k a #

liftU2 :: (a -> a -> a) -> HashMap k a -> HashMap k a -> HashMap k a #

liftI2 :: (a -> b -> c) -> HashMap k a -> HashMap k b -> HashMap k c #

Dim n => Additive (V n) 
Instance details

Defined in Linear.V

Methods

zero :: Num a => V n a #

(^+^) :: Num a => V n a -> V n a -> V n a #

(^-^) :: Num a => V n a -> V n a -> V n a #

lerp :: Num a => a -> V n a -> V n a -> V n a #

liftU2 :: (a -> a -> a) -> V n a -> V n a -> V n a #

liftI2 :: (a -> b -> c) -> V n a -> V n b -> V n c #

(Additive f, Additive g) => Additive (Product f g) 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Product f g a #

(^+^) :: Num a => Product f g a -> Product f g a -> Product f g a #

(^-^) :: Num a => Product f g a -> Product f g a -> Product f g a #

lerp :: Num a => a -> Product f g a -> Product f g a -> Product f g a #

liftU2 :: (a -> a -> a) -> Product f g a -> Product f g a -> Product f g a #

liftI2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c #

Additive ((->) b) 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => b -> a #

(^+^) :: Num a => (b -> a) -> (b -> a) -> b -> a #

(^-^) :: Num a => (b -> a) -> (b -> a) -> b -> a #

lerp :: Num a => a -> (b -> a) -> (b -> a) -> b -> a #

liftU2 :: (a -> a -> a) -> (b -> a) -> (b -> a) -> b -> a #

liftI2 :: (a -> b0 -> c) -> (b -> a) -> (b -> b0) -> b -> c #

(Additive f, Additive g) => Additive (Compose f g) 
Instance details

Defined in Linear.Vector

Methods

zero :: Num a => Compose f g a #

(^+^) :: Num a => Compose f g a -> Compose f g a -> Compose f g a #

(^-^) :: Num a => Compose f g a -> Compose f g a -> Compose f g a #

lerp :: Num a => a -> Compose f g a -> Compose f g a -> Compose f g a #

liftU2 :: (a -> a -> a) -> Compose f g a -> Compose f g a -> Compose f g a #

liftI2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c #

(.#) :: Coercible b a => (b -> c) -> (a -> b) -> a -> c #

local :: Num n => n -> Measure n #

data Line #

Instances

Instances details
(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n) => Monoid (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

mempty :: Trail' Line v n #

mappend :: Trail' Line v n -> Trail' Line v n -> Trail' Line v n #

mconcat :: [Trail' Line v n] -> Trail' Line v n #

(OrderedField n, Metric v) => Semigroup (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

(<>) :: Trail' Line v n -> Trail' Line v n -> Trail' Line v n #

sconcat :: NonEmpty (Trail' Line v n) -> Trail' Line v n #

stimes :: Integral b => b -> Trail' Line v n -> Trail' Line v n #

(Metric v, OrderedField n, Real n) => Sectionable (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

splitAtParam :: Trail' Line v n -> N (Trail' Line v n) -> (Trail' Line v n, Trail' Line v n) #

section :: Trail' Line v n -> N (Trail' Line v n) -> N (Trail' Line v n) -> Trail' Line v n #

reverseDomain :: Trail' Line v n -> Trail' Line v n #

(Metric v, OrderedField n) => TrailLike (Trail' Line v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail' Line v n)) (N (Trail' Line v n))) -> Trail' Line v n #

(Metric v, OrderedField n) => AsEmpty (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

_Empty :: Prism' (Trail' Line v n) () #

Wrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Associated Types

type Unwrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail' Line v n) = SegTree v n

Methods

_Wrapped' :: Iso' (Trail' Line v n) (Unwrapped (Trail' Line v n)) #

Rewrapped (Trail' Line v n) (Trail' Line v' n') 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (Trail' Line v n) (Trail' Line u n') (Segment Closed v n, Trail' Line v n) (Segment Closed u n', Trail' Line u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (Trail' Line v n) (Trail' Line u n') (Trail' Line v n, Segment Closed v n) (Trail' Line u n', Segment Closed u n') #

type Unwrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail' Line v n) = SegTree v n

data Trail' l (v :: Type -> Type) n where #

Constructors

Line :: forall (v :: Type -> Type) n. SegTree v n -> Trail' Line v n 
Loop :: forall (v :: Type -> Type) n. SegTree v n -> Segment Open v n -> Trail' Loop v n 

Instances

Instances details
(Parametric (GetSegment (Trail' c v n)), EndValues (GetSegment (Trail' c v n)), Additive v, Num n) => EndValues (Tangent (Trail' c v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Tangent (Trail' c v n) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

atEnd :: Tangent (Trail' c v n) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

(Parametric (GetSegment (Trail' c v n)), Additive v, Num n) => Parametric (Tangent (Trail' c v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Tangent (Trail' c v n) -> N (Tangent (Trail' c v n)) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

ToPath (Located (Trail' l v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Trail' l v n) -> Path (V (Located (Trail' l v n))) (N (Located (Trail' l v n))) #

(Metric v, OrderedField n) => Reversing (Located (Trail' l v n)) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Located (Trail' l v n) -> Located (Trail' l v n) #

(Metric v, OrderedField n) => Monoid (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

mempty :: Trail' Line v n #

mappend :: Trail' Line v n -> Trail' Line v n -> Trail' Line v n #

mconcat :: [Trail' Line v n] -> Trail' Line v n #

(OrderedField n, Metric v) => Semigroup (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

(<>) :: Trail' Line v n -> Trail' Line v n -> Trail' Line v n #

sconcat :: NonEmpty (Trail' Line v n) -> Trail' Line v n #

stimes :: Integral b => b -> Trail' Line v n -> Trail' Line v n #

Show (v n) => Show (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

showsPrec :: Int -> Trail' l v n -> ShowS #

show :: Trail' l v n -> String #

showList :: [Trail' l v n] -> ShowS #

(Metric v, OrderedField n) => Enveloped (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

getEnvelope :: Trail' l v n -> Envelope (V (Trail' l v n)) (N (Trail' l v n)) #

(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

transform :: Transformation (V (Trail' l v n)) (N (Trail' l v n)) -> Trail' l v n -> Trail' l v n #

Num n => DomainBounds (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

domainLower :: Trail' l v n -> N (Trail' l v n) #

domainUpper :: Trail' l v n -> N (Trail' l v n) #

(Metric v, OrderedField n, Real n) => EndValues (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Trail' l v n -> Codomain (Trail' l v n) (N (Trail' l v n)) #

atEnd :: Trail' l v n -> Codomain (Trail' l v n) (N (Trail' l v n)) #

(Metric v, OrderedField n, Real n) => HasArcLength (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

arcLengthBounded :: N (Trail' l v n) -> Trail' l v n -> Interval (N (Trail' l v n)) #

arcLength :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) #

stdArcLength :: Trail' l v n -> N (Trail' l v n) #

arcLengthToParam :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) #

stdArcLengthToParam :: Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) #

(Metric v, OrderedField n, Real n) => Parametric (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Trail' l v n -> N (Trail' l v n) -> Codomain (Trail' l v n) (N (Trail' l v n)) #

(Metric v, OrderedField n, Real n) => Sectionable (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

splitAtParam :: Trail' Line v n -> N (Trail' Line v n) -> (Trail' Line v n, Trail' Line v n) #

section :: Trail' Line v n -> N (Trail' Line v n) -> N (Trail' Line v n) -> Trail' Line v n #

reverseDomain :: Trail' Line v n -> Trail' Line v n #

ToPath (Trail' l v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Trail' l v n -> Path (V (Trail' l v n)) (N (Trail' l v n)) #

(Metric v, OrderedField n) => TrailLike (Trail' Line v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail' Line v n)) (N (Trail' Line v n))) -> Trail' Line v n #

(Metric v, OrderedField n) => TrailLike (Trail' Loop v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail' Loop v n)) (N (Trail' Loop v n))) -> Trail' Loop v n #

Eq (v n) => Eq (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

(==) :: Trail' l v n -> Trail' l v n -> Bool #

(/=) :: Trail' l v n -> Trail' l v n -> Bool #

Ord (v n) => Ord (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

compare :: Trail' l v n -> Trail' l v n -> Ordering #

(<) :: Trail' l v n -> Trail' l v n -> Bool #

(<=) :: Trail' l v n -> Trail' l v n -> Bool #

(>) :: Trail' l v n -> Trail' l v n -> Bool #

(>=) :: Trail' l v n -> Trail' l v n -> Bool #

max :: Trail' l v n -> Trail' l v n -> Trail' l v n #

min :: Trail' l v n -> Trail' l v n -> Trail' l v n #

(Metric v, OrderedField n) => AsEmpty (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

_Empty :: Prism' (Trail' Line v n) () #

(Metric v, OrderedField n) => Reversing (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Trail' l v n -> Trail' l v n #

Wrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Associated Types

type Unwrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail' Line v n) = SegTree v n

Methods

_Wrapped' :: Iso' (Trail' Line v n) (Unwrapped (Trail' Line v n)) #

(HasLinearMap v, Metric v, OrderedField n) => Renderable (Trail' o v n) NullBackend 
Instance details

Defined in Diagrams.Trail

Methods

render :: NullBackend -> Trail' o v n -> Render NullBackend (V (Trail' o v n)) (N (Trail' o v n)) #

(Metric v, Metric u, OrderedField n, r ~ Trail' l u n) => AffineMappable (Trail' l v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (Trail' l v n)) (V r) (N r) -> Trail' l v n -> r

(Metric v, Metric u, OrderedField n, OrderedField m, r ~ Trail' l u m) => LinearMappable (Trail' l v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (Trail' l v n) -> Vn r) -> Trail' l v n -> r

Rewrapped (Trail' Line v n) (Trail' Line v' n') 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (Trail' Line v n) (Trail' Line u n') (Segment Closed v n, Trail' Line v n) (Segment Closed u n', Trail' Line u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (Trail' Line v n) (Trail' Line u n') (Trail' Line v n, Segment Closed v n) (Trail' Line u n', Segment Closed u n') #

type N (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

type N (Trail' l v n) = n
type V (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

type V (Trail' l v n) = v
type Codomain (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

type Codomain (Trail' l v n) = v
type Unwrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail' Line v n) = SegTree v n

noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool #

class Additive f => Metric (f :: Type -> Type) where #

Minimal complete definition

Nothing

Methods

dot :: Num a => f a -> f a -> a #

quadrance :: Num a => f a -> a #

qd :: Num a => f a -> f a -> a #

distance :: Floating a => f a -> f a -> a #

norm :: Floating a => f a -> a #

signorm :: Floating a => f a -> f a #

Instances

Instances details
Metric ZipList 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => ZipList a -> ZipList a -> a #

quadrance :: Num a => ZipList a -> a #

qd :: Num a => ZipList a -> ZipList a -> a #

distance :: Floating a => ZipList a -> ZipList a -> a #

norm :: Floating a => ZipList a -> a #

signorm :: Floating a => ZipList a -> ZipList a #

Metric Identity 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => Identity a -> Identity a -> a #

quadrance :: Num a => Identity a -> a #

qd :: Num a => Identity a -> Identity a -> a #

distance :: Floating a => Identity a -> Identity a -> a #

norm :: Floating a => Identity a -> a #

signorm :: Floating a => Identity a -> Identity a #

Metric IntMap 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => IntMap a -> IntMap a -> a #

quadrance :: Num a => IntMap a -> a #

qd :: Num a => IntMap a -> IntMap a -> a #

distance :: Floating a => IntMap a -> IntMap a -> a #

norm :: Floating a => IntMap a -> a #

signorm :: Floating a => IntMap a -> IntMap a #

Metric Plucker 
Instance details

Defined in Linear.Plucker

Methods

dot :: Num a => Plucker a -> Plucker a -> a #

quadrance :: Num a => Plucker a -> a #

qd :: Num a => Plucker a -> Plucker a -> a #

distance :: Floating a => Plucker a -> Plucker a -> a #

norm :: Floating a => Plucker a -> a #

signorm :: Floating a => Plucker a -> Plucker a #

Metric Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

dot :: Num a => Quaternion a -> Quaternion a -> a #

quadrance :: Num a => Quaternion a -> a #

qd :: Num a => Quaternion a -> Quaternion a -> a #

distance :: Floating a => Quaternion a -> Quaternion a -> a #

norm :: Floating a => Quaternion a -> a #

signorm :: Floating a => Quaternion a -> Quaternion a #

Metric V0 
Instance details

Defined in Linear.V0

Methods

dot :: Num a => V0 a -> V0 a -> a #

quadrance :: Num a => V0 a -> a #

qd :: Num a => V0 a -> V0 a -> a #

distance :: Floating a => V0 a -> V0 a -> a #

norm :: Floating a => V0 a -> a #

signorm :: Floating a => V0 a -> V0 a #

Metric V1 
Instance details

Defined in Linear.V1

Methods

dot :: Num a => V1 a -> V1 a -> a #

quadrance :: Num a => V1 a -> a #

qd :: Num a => V1 a -> V1 a -> a #

distance :: Floating a => V1 a -> V1 a -> a #

norm :: Floating a => V1 a -> a #

signorm :: Floating a => V1 a -> V1 a #

Metric V2 
Instance details

Defined in Linear.V2

Methods

dot :: Num a => V2 a -> V2 a -> a #

quadrance :: Num a => V2 a -> a #

qd :: Num a => V2 a -> V2 a -> a #

distance :: Floating a => V2 a -> V2 a -> a #

norm :: Floating a => V2 a -> a #

signorm :: Floating a => V2 a -> V2 a #

Metric V3 
Instance details

Defined in Linear.V3

Methods

dot :: Num a => V3 a -> V3 a -> a #

quadrance :: Num a => V3 a -> a #

qd :: Num a => V3 a -> V3 a -> a #

distance :: Floating a => V3 a -> V3 a -> a #

norm :: Floating a => V3 a -> a #

signorm :: Floating a => V3 a -> V3 a #

Metric V4 
Instance details

Defined in Linear.V4

Methods

dot :: Num a => V4 a -> V4 a -> a #

quadrance :: Num a => V4 a -> a #

qd :: Num a => V4 a -> V4 a -> a #

distance :: Floating a => V4 a -> V4 a -> a #

norm :: Floating a => V4 a -> a #

signorm :: Floating a => V4 a -> V4 a #

Metric Vector 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => Vector a -> Vector a -> a #

quadrance :: Num a => Vector a -> a #

qd :: Num a => Vector a -> Vector a -> a #

distance :: Floating a => Vector a -> Vector a -> a #

norm :: Floating a => Vector a -> a #

signorm :: Floating a => Vector a -> Vector a #

Metric Maybe 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => Maybe a -> Maybe a -> a #

quadrance :: Num a => Maybe a -> a #

qd :: Num a => Maybe a -> Maybe a -> a #

distance :: Floating a => Maybe a -> Maybe a -> a #

norm :: Floating a => Maybe a -> a #

signorm :: Floating a => Maybe a -> Maybe a #

Metric [] 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => [a] -> [a] -> a #

quadrance :: Num a => [a] -> a #

qd :: Num a => [a] -> [a] -> a #

distance :: Floating a => [a] -> [a] -> a #

norm :: Floating a => [a] -> a #

signorm :: Floating a => [a] -> [a] #

Ord k => Metric (Map k) 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => Map k a -> Map k a -> a #

quadrance :: Num a => Map k a -> a #

qd :: Num a => Map k a -> Map k a -> a #

distance :: Floating a => Map k a -> Map k a -> a #

norm :: Floating a => Map k a -> a #

signorm :: Floating a => Map k a -> Map k a #

Metric f => Metric (Point f) 
Instance details

Defined in Linear.Affine

Methods

dot :: Num a => Point f a -> Point f a -> a #

quadrance :: Num a => Point f a -> a #

qd :: Num a => Point f a -> Point f a -> a #

distance :: Floating a => Point f a -> Point f a -> a #

norm :: Floating a => Point f a -> a #

signorm :: Floating a => Point f a -> Point f a #

(Hashable k, Eq k) => Metric (HashMap k) 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => HashMap k a -> HashMap k a -> a #

quadrance :: Num a => HashMap k a -> a #

qd :: Num a => HashMap k a -> HashMap k a -> a #

distance :: Floating a => HashMap k a -> HashMap k a -> a #

norm :: Floating a => HashMap k a -> a #

signorm :: Floating a => HashMap k a -> HashMap k a #

Dim n => Metric (V n) 
Instance details

Defined in Linear.V

Methods

dot :: Num a => V n a -> V n a -> a #

quadrance :: Num a => V n a -> a #

qd :: Num a => V n a -> V n a -> a #

distance :: Floating a => V n a -> V n a -> a #

norm :: Floating a => V n a -> a #

signorm :: Floating a => V n a -> V n a #

(Metric f, Metric g) => Metric (Product f g) 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => Product f g a -> Product f g a -> a #

quadrance :: Num a => Product f g a -> a #

qd :: Num a => Product f g a -> Product f g a -> a #

distance :: Floating a => Product f g a -> Product f g a -> a #

norm :: Floating a => Product f g a -> a #

signorm :: Floating a => Product f g a -> Product f g a #

(Metric f, Metric g) => Metric (Compose f g) 
Instance details

Defined in Linear.Metric

Methods

dot :: Num a => Compose f g a -> Compose f g a -> a #

quadrance :: Num a => Compose f g a -> a #

qd :: Num a => Compose f g a -> Compose f g a -> a #

distance :: Floating a => Compose f g a -> Compose f g a -> a #

norm :: Floating a => Compose f g a -> a #

signorm :: Floating a => Compose f g a -> Compose f g a #

data Style (v :: Type -> Type) n #

Instances

Instances details
Typeable n => Monoid (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

mempty :: Style v n #

mappend :: Style v n -> Style v n -> Style v n #

mconcat :: [Style v n] -> Style v n #

Typeable n => Semigroup (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

(<>) :: Style v n -> Style v n -> Style v n #

sconcat :: NonEmpty (Style v n) -> Style v n #

stimes :: Integral b => b -> Style v n -> Style v n #

Show (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

showsPrec :: Int -> Style v n -> ShowS #

show :: Style v n -> String #

showList :: [Style v n] -> ShowS #

Typeable n => HasStyle (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (Style v n)) (N (Style v n)) -> Style v n -> Style v n #

(Additive v, Traversable v, Floating n) => Transformable (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

transform :: Transformation (V (Style v n)) (N (Style v n)) -> Style v n -> Style v n #

At (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

at :: Index (Style v n) -> Lens' (Style v n) (Maybe (IxValue (Style v n)))

Ixed (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

ix :: Index (Style v n) -> Traversal' (Style v n) (IxValue (Style v n)) #

Wrapped (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Associated Types

type Unwrapped (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type Unwrapped (Style v n) = HashMap TypeRep (Attribute v n)

Methods

_Wrapped' :: Iso' (Style v n) (Unwrapped (Style v n)) #

Action (Style v n) m 
Instance details

Defined in Diagrams.Core.Style

Methods

act :: Style v n -> m -> m

Rewrapped (Style v n) (Style v' n') 
Instance details

Defined in Diagrams.Core.Style

Each (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') 
Instance details

Defined in Diagrams.Core.Style

Methods

each :: Traversal (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') #

type N (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type N (Style v n) = n
type V (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type V (Style v n) = v
type Index (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type Index (Style v n) = TypeRep
type IxValue (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type IxValue (Style v n) = Attribute v n
type Unwrapped (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type Unwrapped (Style v n) = HashMap TypeRep (Attribute v n)

hcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] -> a #

hsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n -> [a] -> a #

vcat :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => [a] -> a #

sep :: forall n f. Functor f => (n -> f n) -> CatOpts n -> f (CatOpts n) #

cat :: (InSpace v n a, Metric v, Floating n, Juxtaposable a, Monoid' a, HasOrigin a) => v n -> [a] -> a #

class Transformable t => Renderable t b where #

Methods

render :: b -> t -> Render b (V t) (N t) #

Instances

Instances details
Fractional n => Renderable (Box n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

render :: NullBackend -> Box n -> Render NullBackend (V (Box n)) (N (Box n)) #

Fractional n => Renderable (Ellipsoid n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Fractional n => Renderable (Frustum n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

render :: NullBackend -> Frustum n -> Render NullBackend (V (Frustum n)) (N (Frustum n)) #

(V t ~ V2, N t ~ n, RealFloat n, Renderable t b) => Renderable (ScaleInv t) b 
Instance details

Defined in Diagrams.Transform.ScaleInv

Methods

render :: b -> ScaleInv t -> Render b (V (ScaleInv t)) (N (ScaleInv t)) #

Floating n => Renderable (Text n) NullBackend 
Instance details

Defined in Diagrams.TwoD.Text

Methods

render :: NullBackend -> Text n -> Render NullBackend (V (Text n)) (N (Text n)) #

SVGFloat n => Renderable (Text n) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> Text n -> Render SVG (V (Text n)) (N (Text n)) #

SVGFloat n => Renderable (Path V2 n) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> Path V2 n -> Render SVG (V (Path V2 n)) (N (Path V2 n)) #

(HasLinearMap v, Metric v, OrderedField n) => Renderable (Path v n) NullBackend 
Instance details

Defined in Diagrams.Path

Methods

render :: NullBackend -> Path v n -> Render NullBackend (V (Path v n)) (N (Path v n)) #

Num n => Renderable (Camera l n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Camera

Methods

render :: NullBackend -> Camera l n -> Render NullBackend (V (Camera l n)) (N (Camera l n)) #

SVGFloat n => Renderable (DImage n Embedded) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n Embedded -> Render SVG (V (DImage n Embedded)) (N (DImage n Embedded)) #

SVGFloat n => Renderable (DImage n (Native Img)) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n (Native Img) -> Render SVG (V (DImage n (Native Img))) (N (DImage n (Native Img))) #

Fractional n => Renderable (DImage n a) NullBackend 
Instance details

Defined in Diagrams.TwoD.Image

Methods

render :: NullBackend -> DImage n a -> Render NullBackend (V (DImage n a)) (N (DImage n a)) #

Renderable (Prim b v n) b 
Instance details

Defined in Diagrams.Core.Types

Methods

render :: b -> Prim b v n -> Render b (V (Prim b v n)) (N (Prim b v n)) #

Renderable (Segment c v n) NullBackend 
Instance details

Defined in Diagrams.Segment

Methods

render :: NullBackend -> Segment c v n -> Render NullBackend (V (Segment c v n)) (N (Segment c v n)) #

(HasLinearMap v, Metric v, OrderedField n) => Renderable (Trail' o v n) NullBackend 
Instance details

Defined in Diagrams.Trail

Methods

render :: NullBackend -> Trail' o v n -> Render NullBackend (V (Trail' o v n)) (N (Trail' o v n)) #

translate :: Transformable t => Vn t -> t -> t #

data Name #

Instances

Instances details
Monoid Name 
Instance details

Defined in Diagrams.Core.Names

Methods

mempty :: Name #

mappend :: Name -> Name -> Name #

mconcat :: [Name] -> Name #

Semigroup Name 
Instance details

Defined in Diagrams.Core.Names

Methods

(<>) :: Name -> Name -> Name #

sconcat :: NonEmpty Name -> Name #

stimes :: Integral b => b -> Name -> Name #

Show Name 
Instance details

Defined in Diagrams.Core.Names

Methods

showsPrec :: Int -> Name -> ShowS #

show :: Name -> String #

showList :: [Name] -> ShowS #

IsName Name 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Name -> Name #

Qualifiable Name 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a => a -> Name -> Name #

Eq Name 
Instance details

Defined in Diagrams.Core.Names

Methods

(==) :: Name -> Name -> Bool #

(/=) :: Name -> Name -> Bool #

Ord Name 
Instance details

Defined in Diagrams.Core.Names

Methods

compare :: Name -> Name -> Ordering #

(<) :: Name -> Name -> Bool #

(<=) :: Name -> Name -> Bool #

(>) :: Name -> Name -> Bool #

(>=) :: Name -> Name -> Bool #

max :: Name -> Name -> Name #

min :: Name -> Name -> Name #

Wrapped Name 
Instance details

Defined in Diagrams.Core.Names

Associated Types

type Unwrapped Name 
Instance details

Defined in Diagrams.Core.Names

Rewrapped Name Name 
Instance details

Defined in Diagrams.Core.Names

Each Name Name AName AName 
Instance details

Defined in Diagrams.Core.Names

Action Name (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

act :: Name -> SubMap b v n m -> SubMap b v n m

type Unwrapped Name 
Instance details

Defined in Diagrams.Core.Names

data Prim b (v :: Type -> Type) n where #

Constructors

Prim :: forall p b. (Transformable p, Typeable p, Renderable p b) => p -> Prim b (V p) (N p) 

Instances

Instances details
Transformable (Prim b v n) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (Prim b v n)) (N (Prim b v n)) -> Prim b v n -> Prim b v n #

Renderable (Prim b v n) b 
Instance details

Defined in Diagrams.Core.Types

Methods

render :: b -> Prim b v n -> Render b (V (Prim b v n)) (N (Prim b v n)) #

type N (Prim b v n) 
Instance details

Defined in Diagrams.Core.Types

type N (Prim b v n) = n
type V (Prim b v n) 
Instance details

Defined in Diagrams.Core.Types

type V (Prim b v n) = v

data Located a #

Constructors

Loc 

Fields

Instances

Instances details
Generic (Located a) 
Instance details

Defined in Diagrams.Located

Associated Types

type Rep (Located a) 
Instance details

Defined in Diagrams.Located

type Rep (Located a) = D1 ('MetaData "Located" "Diagrams.Located" "diagrams-lib-1.4.6.2-9ym4nU13AVa88SQ1myBzrG" 'False) (C1 ('MetaCons "Loc" 'PrefixI 'True) (S1 ('MetaSel ('Just "loc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Point (V a) (N a))) :*: S1 ('MetaSel ('Just "unLoc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Located a -> Rep (Located a) x #

to :: Rep (Located a) x -> Located a #

(Read (V a (N a)), Read a) => Read (Located a) 
Instance details

Defined in Diagrams.Located

(Show (V a (N a)), Show a) => Show (Located a) 
Instance details

Defined in Diagrams.Located

Methods

showsPrec :: Int -> Located a -> ShowS #

show :: Located a -> String #

showList :: [Located a] -> ShowS #

(Serialize a, Serialize (V a (N a))) => Serialize (Located a) 
Instance details

Defined in Diagrams.Located

Methods

put :: Putter (Located a)

get :: Get (Located a)

Enveloped a => Enveloped (Located a) 
Instance details

Defined in Diagrams.Located

Methods

getEnvelope :: Located a -> Envelope (V (Located a)) (N (Located a)) #

(Num (N a), Additive (V a)) => HasOrigin (Located a) 
Instance details

Defined in Diagrams.Located

Methods

moveOriginTo :: Point (V (Located a)) (N (Located a)) -> Located a -> Located a #

Enveloped a => Juxtaposable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

juxtapose :: Vn (Located a) -> Located a -> Located a -> Located a #

Qualifiable a => Qualifiable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

(.>>) :: IsName a0 => a0 -> Located a -> Located a #

(Traced a, Num (N a)) => Traced (Located a) 
Instance details

Defined in Diagrams.Located

Methods

getTrace :: Located a -> Trace (V (Located a)) (N (Located a)) #

(Additive (V a), Num (N a), Transformable a) => Transformable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

transform :: Transformation (V (Located a)) (N (Located a)) -> Located a -> Located a #

Alignable a => Alignable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

alignBy' :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => (v n -> Located a -> Point v n) -> v n -> n -> Located a -> Located a #

defaultBoundary :: (V (Located a) ~ v, N (Located a) ~ n) => v n -> Located a -> Point v n #

alignBy :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => v n -> n -> Located a -> Located a #

DomainBounds a => DomainBounds (Located a) 
Instance details

Defined in Diagrams.Located

Methods

domainLower :: Located a -> N (Located a) #

domainUpper :: Located a -> N (Located a) #

(InSpace v n a, EndValues a, Codomain a ~ v) => EndValues (Located a) 
Instance details

Defined in Diagrams.Located

Methods

atStart :: Located a -> Codomain (Located a) (N (Located a)) #

atEnd :: Located a -> Codomain (Located a) (N (Located a)) #

(DomainBounds t, EndValues (Tangent t)) => EndValues (Tangent (Located t)) 
Instance details

Defined in Diagrams.Tangent

(InSpace v n a, Fractional n, HasArcLength a, Codomain a ~ v) => HasArcLength (Located a) 
Instance details

Defined in Diagrams.Located

Methods

arcLengthBounded :: N (Located a) -> Located a -> Interval (N (Located a)) #

arcLength :: N (Located a) -> Located a -> N (Located a) #

stdArcLength :: Located a -> N (Located a) #

arcLengthToParam :: N (Located a) -> Located a -> N (Located a) -> N (Located a) #

stdArcLengthToParam :: Located a -> N (Located a) -> N (Located a) #

(InSpace v n a, Parametric a, Codomain a ~ v) => Parametric (Located a) 
Instance details

Defined in Diagrams.Located

Methods

atParam :: Located a -> N (Located a) -> Codomain (Located a) (N (Located a)) #

Parametric (Tangent t) => Parametric (Tangent (Located t)) 
Instance details

Defined in Diagrams.Tangent

Methods

atParam :: Tangent (Located t) -> N (Tangent (Located t)) -> Codomain (Tangent (Located t)) (N (Tangent (Located t))) #

(InSpace v n a, Fractional n, Parametric a, Sectionable a, Codomain a ~ v) => Sectionable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

splitAtParam :: Located a -> N (Located a) -> (Located a, Located a) #

section :: Located a -> N (Located a) -> N (Located a) -> Located a #

reverseDomain :: Located a -> Located a #

ToPath (Located (Segment Closed v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Segment Closed v n) -> Path (V (Located (Segment Closed v n))) (N (Located (Segment Closed v n))) #

ToPath (Located (Trail v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Trail v n) -> Path (V (Located (Trail v n))) (N (Located (Trail v n))) #

ToPath (Located (Trail' l v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Trail' l v n) -> Path (V (Located (Trail' l v n))) (N (Located (Trail' l v n))) #

ToPath (Located [Segment Closed v n]) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located [Segment Closed v n] -> Path (V (Located [Segment Closed v n])) (N (Located [Segment Closed v n])) #

TrailLike t => TrailLike (Located t) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Located t)) (N (Located t))) -> Located t #

(Eq (V a (N a)), Eq a) => Eq (Located a) 
Instance details

Defined in Diagrams.Located

Methods

(==) :: Located a -> Located a -> Bool #

(/=) :: Located a -> Located a -> Bool #

(Ord (V a (N a)), Ord a) => Ord (Located a) 
Instance details

Defined in Diagrams.Located

Methods

compare :: Located a -> Located a -> Ordering #

(<) :: Located a -> Located a -> Bool #

(<=) :: Located a -> Located a -> Bool #

(>) :: Located a -> Located a -> Bool #

(>=) :: Located a -> Located a -> Bool #

max :: Located a -> Located a -> Located a #

min :: Located a -> Located a -> Located a #

(Metric v, OrderedField n) => Reversing (Located (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Located (Trail v n) -> Located (Trail v n) #

(Metric v, OrderedField n) => Reversing (Located (Trail' l v n)) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Located (Trail' l v n) -> Located (Trail' l v n) #

(Metric v, Metric u, OrderedField n, r ~ Located (Trail u n)) => Deformable (Located (Trail v n)) r 
Instance details

Defined in Diagrams.Deform

Methods

deform' :: N (Located (Trail v n)) -> Deformation (V (Located (Trail v n))) (V r) (N (Located (Trail v n))) -> Located (Trail v n) -> r #

deform :: Deformation (V (Located (Trail v n))) (V r) (N (Located (Trail v n))) -> Located (Trail v n) -> r #

(LinearMappable a b, N a ~ N b, r ~ Located b) => AffineMappable (Located a) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (Located a)) (V r) (N r) -> Located a -> r

(LinearMappable a b, r ~ Located b) => LinearMappable (Located a) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (Located a) -> Vn r) -> Located a -> r

Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Cons :: Prism (Path v n) (Path v' n') (Located (Trail v n), Path v n) (Located (Trail v' n'), Path v' n') #

Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Snoc :: Prism (Path v n) (Path v' n') (Path v n, Located (Trail v n)) (Path v' n', Located (Trail v' n')) #

Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

each :: Traversal (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) #

type Rep (Located a) 
Instance details

Defined in Diagrams.Located

type Rep (Located a) = D1 ('MetaData "Located" "Diagrams.Located" "diagrams-lib-1.4.6.2-9ym4nU13AVa88SQ1myBzrG" 'False) (C1 ('MetaCons "Loc" 'PrefixI 'True) (S1 ('MetaSel ('Just "loc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Point (V a) (N a))) :*: S1 ('MetaSel ('Just "unLoc") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type N (Located a) 
Instance details

Defined in Diagrams.Located

type N (Located a) = N a
type V (Located a) 
Instance details

Defined in Diagrams.Located

type V (Located a) = V a
type Codomain (Located a) 
Instance details

Defined in Diagrams.Located

lookupName :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> QDiagram b v n m -> Maybe (Subdiagram b v n m) #

location :: forall (v :: Type -> Type) n b m. (Additive v, Num n) => Subdiagram b v n m -> Point v n #

arrow :: (TypeableFloat n, Renderable (Path V2 n) b) => n -> QDiagram b V2 n Any #

center :: forall (v :: Type -> Type) n a. (InSpace v n a, Fractional n, Traversable v, Alignable a, HasOrigin a) => a -> a #

class Default a where #

Minimal complete definition

Nothing

Methods

def :: a #

Instances

Instances details
Default All 
Instance details

Defined in Data.Default.Class

Methods

def :: All #

Default Any 
Instance details

Defined in Data.Default.Class

Methods

def :: Any #

Default CClock 
Instance details

Defined in Data.Default.Class

Methods

def :: CClock #

Default CDouble 
Instance details

Defined in Data.Default.Class

Methods

def :: CDouble #

Default CFloat 
Instance details

Defined in Data.Default.Class

Methods

def :: CFloat #

Default CInt 
Instance details

Defined in Data.Default.Class

Methods

def :: CInt #

Default CIntMax 
Instance details

Defined in Data.Default.Class

Methods

def :: CIntMax #

Default CIntPtr 
Instance details

Defined in Data.Default.Class

Methods

def :: CIntPtr #

Default CLLong 
Instance details

Defined in Data.Default.Class

Methods

def :: CLLong #

Default CLong 
Instance details

Defined in Data.Default.Class

Methods

def :: CLong #

Default CPtrdiff 
Instance details

Defined in Data.Default.Class

Methods

def :: CPtrdiff #

Default CSUSeconds 
Instance details

Defined in Data.Default.Class

Methods

def :: CSUSeconds #

Default CShort 
Instance details

Defined in Data.Default.Class

Methods

def :: CShort #

Default CSigAtomic 
Instance details

Defined in Data.Default.Class

Methods

def :: CSigAtomic #

Default CSize 
Instance details

Defined in Data.Default.Class

Methods

def :: CSize #

Default CTime 
Instance details

Defined in Data.Default.Class

Methods

def :: CTime #

Default CUInt 
Instance details

Defined in Data.Default.Class

Methods

def :: CUInt #

Default CUIntMax 
Instance details

Defined in Data.Default.Class

Methods

def :: CUIntMax #

Default CUIntPtr 
Instance details

Defined in Data.Default.Class

Methods

def :: CUIntPtr #

Default CULLong 
Instance details

Defined in Data.Default.Class

Methods

def :: CULLong #

Default CULong 
Instance details

Defined in Data.Default.Class

Methods

def :: CULong #

Default CUSeconds 
Instance details

Defined in Data.Default.Class

Methods

def :: CUSeconds #

Default CUShort 
Instance details

Defined in Data.Default.Class

Methods

def :: CUShort #

Default Int16 
Instance details

Defined in Data.Default.Class

Methods

def :: Int16 #

Default Int32 
Instance details

Defined in Data.Default.Class

Methods

def :: Int32 #

Default Int64 
Instance details

Defined in Data.Default.Class

Methods

def :: Int64 #

Default Int8 
Instance details

Defined in Data.Default.Class

Methods

def :: Int8 #

Default Word16 
Instance details

Defined in Data.Default.Class

Methods

def :: Word16 #

Default Word32 
Instance details

Defined in Data.Default.Class

Methods

def :: Word32 #

Default Word64 
Instance details

Defined in Data.Default.Class

Methods

def :: Word64 #

Default Word8 
Instance details

Defined in Data.Default.Class

Methods

def :: Word8 #

Default LineCap 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineCap #

Default LineJoin 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineJoin #

Default LineMiterLimit 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineMiterLimit #

Default AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

Methods

def :: AdjustSide #

Default FillRule 
Instance details

Defined in Diagrams.TwoD.Path

Methods

def :: FillRule #

Default FontSlant 
Instance details

Defined in Diagrams.TwoD.Text

Methods

def :: FontSlant #

Default FontWeight 
Instance details

Defined in Diagrams.TwoD.Text

Methods

def :: FontWeight #

Default Ordering 
Instance details

Defined in Data.Default.Class

Methods

def :: Ordering #

Default Configuration 
Instance details

Defined in Hakyll.Core.Configuration

Methods

def :: Configuration #

Default PureState 
Instance details

Defined in Text.Pandoc.Class.PandocPure

Methods

def :: PureState #

Default ImageSize 
Instance details

Defined in Text.Pandoc.ImageSize

Methods

def :: ImageSize #

Default ReaderOptions 
Instance details

Defined in Text.Pandoc.Options

Methods

def :: ReaderOptions #

Default WriterOptions 
Instance details

Defined in Text.Pandoc.Options

Methods

def :: WriterOptions #

Default DBState 
Instance details

Defined in Text.Pandoc.Readers.DocBook

Methods

def :: DBState #

Default DEnv 
Instance details

Defined in Text.Pandoc.Readers.Docx

Methods

def :: DEnv #

Default DState 
Instance details

Defined in Text.Pandoc.Readers.Docx

Methods

def :: DState #

Default FB2State 
Instance details

Defined in Text.Pandoc.Readers.FB2

Methods

def :: FB2State #

Default JATSState 
Instance details

Defined in Text.Pandoc.Readers.JATS

Methods

def :: JATSState #

Default ManState 
Instance details

Defined in Text.Pandoc.Readers.Man

Methods

def :: ManState #

Default MdocState 
Instance details

Defined in Text.Pandoc.Readers.Mdoc

Methods

def :: MdocState #

Default SpacifyState 
Instance details

Defined in Text.Pandoc.Readers.Mdoc

Methods

def :: SpacifyState #

Default MuseEnv 
Instance details

Defined in Text.Pandoc.Readers.Muse

Methods

def :: MuseEnv #

Default MuseState 
Instance details

Defined in Text.Pandoc.Readers.Muse

Methods

def :: MuseState #

Default OPMLState 
Instance details

Defined in Text.Pandoc.Readers.OPML

Methods

def :: OPMLState #

Default Pict 
Instance details

Defined in Text.Pandoc.Readers.RTF

Methods

def :: Pict #

Default Properties 
Instance details

Defined in Text.Pandoc.Readers.RTF

Methods

def :: Properties #

Default RTFState 
Instance details

Defined in Text.Pandoc.Readers.RTF

Methods

def :: RTFState #

Default T2TMeta 
Instance details

Defined in Text.Pandoc.Readers.Txt2Tags

Methods

def :: T2TMeta #

Default WriterEnvironment 
Instance details

Defined in Text.Pandoc.Writers.DokuWiki

Methods

def :: WriterEnvironment #

Default WriterState 
Instance details

Defined in Text.Pandoc.Writers.DokuWiki

Methods

def :: WriterState #

Default WriterState 
Instance details

Defined in Text.Pandoc.Writers.Haddock

Methods

def :: WriterState #

Default WriterState 
Instance details

Defined in Text.Pandoc.Writers.Muse

Methods

def :: WriterState #

Default WriterState 
Instance details

Defined in Text.Pandoc.Writers.ZimWiki

Methods

def :: WriterState #

Default Integer 
Instance details

Defined in Data.Default.Class

Methods

def :: Integer #

Default () 
Instance details

Defined in Data.Default.Class

Methods

def :: () #

Default Double 
Instance details

Defined in Data.Default.Class

Methods

def :: Double #

Default Float 
Instance details

Defined in Data.Default.Class

Methods

def :: Float #

Default Int 
Instance details

Defined in Data.Default.Class

Methods

def :: Int #

Default Word 
Instance details

Defined in Data.Default.Class

Methods

def :: Word #

(Default a, RealFloat a) => Default (Complex a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Complex a #

Default (First a) 
Instance details

Defined in Data.Default.Class

Methods

def :: First a #

Default (Last a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Last a #

Default a => Default (Dual a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Dual a #

Default (Endo a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Endo a #

Num a => Default (Product a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Product a #

Num a => Default (Sum a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Sum a #

Integral a => Default (Ratio a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Ratio a #

OrderedField n => Default (LineWidthM n) 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineWidthM n #

Num n => Default (CatOpts n) 
Instance details

Defined in Diagrams.Combinators

Methods

def :: CatOpts n #

Fractional n => Default (AdjustMethod n) 
Instance details

Defined in Diagrams.Parametric.Adjust

Methods

def :: AdjustMethod n #

Fractional n => Default (AdjustOpts n) 
Instance details

Defined in Diagrams.Parametric.Adjust

Methods

def :: AdjustOpts n #

TypeableFloat n => Default (ArrowOpts n) 
Instance details

Defined in Diagrams.TwoD.Arrow

Methods

def :: ArrowOpts n #

Default (FillTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

def :: FillTexture n #

Default (LineTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

def :: LineTexture n #

OrderedField n => Default (EnvelopeOpts n) 
Instance details

Defined in Diagrams.TwoD.Model

Methods

def :: EnvelopeOpts n #

Fractional n => Default (OriginOpts n) 
Instance details

Defined in Diagrams.TwoD.Model

Methods

def :: OriginOpts n #

Floating n => Default (TraceOpts n) 
Instance details

Defined in Diagrams.TwoD.Model

Methods

def :: TraceOpts n #

Fractional d => Default (ExpandOpts d) 
Instance details

Defined in Diagrams.TwoD.Offset

Methods

def :: ExpandOpts d #

Fractional d => Default (OffsetOpts d) 
Instance details

Defined in Diagrams.TwoD.Offset

Methods

def :: OffsetOpts d #

Default (StrokeOpts a) 
Instance details

Defined in Diagrams.TwoD.Path

Methods

def :: StrokeOpts a #

Num n => Default (PolygonOpts n) 
Instance details

Defined in Diagrams.TwoD.Polygons

Methods

def :: PolygonOpts n #

Num d => Default (RoundedRectOpts d) 
Instance details

Defined in Diagrams.TwoD.Shapes

Methods

def :: RoundedRectOpts d #

Num n => Default (FontSizeM n) 
Instance details

Defined in Diagrams.TwoD.Text

Methods

def :: FontSizeM n #

Default a => Default (IO a) 
Instance details

Defined in Data.Default.Class

Methods

def :: IO a #

Default (Maybe a) 
Instance details

Defined in Data.Default.Class

Methods

def :: Maybe a #

Default [a] 
Instance details

Defined in Data.Default.Class

Methods

def :: [a] #

(Default a, Default b) => Default (a, b) 
Instance details

Defined in Data.Default.Class

Methods

def :: (a, b) #

Default r => Default (e -> r) 
Instance details

Defined in Data.Default.Class

Methods

def :: e -> r #

(Default a, Default b, Default c) => Default (a, b, c) 
Instance details

Defined in Data.Default.Class

Methods

def :: (a, b, c) #

(Default a, Default b, Default c, Default d) => Default (a, b, c, d) 
Instance details

Defined in Data.Default.Class

Methods

def :: (a, b, c, d) #

(Default a, Default b, Default c, Default d, Default e) => Default (a, b, c, d, e) 
Instance details

Defined in Data.Default.Class

Methods

def :: (a, b, c, d, e) #

(Default a, Default b, Default c, Default d, Default e, Default f) => Default (a, b, c, d, e, f) 
Instance details

Defined in Data.Default.Class

Methods

def :: (a, b, c, d, e, f) #

(Default a, Default b, Default c, Default d, Default e, Default f, Default g) => Default (a, b, c, d, e, f, g) 
Instance details

Defined in Data.Default.Class

Methods

def :: (a, b, c, d, e, f, g) #

data AdjustSide #

Constructors

Start 
End 
Both 

Instances

Instances details
Bounded AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

Enum AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

Read AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

Show AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

Default AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

Methods

def :: AdjustSide #

Eq AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

Ord AdjustSide 
Instance details

Defined in Diagrams.Parametric.Adjust

unit :: (Additive t, Num a) => ASetter' (t a) a -> t a #

scale :: forall (v :: Type -> Type) n a. (InSpace v n a, Eq n, Fractional n, Transformable a) => n -> a -> a #

class Transformable t where #

Methods

transform :: Transformation (V t) (N t) -> t -> t #

Instances

Instances details
(Transformable t, Ord t) => Transformable (Set t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (Set t)) (N (Set t)) -> Set t -> Set t #

(Num (N t), Additive (V t), Transformable t) => Transformable (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (TransInv t)) (N (TransInv t)) -> TransInv t -> TransInv t #

(Additive (V a), Num (N a), Transformable a) => Transformable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

transform :: Transformation (V (Located a)) (N (Located a)) -> Located a -> Located a #

Transformable (ParallelLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

Fractional n => Transformable (PointLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

Fractional n => Transformable (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

transform :: Transformation (V (Box n)) (N (Box n)) -> Box n -> Box n #

Fractional n => Transformable (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

transform :: Transformation (V (CSG n)) (N (CSG n)) -> CSG n -> CSG n #

Fractional n => Transformable (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Fractional n => Transformable (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

transform :: Transformation (V (Frustum n)) (N (Frustum n)) -> Frustum n -> Frustum n #

(V t ~ V2, N t ~ n, RealFloat n, Transformable t) => Transformable (ScaleInv t) 
Instance details

Defined in Diagrams.Transform.ScaleInv

Methods

transform :: Transformation (V (ScaleInv t)) (N (ScaleInv t)) -> ScaleInv t -> ScaleInv t #

Floating n => Transformable (FillTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

transform :: Transformation (V (FillTexture n)) (N (FillTexture n)) -> FillTexture n -> FillTexture n #

Fractional n => Transformable (LGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Floating n => Transformable (LineTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

transform :: Transformation (V (LineTexture n)) (N (LineTexture n)) -> LineTexture n -> LineTexture n #

Fractional n => Transformable (RGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Floating n => Transformable (Texture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

transform :: Transformation (V (Texture n)) (N (Texture n)) -> Texture n -> Texture n #

OrderedField n => Transformable (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

Methods

transform :: Transformation (V (Clip n)) (N (Clip n)) -> Clip n -> Clip n #

Floating n => Transformable (Text n) 
Instance details

Defined in Diagrams.TwoD.Text

Methods

transform :: Transformation (V (Text n)) (N (Text n)) -> Text n -> Text n #

Transformable m => Transformable (Deletable m) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (Deletable m)) (N (Deletable m)) -> Deletable m -> Deletable m #

Transformable t => Transformable [t] 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V [t]) (N [t]) -> [t] -> [t] #

Transformable t => Transformable (Map k t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (Map k t)) (N (Map k t)) -> Map k t -> Map k t #

(Metric v, Floating n) => Transformable (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

transform :: Transformation (V (Envelope v n)) (N (Envelope v n)) -> Envelope v n -> Envelope v n #

(InSpace v n t, Transformable t, HasLinearMap v, Floating n) => Transformable (Measured n t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (Measured n t)) (N (Measured n t)) -> Measured n t -> Measured n t #

(Additive v, Traversable v, Floating n) => Transformable (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

transform :: Transformation (V (Attribute v n)) (N (Attribute v n)) -> Attribute v n -> Attribute v n #

(Additive v, Traversable v, Floating n) => Transformable (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

transform :: Transformation (V (Style v n)) (N (Style v n)) -> Style v n -> Style v n #

(Additive v, Num n) => Transformable (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

transform :: Transformation (V (Trace v n)) (N (Trace v n)) -> Trace v n -> Trace v n #

(Additive v, Num n) => Transformable (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

(V (v n) ~ v, N (v n) ~ n, Transformable (v n)) => Transformable (Direction v n) 
Instance details

Defined in Diagrams.Direction

Methods

transform :: Transformation (V (Direction v n)) (N (Direction v n)) -> Direction v n -> Direction v n #

(HasLinearMap v, Metric v, OrderedField n) => Transformable (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

transform :: Transformation (V (Path v n)) (N (Path v n)) -> Path v n -> Path v n #

(Additive v, Num n) => Transformable (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Num n => Transformable (Camera l n) 
Instance details

Defined in Diagrams.ThreeD.Camera

Methods

transform :: Transformation (V (Camera l n)) (N (Camera l n)) -> Camera l n -> Camera l n #

(Floating n, Ord n, Metric v) => Transformable (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

transform :: Transformation (V (SegTree v n)) (N (SegTree v n)) -> SegTree v n -> SegTree v n #

(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

transform :: Transformation (V (Trail v n)) (N (Trail v n)) -> Trail v n -> Trail v n #

Fractional n => Transformable (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

Methods

transform :: Transformation (V (DImage n a)) (N (DImage n a)) -> DImage n a -> DImage n a #

(Additive v, Num n) => Transformable (Point v n) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (Point v n)) (N (Point v n)) -> Point v n -> Point v n #

(Transformable t, Transformable s, V t ~ V s, N t ~ N s) => Transformable (t, s) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (t, s)) (N (t, s)) -> (t, s) -> (t, s) #

(V t ~ v, N t ~ n, V t ~ V s, N t ~ N s, Functor v, Num n, Transformable t, Transformable s) => Transformable (s -> t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (s -> t)) (N (s -> t)) -> (s -> t) -> s -> t #

(Additive v, Num n) => Transformable (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Methods

transform :: Transformation (V (Query v n m)) (N (Query v n m)) -> Query v n m -> Query v n m #

Transformable (Prim b v n) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (Prim b v n)) (N (Prim b v n)) -> Prim b v n -> Prim b v n #

Transformable (Offset c v n) 
Instance details

Defined in Diagrams.Segment

Methods

transform :: Transformation (V (Offset c v n)) (N (Offset c v n)) -> Offset c v n -> Offset c v n #

Transformable (Segment c v n) 
Instance details

Defined in Diagrams.Segment

Methods

transform :: Transformation (V (Segment c v n)) (N (Segment c v n)) -> Segment c v n -> Segment c v n #

(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

transform :: Transformation (V (Trail' l v n)) (N (Trail' l v n)) -> Trail' l v n -> Trail' l v n #

(Transformable t, Transformable s, Transformable u, V s ~ V t, N s ~ N t, V s ~ V u, N s ~ N u) => Transformable (t, s, u) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (t, s, u)) (N (t, s, u)) -> (t, s, u) -> (t, s, u) #

(OrderedField n, Metric v, Semigroup m) => Transformable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (QDiagram b v n m)) (N (QDiagram b v n m)) -> QDiagram b v n m -> QDiagram b v n m #

Transformable (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (SubMap b v n m)) (N (SubMap b v n m)) -> SubMap b v n m -> SubMap b v n m #

Transformable (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m #

data family Options b (v :: Type -> Type) n #

Instances

Instances details
Eq n => Eq (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(==) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

(/=) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

Hashable n => Hashable (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

hashWithSalt :: Int -> Options SVG V2 n -> Int

hash :: Options SVG V2 n -> Int

data Options NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type Diagram b = QDiagram b (V b) (N b) Any #

data V2 a #

Constructors

V2 !a !a 

Instances

Instances details
Representable V2 
Instance details

Defined in Linear.V2

Associated Types

type Rep V2 
Instance details

Defined in Linear.V2

type Rep V2 = E V2

Methods

tabulate :: (Rep V2 -> a) -> V2 a

index :: V2 a -> Rep V2 -> a

MonadFix V2 
Instance details

Defined in Linear.V2

Methods

mfix :: (a -> V2 a) -> V2 a #

MonadZip V2 
Instance details

Defined in Linear.V2

Methods

mzip :: V2 a -> V2 b -> V2 (a, b) #

mzipWith :: (a -> b -> c) -> V2 a -> V2 b -> V2 c #

munzip :: V2 (a, b) -> (V2 a, V2 b) #

Foldable V2 
Instance details

Defined in Linear.V2

Methods

fold :: Monoid m => V2 m -> m #

foldMap :: Monoid m => (a -> m) -> V2 a -> m #

foldMap' :: Monoid m => (a -> m) -> V2 a -> m #

foldr :: (a -> b -> b) -> b -> V2 a -> b #

foldr' :: (a -> b -> b) -> b -> V2 a -> b #

foldl :: (b -> a -> b) -> b -> V2 a -> b #

foldl' :: (b -> a -> b) -> b -> V2 a -> b #

foldr1 :: (a -> a -> a) -> V2 a -> a #

foldl1 :: (a -> a -> a) -> V2 a -> a #

toList :: V2 a -> [a] #

null :: V2 a -> Bool #

length :: V2 a -> Int #

elem :: Eq a => a -> V2 a -> Bool #

maximum :: Ord a => V2 a -> a #

minimum :: Ord a => V2 a -> a #

sum :: Num a => V2 a -> a #

product :: Num a => V2 a -> a #

Foldable1 V2 
Instance details

Defined in Linear.V2

Methods

fold1 :: Semigroup m => V2 m -> m #

foldMap1 :: Semigroup m => (a -> m) -> V2 a -> m #

foldMap1' :: Semigroup m => (a -> m) -> V2 a -> m #

toNonEmpty :: V2 a -> NonEmpty a #

maximum :: Ord a => V2 a -> a #

minimum :: Ord a => V2 a -> a #

head :: V2 a -> a #

last :: V2 a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> V2 a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> V2 a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> V2 a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> V2 a -> b #

Eq1 V2 
Instance details

Defined in Linear.V2

Methods

liftEq :: (a -> b -> Bool) -> V2 a -> V2 b -> Bool #

Ord1 V2 
Instance details

Defined in Linear.V2

Methods

liftCompare :: (a -> b -> Ordering) -> V2 a -> V2 b -> Ordering #

Read1 V2 
Instance details

Defined in Linear.V2

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (V2 a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [V2 a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (V2 a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [V2 a] #

Show1 V2 
Instance details

Defined in Linear.V2

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> V2 a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [V2 a] -> ShowS #

Traversable V2 
Instance details

Defined in Linear.V2

Methods

traverse :: Applicative f => (a -> f b) -> V2 a -> f (V2 b) #

sequenceA :: Applicative f => V2 (f a) -> f (V2 a) #

mapM :: Monad m => (a -> m b) -> V2 a -> m (V2 b) #

sequence :: Monad m => V2 (m a) -> m (V2 a) #

Applicative V2 
Instance details

Defined in Linear.V2

Methods

pure :: a -> V2 a #

(<*>) :: V2 (a -> b) -> V2 a -> V2 b #

liftA2 :: (a -> b -> c) -> V2 a -> V2 b -> V2 c #

(*>) :: V2 a -> V2 b -> V2 b #

(<*) :: V2 a -> V2 b -> V2 a #

Functor V2 
Instance details

Defined in Linear.V2

Methods

fmap :: (a -> b) -> V2 a -> V2 b #

(<$) :: a -> V2 b -> V2 a #

Monad V2 
Instance details

Defined in Linear.V2

Methods

(>>=) :: V2 a -> (a -> V2 b) -> V2 b #

(>>) :: V2 a -> V2 b -> V2 b #

return :: a -> V2 a #

Serial1 V2 
Instance details

Defined in Linear.V2

Methods

serializeWith :: MonadPut m => (a -> m ()) -> V2 a -> m ()

deserializeWith :: MonadGet m => m a -> m (V2 a)

HasR V2 
Instance details

Defined in Diagrams.TwoD.Types

Methods

_r :: RealFloat n => Lens' (V2 n) n #

Distributive V2 
Instance details

Defined in Linear.V2

Methods

distribute :: Functor f => f (V2 a) -> V2 (f a)

collect :: Functor f => (a -> V2 b) -> f a -> V2 (f b)

distributeM :: Monad m => m (V2 a) -> V2 (m a)

collectM :: Monad m => (a -> V2 b) -> m a -> V2 (m b)

Hashable1 V2 
Instance details

Defined in Linear.V2

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> V2 a -> Int

Affine V2 
Instance details

Defined in Linear.Affine

Associated Types

type Diff V2 
Instance details

Defined in Linear.Affine

type Diff V2 = V2

Methods

(.-.) :: Num a => V2 a -> V2 a -> Diff V2 a #

(.+^) :: Num a => V2 a -> Diff V2 a -> V2 a #

(.-^) :: Num a => V2 a -> Diff V2 a -> V2 a #

Metric V2 
Instance details

Defined in Linear.V2

Methods

dot :: Num a => V2 a -> V2 a -> a #

quadrance :: Num a => V2 a -> a #

qd :: Num a => V2 a -> V2 a -> a #

distance :: Floating a => V2 a -> V2 a -> a #

norm :: Floating a => V2 a -> a #

signorm :: Floating a => V2 a -> V2 a #

Finite V2 
Instance details

Defined in Linear.V2

Associated Types

type Size V2 
Instance details

Defined in Linear.V2

type Size V2 = 2

Methods

toV :: V2 a -> V (Size V2) a

fromV :: V (Size V2) a -> V2 a

R1 V2 
Instance details

Defined in Linear.V2

Methods

_x :: Lens' (V2 a) a #

R2 V2 
Instance details

Defined in Linear.V2

Methods

_y :: Lens' (V2 a) a #

_xy :: Lens' (V2 a) (V2 a) #

Additive V2 
Instance details

Defined in Linear.V2

Methods

zero :: Num a => V2 a #

(^+^) :: Num a => V2 a -> V2 a -> V2 a #

(^-^) :: Num a => V2 a -> V2 a -> V2 a #

lerp :: Num a => a -> V2 a -> V2 a -> V2 a #

liftU2 :: (a -> a -> a) -> V2 a -> V2 a -> V2 a #

liftI2 :: (a -> b -> c) -> V2 a -> V2 b -> V2 c #

Apply V2 
Instance details

Defined in Linear.V2

Methods

(<.>) :: V2 (a -> b) -> V2 a -> V2 b

(.>) :: V2 a -> V2 b -> V2 b

(<.) :: V2 a -> V2 b -> V2 a

liftF2 :: (a -> b -> c) -> V2 a -> V2 b -> V2 c

Bind V2 
Instance details

Defined in Linear.V2

Methods

(>>-) :: V2 a -> (a -> V2 b) -> V2 b

join :: V2 (V2 a) -> V2 a

Traversable1 V2 
Instance details

Defined in Linear.V2

Methods

traverse1 :: Apply f => (a -> f b) -> V2 a -> f (V2 b) #

sequence1 :: Apply f => V2 (f b) -> f (V2 b)

Generic1 V2 
Instance details

Defined in Linear.V2

Associated Types

type Rep1 V2 
Instance details

Defined in Linear.V2

type Rep1 V2 = D1 ('MetaData "V2" "Linear.V2" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V2" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1))

Methods

from1 :: V2 a -> Rep1 V2 a #

to1 :: Rep1 V2 a -> V2 a #

SVGFloat n => Backend SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

Associated Types

newtype Render SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n = R (SvgRenderM n)
type Result SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type Result SVG V2 n = Element
data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

Methods

adjustDia :: (Additive V2, Monoid' m, Num n) => SVG -> Options SVG V2 n -> QDiagram SVG V2 n m -> (Options SVG V2 n, Transformation V2 n, QDiagram SVG V2 n m) #

renderRTree :: SVG -> Options SVG V2 n -> RTree SVG V2 n Annotation -> Result SVG V2 n #

Lift a => Lift (V2 a :: Type) 
Instance details

Defined in Linear.V2

Methods

lift :: Quote m => V2 a -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => V2 a -> Code m (V2 a) #

Unbox a => Vector Vector (V2 a) 
Instance details

Defined in Linear.V2

Methods

basicUnsafeFreeze :: Mutable Vector s (V2 a) -> ST s (Vector (V2 a))

basicUnsafeThaw :: Vector (V2 a) -> ST s (Mutable Vector s (V2 a))

basicLength :: Vector (V2 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V2 a) -> Vector (V2 a)

basicUnsafeIndexM :: Vector (V2 a) -> Int -> Box (V2 a)

basicUnsafeCopy :: Mutable Vector s (V2 a) -> Vector (V2 a) -> ST s ()

elemseq :: Vector (V2 a) -> V2 a -> b -> b

Unbox a => MVector MVector (V2 a) 
Instance details

Defined in Linear.V2

Methods

basicLength :: MVector s (V2 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V2 a) -> MVector s (V2 a)

basicOverlaps :: MVector s (V2 a) -> MVector s (V2 a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V2 a))

basicInitialize :: MVector s (V2 a) -> ST s ()

basicUnsafeReplicate :: Int -> V2 a -> ST s (MVector s (V2 a))

basicUnsafeRead :: MVector s (V2 a) -> Int -> ST s (V2 a)

basicUnsafeWrite :: MVector s (V2 a) -> Int -> V2 a -> ST s ()

basicClear :: MVector s (V2 a) -> ST s ()

basicSet :: MVector s (V2 a) -> V2 a -> ST s ()

basicUnsafeCopy :: MVector s (V2 a) -> MVector s (V2 a) -> ST s ()

basicUnsafeMove :: MVector s (V2 a) -> MVector s (V2 a) -> ST s ()

basicUnsafeGrow :: MVector s (V2 a) -> Int -> ST s (MVector s (V2 a))

Data a => Data (V2 a) 
Instance details

Defined in Linear.V2

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V2 a -> c (V2 a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V2 a) #

toConstr :: V2 a -> Constr #

dataTypeOf :: V2 a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V2 a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V2 a)) #

gmapT :: (forall b. Data b => b -> b) -> V2 a -> V2 a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V2 a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V2 a -> r #

gmapQ :: (forall d. Data d => d -> u) -> V2 a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V2 a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V2 a -> m (V2 a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V2 a -> m (V2 a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V2 a -> m (V2 a) #

Storable a => Storable (V2 a) 
Instance details

Defined in Linear.V2

Methods

sizeOf :: V2 a -> Int #

alignment :: V2 a -> Int #

peekElemOff :: Ptr (V2 a) -> Int -> IO (V2 a) #

pokeElemOff :: Ptr (V2 a) -> Int -> V2 a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (V2 a) #

pokeByteOff :: Ptr b -> Int -> V2 a -> IO () #

peek :: Ptr (V2 a) -> IO (V2 a) #

poke :: Ptr (V2 a) -> V2 a -> IO () #

Monoid a => Monoid (V2 a) 
Instance details

Defined in Linear.V2

Methods

mempty :: V2 a #

mappend :: V2 a -> V2 a -> V2 a #

mconcat :: [V2 a] -> V2 a #

Semigroup a => Semigroup (V2 a) 
Instance details

Defined in Linear.V2

Methods

(<>) :: V2 a -> V2 a -> V2 a #

sconcat :: NonEmpty (V2 a) -> V2 a #

stimes :: Integral b => b -> V2 a -> V2 a #

Bounded a => Bounded (V2 a) 
Instance details

Defined in Linear.V2

Methods

minBound :: V2 a #

maxBound :: V2 a #

Floating a => Floating (V2 a) 
Instance details

Defined in Linear.V2

Methods

pi :: V2 a #

exp :: V2 a -> V2 a #

log :: V2 a -> V2 a #

sqrt :: V2 a -> V2 a #

(**) :: V2 a -> V2 a -> V2 a #

logBase :: V2 a -> V2 a -> V2 a #

sin :: V2 a -> V2 a #

cos :: V2 a -> V2 a #

tan :: V2 a -> V2 a #

asin :: V2 a -> V2 a #

acos :: V2 a -> V2 a #

atan :: V2 a -> V2 a #

sinh :: V2 a -> V2 a #

cosh :: V2 a -> V2 a #

tanh :: V2 a -> V2 a #

asinh :: V2 a -> V2 a #

acosh :: V2 a -> V2 a #

atanh :: V2 a -> V2 a #

log1p :: V2 a -> V2 a #

expm1 :: V2 a -> V2 a #

log1pexp :: V2 a -> V2 a #

log1mexp :: V2 a -> V2 a #

Generic (V2 a) 
Instance details

Defined in Linear.V2

Associated Types

type Rep (V2 a) 
Instance details

Defined in Linear.V2

type Rep (V2 a) = D1 ('MetaData "V2" "Linear.V2" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V2" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a)))

Methods

from :: V2 a -> Rep (V2 a) x #

to :: Rep (V2 a) x -> V2 a #

Ix a => Ix (V2 a) 
Instance details

Defined in Linear.V2

Methods

range :: (V2 a, V2 a) -> [V2 a] #

index :: (V2 a, V2 a) -> V2 a -> Int #

unsafeIndex :: (V2 a, V2 a) -> V2 a -> Int #

inRange :: (V2 a, V2 a) -> V2 a -> Bool #

rangeSize :: (V2 a, V2 a) -> Int #

unsafeRangeSize :: (V2 a, V2 a) -> Int #

Num a => Num (V2 a) 
Instance details

Defined in Linear.V2

Methods

(+) :: V2 a -> V2 a -> V2 a #

(-) :: V2 a -> V2 a -> V2 a #

(*) :: V2 a -> V2 a -> V2 a #

negate :: V2 a -> V2 a #

abs :: V2 a -> V2 a #

signum :: V2 a -> V2 a #

fromInteger :: Integer -> V2 a #

Read a => Read (V2 a) 
Instance details

Defined in Linear.V2

Fractional a => Fractional (V2 a) 
Instance details

Defined in Linear.V2

Methods

(/) :: V2 a -> V2 a -> V2 a #

recip :: V2 a -> V2 a #

fromRational :: Rational -> V2 a #

Show a => Show (V2 a) 
Instance details

Defined in Linear.V2

Methods

showsPrec :: Int -> V2 a -> ShowS #

show :: V2 a -> String #

showList :: [V2 a] -> ShowS #

Binary a => Binary (V2 a) 
Instance details

Defined in Linear.V2

Methods

put :: V2 a -> Put #

get :: Get (V2 a) #

putList :: [V2 a] -> Put #

Serial a => Serial (V2 a) 
Instance details

Defined in Linear.V2

Methods

serialize :: MonadPut m => V2 a -> m ()

deserialize :: MonadGet m => m (V2 a)

Serialize a => Serialize (V2 a) 
Instance details

Defined in Linear.V2

Methods

put :: Putter (V2 a)

get :: Get (V2 a)

NFData a => NFData (V2 a) 
Instance details

Defined in Linear.V2

Methods

rnf :: V2 a -> () #

Coordinates (V2 n) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V2 n) = n
type PrevDim (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V2 n) = n
type Decomposition (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V2 n) = n :& n

Methods

(^&) :: PrevDim (V2 n) -> FinalCoord (V2 n) -> V2 n #

pr :: PrevDim (V2 n) -> FinalCoord (V2 n) -> V2 n #

coords :: V2 n -> Decomposition (V2 n) #

Eq a => Eq (V2 a) 
Instance details

Defined in Linear.V2

Methods

(==) :: V2 a -> V2 a -> Bool #

(/=) :: V2 a -> V2 a -> Bool #

Ord a => Ord (V2 a) 
Instance details

Defined in Linear.V2

Methods

compare :: V2 a -> V2 a -> Ordering #

(<) :: V2 a -> V2 a -> Bool #

(<=) :: V2 a -> V2 a -> Bool #

(>) :: V2 a -> V2 a -> Bool #

(>=) :: V2 a -> V2 a -> Bool #

max :: V2 a -> V2 a -> V2 a #

min :: V2 a -> V2 a -> V2 a #

Hashable a => Hashable (V2 a) 
Instance details

Defined in Linear.V2

Methods

hashWithSalt :: Int -> V2 a -> Int

hash :: V2 a -> Int

Ixed (V2 a) 
Instance details

Defined in Linear.V2

Methods

ix :: Index (V2 a) -> Traversal' (V2 a) (IxValue (V2 a)) #

Epsilon a => Epsilon (V2 a) 
Instance details

Defined in Linear.V2

Methods

nearZero :: V2 a -> Bool

Random a => Random (V2 a) 
Instance details

Defined in Linear.V2

Methods

randomR :: RandomGen g => (V2 a, V2 a) -> g -> (V2 a, g)

random :: RandomGen g => g -> (V2 a, g)

randomRs :: RandomGen g => (V2 a, V2 a) -> g -> [V2 a]

randoms :: RandomGen g => g -> [V2 a]

Uniform a => Uniform (V2 a) 
Instance details

Defined in Linear.V2

Methods

uniformM :: StatefulGen g m => g -> m (V2 a)

UniformRange a => UniformRange (V2 a) 
Instance details

Defined in Linear.V2

Methods

uniformRM :: StatefulGen g m => (V2 a, V2 a) -> g -> m (V2 a)

Unbox a => Unbox (V2 a) 
Instance details

Defined in Linear.V2

FoldableWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

ifoldMap :: Monoid m => (E V2 -> a -> m) -> V2 a -> m #

ifoldMap' :: Monoid m => (E V2 -> a -> m) -> V2 a -> m #

ifoldr :: (E V2 -> a -> b -> b) -> b -> V2 a -> b #

ifoldl :: (E V2 -> b -> a -> b) -> b -> V2 a -> b #

ifoldr' :: (E V2 -> a -> b -> b) -> b -> V2 a -> b #

ifoldl' :: (E V2 -> b -> a -> b) -> b -> V2 a -> b #

FunctorWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

imap :: (E V2 -> a -> b) -> V2 a -> V2 b #

TraversableWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

itraverse :: Applicative f => (E V2 -> a -> f b) -> V2 a -> f (V2 b) #

Each (V2 a) (V2 b) a b 
Instance details

Defined in Linear.V2

Methods

each :: Traversal (V2 a) (V2 b) a b #

Field1 (V2 a) (V2 a) a a 
Instance details

Defined in Linear.V2

Methods

_1 :: Lens (V2 a) (V2 a) a a #

Field2 (V2 a) (V2 a) a a 
Instance details

Defined in Linear.V2

Methods

_2 :: Lens (V2 a) (V2 a) a a #

RealFloat n => Traced (BoundingBox V2 n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getTrace :: BoundingBox V2 n -> Trace (V (BoundingBox V2 n)) (N (BoundingBox V2 n)) #

SVGFloat n => Renderable (Path V2 n) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> Path V2 n -> Render SVG (V (Path V2 n)) (N (Path V2 n)) #

Monoid (Render SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

mempty :: Render SVG V2 n #

mappend :: Render SVG V2 n -> Render SVG V2 n -> Render SVG V2 n #

mconcat :: [Render SVG V2 n] -> Render SVG V2 n #

Semigroup (Render SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(<>) :: Render SVG V2 n -> Render SVG V2 n -> Render SVG V2 n #

sconcat :: NonEmpty (Render SVG V2 n) -> Render SVG V2 n #

stimes :: Integral b => b -> Render SVG V2 n -> Render SVG V2 n #

Eq n => Eq (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(==) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

(/=) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

Hashable n => Hashable (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

hashWithSalt :: Int -> Options SVG V2 n -> Int

hash :: Options SVG V2 n -> Int

type Rep V2 
Instance details

Defined in Linear.V2

type Rep V2 = E V2
type Diff V2 
Instance details

Defined in Linear.Affine

type Diff V2 = V2
type Size V2 
Instance details

Defined in Linear.V2

type Size V2 = 2
type Rep1 V2 
Instance details

Defined in Linear.V2

type Rep1 V2 = D1 ('MetaData "V2" "Linear.V2" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V2" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) Par1))
data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n = R (SvgRenderM n)
type Result SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type Result SVG V2 n = Element
data MVector s (V2 a) 
Instance details

Defined in Linear.V2

data MVector s (V2 a) = MV_V2 !Int !(MVector s a)
type Rep (V2 a) 
Instance details

Defined in Linear.V2

type Rep (V2 a) = D1 ('MetaData "V2" "Linear.V2" "linear-1.23.1-3dCfEtd6Mua3spCTpO8Jtm" 'False) (C1 ('MetaCons "V2" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 a)))
type N (V2 n) 
Instance details

Defined in Diagrams.TwoD.Types

type N (V2 n) = n
type V (V2 n) 
Instance details

Defined in Diagrams.TwoD.Types

type V (V2 n) = V2
type MainOpts [(String, QDiagram SVG V2 n Any)] 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts [(String, QDiagram SVG V2 n Any)] = (MainOpts (QDiagram SVG V2 n Any), DiagramMultiOpts)
type Decomposition (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V2 n) = n :& n
type FinalCoord (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V2 n) = n
type PrevDim (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V2 n) = n
type Index (V2 a) 
Instance details

Defined in Linear.V2

type Index (V2 a) = E V2
type IxValue (V2 a) 
Instance details

Defined in Linear.V2

type IxValue (V2 a) = a
data Vector (V2 a) 
Instance details

Defined in Linear.V2

data Vector (V2 a) = V_V2 !Int !(Vector a)
type MainOpts (QDiagram SVG V2 n Any) 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts (QDiagram SVG V2 n Any) = (DiagramOpts, DiagramLoopOpts, PrettyOpt)

data QDiagram b (v :: Type -> Type) n m #

Instances

Instances details
ToResult [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [QDiagram b v n Any] = ()
type ResultOf [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [QDiagram b v n Any] = [QDiagram b v n Any]

Methods

toResult :: [QDiagram b v n Any] -> Args [QDiagram b v n Any] -> ResultOf [QDiagram b v n Any]

ToResult [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [(String, QDiagram b v n Any)] = ()
type ResultOf [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [(String, QDiagram b v n Any)] = [(String, QDiagram b v n Any)]

Methods

toResult :: [(String, QDiagram b v n Any)] -> Args [(String, QDiagram b v n Any)] -> ResultOf [(String, QDiagram b v n Any)]

Functor (QDiagram b v n) 
Instance details

Defined in Diagrams.Core.Types

Methods

fmap :: (a -> b0) -> QDiagram b v n a -> QDiagram b v n b0 #

(<$) :: a -> QDiagram b v n b0 -> QDiagram b v n a #

ToResult (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (Animation b v n) = ()
type ResultOf (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (Animation b v n) = Animation b v n

Methods

toResult :: Animation b v n -> Args (Animation b v n) -> ResultOf (Animation b v n)

(Metric v, OrderedField n, Semigroup m) => Monoid (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

mempty :: QDiagram b v n m #

mappend :: QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #

mconcat :: [QDiagram b v n m] -> QDiagram b v n m #

(Metric v, OrderedField n, Semigroup m) => Semigroup (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(<>) :: QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #

sconcat :: NonEmpty (QDiagram b v n m) -> QDiagram b v n m #

stimes :: Integral b0 => b0 -> QDiagram b v n m -> QDiagram b v n m #

(Metric v, OrderedField n, Monoid' m) => Enveloped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getEnvelope :: QDiagram b v n m -> Envelope (V (QDiagram b v n m)) (N (QDiagram b v n m)) #

(Metric v, OrderedField n, Semigroup m) => HasOrigin (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

moveOriginTo :: Point (V (QDiagram b v n m)) (N (QDiagram b v n m)) -> QDiagram b v n m -> QDiagram b v n m #

(Metric v, OrderedField n, Monoid' m) => Juxtaposable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

juxtapose :: Vn (QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #

(Metric v, OrderedField n, Semigroup m) => Qualifiable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(.>>) :: IsName a => a -> QDiagram b v n m -> QDiagram b v n m #

(Metric v, OrderedField n, Semigroup m) => HasStyle (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

applyStyle :: Style (V (QDiagram b v n m)) (N (QDiagram b v n m)) -> QDiagram b v n m -> QDiagram b v n m #

(Metric v, OrderedField n, Semigroup m) => Traced (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getTrace :: QDiagram b v n m -> Trace (V (QDiagram b v n m)) (N (QDiagram b v n m)) #

(OrderedField n, Metric v, Semigroup m) => Transformable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (QDiagram b v n m)) (N (QDiagram b v n m)) -> QDiagram b v n m -> QDiagram b v n m #

(Metric v, OrderedField n, Monoid' m) => Alignable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => (v0 n0 -> QDiagram b v n m -> Point v0 n0) -> v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m #

defaultBoundary :: (V (QDiagram b v n m) ~ v0, N (QDiagram b v n m) ~ n0) => v0 n0 -> QDiagram b v n m -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m #

ToResult (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (QDiagram b v n Any) = ()
type ResultOf (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (QDiagram b v n Any) = QDiagram b v n Any

Methods

toResult :: QDiagram b v n Any -> Args (QDiagram b v n Any) -> ResultOf (QDiagram b v n Any)

Wrapped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Associated Types

type Unwrapped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (QDiagram b v n m) = DUALTree (DownAnnots v n) (UpAnnots b v n m) Annotation (QDiaLeaf b v n m)

Methods

_Wrapped' :: Iso' (QDiagram b v n m) (Unwrapped (QDiagram b v n m)) #

Monoid m => HasQuery (QDiagram b v n m) m 
Instance details

Defined in Diagrams.Query

Methods

getQuery :: QDiagram b v n m -> Query (V (QDiagram b v n m)) (N (QDiagram b v n m)) m #

Rewrapped (QDiagram b v n m) (QDiagram b' v' n' m') 
Instance details

Defined in Diagrams.Core.Types

type Args [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [QDiagram b v n Any] = ()
type Args [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args [(String, QDiagram b v n Any)] = ()
type MainOpts [(String, QDiagram SVG V2 n Any)] 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts [(String, QDiagram SVG V2 n Any)] = (MainOpts (QDiagram SVG V2 n Any), DiagramMultiOpts)
type ResultOf [QDiagram b v n Any] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [QDiagram b v n Any] = [QDiagram b v n Any]
type ResultOf [(String, QDiagram b v n Any)] 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf [(String, QDiagram b v n Any)] = [(String, QDiagram b v n Any)]
type Args (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (Animation b v n) = ()
type ResultOf (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (Animation b v n) = Animation b v n
type N (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type N (QDiagram b v n m) = n
type V (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type V (QDiagram b v n m) = v
type Args (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (QDiagram b v n Any) = ()
type MainOpts (QDiagram SVG V2 n Any) 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts (QDiagram SVG V2 n Any) = (DiagramOpts, DiagramLoopOpts, PrettyOpt)
type ResultOf (QDiagram b v n Any) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (QDiagram b v n Any) = QDiagram b v n Any
type Unwrapped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (QDiagram b v n m) = DUALTree (DownAnnots v n) (UpAnnots b v n m) Annotation (QDiaLeaf b v n m)

renderDia :: forall b (v :: Type -> Type) n m. (Backend b v n, HasLinearMap v, Metric v, Typeable n, OrderedField n, Monoid' m) => b -> Options b v n -> QDiagram b v n m -> Result b v n #

pad :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m #

mkWidth :: Num n => n -> SizeSpec V2 n #

data Transformation (v :: Type -> Type) n #

Instances

Instances details
(Additive v, Num n) => Monoid (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

(Additive v, Num n) => Semigroup (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

(Additive v, Num n) => HasOrigin (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

(Additive v, Num n) => Transformable (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

(Transformable a, V a ~ v, N a ~ n) => Action (Transformation v n) a 
Instance details

Defined in Diagrams.Core.Transform

Methods

act :: Transformation v n -> a -> a

type N (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

type N (Transformation v n) = n
type V (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

type V (Transformation v n) = v

data family Render b (v :: Type -> Type) n #

Instances

Instances details
Monoid (Render NullBackend v n) 
Instance details

Defined in Diagrams.Core.Types

Monoid (Render SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

mempty :: Render SVG V2 n #

mappend :: Render SVG V2 n -> Render SVG V2 n -> Render SVG V2 n #

mconcat :: [Render SVG V2 n] -> Render SVG V2 n #

Semigroup (Render NullBackend v n) 
Instance details

Defined in Diagrams.Core.Types

Semigroup (Render SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(<>) :: Render SVG V2 n -> Render SVG V2 n -> Render SVG V2 n #

sconcat :: NonEmpty (Render SVG V2 n) -> Render SVG V2 n #

stimes :: Integral b => b -> Render SVG V2 n -> Render SVG V2 n #

data Render NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

newtype Render SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n = R (SvgRenderM n)

data DImage a b where #

Constructors

DImage :: forall b a. ImageData b -> Int -> Int -> Transformation V2 a -> DImage a b 

Instances

Instances details
Fractional n => HasOrigin (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

Methods

moveOriginTo :: Point (V (DImage n a)) (N (DImage n a)) -> DImage n a -> DImage n a #

Fractional n => Transformable (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

Methods

transform :: Transformation (V (DImage n a)) (N (DImage n a)) -> DImage n a -> DImage n a #

SVGFloat n => Renderable (DImage n Embedded) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n Embedded -> Render SVG (V (DImage n Embedded)) (N (DImage n Embedded)) #

SVGFloat n => Renderable (DImage n (Native Img)) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n (Native Img) -> Render SVG (V (DImage n (Native Img))) (N (DImage n (Native Img))) #

Fractional n => Renderable (DImage n a) NullBackend 
Instance details

Defined in Diagrams.TwoD.Image

Methods

render :: NullBackend -> DImage n a -> Render NullBackend (V (DImage n a)) (N (DImage n a)) #

RealFloat n => HasQuery (DImage n a) Any 
Instance details

Defined in Diagrams.TwoD.Image

Methods

getQuery :: DImage n a -> Query (V (DImage n a)) (N (DImage n a)) Any #

type N (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

type N (DImage n a) = n
type V (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

type V (DImage n a) = V2

data Embedded #

Instances

Instances details
SVGFloat n => Renderable (DImage n Embedded) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n Embedded -> Render SVG (V (DImage n Embedded)) (N (DImage n Embedded)) #

data Native t #

Instances

Instances details
SVGFloat n => Renderable (DImage n (Native Img)) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n (Native Img) -> Render SVG (V (DImage n (Native Img))) (N (DImage n (Native Img))) #

type family V a :: Type -> Type #

Instances

Instances details
type V SVG 
Instance details

Defined in Diagrams.Backend.SVG

type V SVG = V2
type V (Active a) 
Instance details

Defined in Diagrams.Animation.Active

type V (Active a) = V a
type V (Set a) 
Instance details

Defined in Diagrams.Core.V

type V (Set a) = V a
type V (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type V (TransInv t) = V t
type V (Located a) 
Instance details

Defined in Diagrams.Located

type V (Located a) = V a
type V (Tangent t) 
Instance details

Defined in Diagrams.Tangent

type V (Tangent t) = V t
type V (OrthoLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type V (OrthoLens n) = V3
type V (PerspectiveLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type V (PerspectiveLens n) = V3
type V (ParallelLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type V (ParallelLight n) = V3
type V (PointLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type V (PointLight n) = V3
type V (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (Box n) = V3
type V (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (CSG n) = V3
type V (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (Ellipsoid n) = V3
type V (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (Frustum n) = V3
type V (GetSegment t) 
Instance details

Defined in Diagrams.Trail

type V (GetSegment t) = V t
type V (ScaleInv t) 
Instance details

Defined in Diagrams.Transform.ScaleInv

type V (ScaleInv t) = V t
type V (FillTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (FillTexture n) = V2
type V (LGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (LGradient n) = V2
type V (LineTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (LineTexture n) = V2
type V (RGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (RGradient n) = V2
type V (Texture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (Texture n) = V2
type V (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

type V (Clip n) = V2
type V (BernsteinPoly n) 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

type V (BernsteinPoly n) = V1
type V (Text n) 
Instance details

Defined in Diagrams.TwoD.Text

type V (Text n) = V2
type V (V2 n) 
Instance details

Defined in Diagrams.TwoD.Types

type V (V2 n) = V2
type V (V3 n) 
Instance details

Defined in Diagrams.ThreeD.Types

type V (V3 n) = V3
type V (Deletable m) 
Instance details

Defined in Diagrams.Core.V

type V (Deletable m) = V m
type V (Split m) 
Instance details

Defined in Diagrams.Core.V

type V (Split m) = V m
type V (Maybe a) 
Instance details

Defined in Diagrams.Core.V

type V (Maybe a) = V a
type V [a] 
Instance details

Defined in Diagrams.Core.V

type V [a] = V a
type V (Map k a) 
Instance details

Defined in Diagrams.Core.V

type V (Map k a) = V a
type V (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type V (Envelope v n) = v
type V (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

type V (Measured n a) = V a
type V (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

type V (Attribute v n) = v
type V (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type V (Style v n) = v
type V (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type V (Trace v n) = v
type V (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

type V (Transformation v n) = v
type V (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

type V (BoundingBox v n) = v
type V (NonEmptyBoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

type V (NonEmptyBoundingBox v n) = v
type V (Direction v n) 
Instance details

Defined in Diagrams.Direction

type V (Direction v n) = v
type V (Path v n) 
Instance details

Defined in Diagrams.Path

type V (Path v n) = v
type V (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

type V (FixedSegment v n) = v
type V (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

type V (SizeSpec v n) = v
type V (Camera l n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type V (Camera l n) = V3
type V (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type V (SegTree v n) = v
type V (Trail v n) 
Instance details

Defined in Diagrams.Trail

type V (Trail v n) = v
type V (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

type V (DImage n a) = V2
type V (FingerTree m a) 
Instance details

Defined in Diagrams.Trail

type V (FingerTree m a) = V a
type V (Point v n) 
Instance details

Defined in Diagrams.Core.Points

type V (Point v n) = v
type V (m :+: n) 
Instance details

Defined in Diagrams.Core.V

type V (m :+: n) = V m
type V (a, b) 
Instance details

Defined in Diagrams.Core.V

type V (a, b) = V a
type V (a -> b) 
Instance details

Defined in Diagrams.Core.V

type V (a -> b) = V b
type V (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type V (Query v n m) = v
type V (Prim b v n) 
Instance details

Defined in Diagrams.Core.Types

type V (Prim b v n) = v
type V (Offset c v n) 
Instance details

Defined in Diagrams.Segment

type V (Offset c v n) = v
type V (Segment c v n) 
Instance details

Defined in Diagrams.Segment

type V (Segment c v n) = v
type V (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

type V (Trail' l v n) = v
type V (a, b, c) 
Instance details

Defined in Diagrams.Core.V

type V (a, b, c) = V a
type V (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type V (QDiagram b v n m) = v
type V (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type V (SubMap b v n m) = v
type V (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type V (Subdiagram b v n m) = v

newtype Path (v :: Type -> Type) n #

Constructors

Path [Located (Trail v n)] 

Instances

Instances details
Monoid (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

mempty :: Path v n #

mappend :: Path v n -> Path v n -> Path v n #

mconcat :: [Path v n] -> Path v n #

Semigroup (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

(<>) :: Path v n -> Path v n -> Path v n #

sconcat :: NonEmpty (Path v n) -> Path v n #

stimes :: Integral b => b -> Path v n -> Path v n #

Generic (Path v n) 
Instance details

Defined in Diagrams.Path

Associated Types

type Rep (Path v n) 
Instance details

Defined in Diagrams.Path

type Rep (Path v n) = D1 ('MetaData "Path" "Diagrams.Path" "diagrams-lib-1.4.6.2-9ym4nU13AVa88SQ1myBzrG" 'True) (C1 ('MetaCons "Path" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Located (Trail v n)])))

Methods

from :: Path v n -> Rep (Path v n) x #

to :: Rep (Path v n) x -> Path v n #

Show (v n) => Show (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

showsPrec :: Int -> Path v n -> ShowS #

show :: Path v n -> String #

showList :: [Path v n] -> ShowS #

(OrderedField n, Metric v, Serialize (v n), Serialize (V (v n) (N (v n)))) => Serialize (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

put :: Putter (Path v n)

get :: Get (Path v n)

(Metric v, OrderedField n) => Enveloped (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

getEnvelope :: Path v n -> Envelope (V (Path v n)) (N (Path v n)) #

(Additive v, Num n) => HasOrigin (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

moveOriginTo :: Point (V (Path v n)) (N (Path v n)) -> Path v n -> Path v n #

(Metric v, OrderedField n) => Juxtaposable (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

juxtapose :: Vn (Path v n) -> Path v n -> Path v n -> Path v n #

(HasLinearMap v, Metric v, OrderedField n) => Transformable (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

transform :: Transformation (V (Path v n)) (N (Path v n)) -> Path v n -> Path v n #

(Metric v, OrderedField n) => Alignable (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

alignBy' :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => (v0 n0 -> Path v n -> Point v0 n0) -> v0 n0 -> n0 -> Path v n -> Path v n #

defaultBoundary :: (V (Path v n) ~ v0, N (Path v n) ~ n0) => v0 n0 -> Path v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => v0 n0 -> n0 -> Path v n -> Path v n #

ToPath (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Path v n -> Path (V (Path v n)) (N (Path v n)) #

(Metric v, OrderedField n) => TrailLike (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

trailLike :: Located (Trail (V (Path v n)) (N (Path v n))) -> Path v n #

Eq (v n) => Eq (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

(==) :: Path v n -> Path v n -> Bool #

(/=) :: Path v n -> Path v n -> Bool #

Ord (v n) => Ord (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

compare :: Path v n -> Path v n -> Ordering #

(<) :: Path v n -> Path v n -> Bool #

(<=) :: Path v n -> Path v n -> Bool #

(>) :: Path v n -> Path v n -> Bool #

(>=) :: Path v n -> Path v n -> Bool #

max :: Path v n -> Path v n -> Path v n #

min :: Path v n -> Path v n -> Path v n #

AsEmpty (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

_Empty :: Prism' (Path v n) () #

(Metric v, OrderedField n) => Reversing (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

reversing :: Path v n -> Path v n #

Wrapped (Path v n) 
Instance details

Defined in Diagrams.Path

Associated Types

type Unwrapped (Path v n) 
Instance details

Defined in Diagrams.Path

type Unwrapped (Path v n) = [Located (Trail v n)]

Methods

_Wrapped' :: Iso' (Path v n) (Unwrapped (Path v n)) #

SVGFloat n => Renderable (Path V2 n) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> Path V2 n -> Render SVG (V (Path V2 n)) (N (Path V2 n)) #

(HasLinearMap v, Metric v, OrderedField n) => Renderable (Path v n) NullBackend 
Instance details

Defined in Diagrams.Path

Methods

render :: NullBackend -> Path v n -> Render NullBackend (V (Path v n)) (N (Path v n)) #

(Metric v, Metric u, OrderedField n, r ~ Path u n) => Deformable (Path v n) r 
Instance details

Defined in Diagrams.Deform

Methods

deform' :: N (Path v n) -> Deformation (V (Path v n)) (V r) (N (Path v n)) -> Path v n -> r #

deform :: Deformation (V (Path v n)) (V r) (N (Path v n)) -> Path v n -> r #

(Metric v, Metric u, OrderedField n, r ~ Path u n) => AffineMappable (Path v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (Path v n)) (V r) (N r) -> Path v n -> r

(Metric v, Metric u, OrderedField n, OrderedField m, r ~ Path u m) => LinearMappable (Path v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (Path v n) -> Vn r) -> Path v n -> r

Rewrapped (Path v n) (Path v' n') 
Instance details

Defined in Diagrams.Path

Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Cons :: Prism (Path v n) (Path v' n') (Located (Trail v n), Path v n) (Located (Trail v' n'), Path v' n') #

Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Snoc :: Prism (Path v n) (Path v' n') (Path v n, Located (Trail v n)) (Path v' n', Located (Trail v' n')) #

Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

each :: Traversal (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) #

type Rep (Path v n) 
Instance details

Defined in Diagrams.Path

type Rep (Path v n) = D1 ('MetaData "Path" "Diagrams.Path" "diagrams-lib-1.4.6.2-9ym4nU13AVa88SQ1myBzrG" 'True) (C1 ('MetaCons "Path" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Located (Trail v n)])))
type N (Path v n) 
Instance details

Defined in Diagrams.Path

type N (Path v n) = n
type V (Path v n) 
Instance details

Defined in Diagrams.Path

type V (Path v n) = v
type Unwrapped (Path v n) 
Instance details

Defined in Diagrams.Path

type Unwrapped (Path v n) = [Located (Trail v n)]

data Attribute (v :: Type -> Type) n where #

Constructors

Attribute :: forall a (v :: Type -> Type) n. AttributeClass a => a -> Attribute v n 
MAttribute :: forall a n (v :: Type -> Type). AttributeClass a => Measured n a -> Attribute v n 
TAttribute :: forall a (v :: Type -> Type) n. (AttributeClass a, Transformable a, V a ~ v, N a ~ n) => a -> Attribute v n 

Instances

Instances details
Typeable n => Semigroup (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

(<>) :: Attribute v n -> Attribute v n -> Attribute v n #

sconcat :: NonEmpty (Attribute v n) -> Attribute v n #

stimes :: Integral b => b -> Attribute v n -> Attribute v n #

Show (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

showsPrec :: Int -> Attribute v n -> ShowS #

show :: Attribute v n -> String #

showList :: [Attribute v n] -> ShowS #

(Additive v, Traversable v, Floating n) => Transformable (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

transform :: Transformation (V (Attribute v n)) (N (Attribute v n)) -> Attribute v n -> Attribute v n #

Each (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') 
Instance details

Defined in Diagrams.Core.Style

Methods

each :: Traversal (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') #

type N (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

type N (Attribute v n) = n
type V (Attribute v n) 
Instance details

Defined in Diagrams.Core.Style

type V (Attribute v n) = v

data ImageData a where #

Constructors

ImageRaster :: DynamicImage -> ImageData Embedded 
ImageRef :: FilePath -> ImageData External 
ImageNative :: forall t. t -> ImageData (Native t) 

getAttr :: forall a (v :: Type -> Type) n. AttributeClass a => Style v n -> Maybe a #

data SizeSpec (v :: Type -> Type) n #

Instances

Instances details
Functor v => Functor (SizeSpec v) 
Instance details

Defined in Diagrams.Size

Methods

fmap :: (a -> b) -> SizeSpec v a -> SizeSpec v b #

(<$) :: a -> SizeSpec v b -> SizeSpec v a #

Generic (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

Associated Types

type Rep (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

type Rep (SizeSpec v n) = D1 ('MetaData "SizeSpec" "Diagrams.Size" "diagrams-lib-1.4.6.2-9ym4nU13AVa88SQ1myBzrG" 'True) (C1 ('MetaCons "SizeSpec" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (v n))))

Methods

from :: SizeSpec v n -> Rep (SizeSpec v n) x #

to :: Rep (SizeSpec v n) x -> SizeSpec v n #

Show (v n) => Show (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

Methods

showsPrec :: Int -> SizeSpec v n -> ShowS #

show :: SizeSpec v n -> String #

showList :: [SizeSpec v n] -> ShowS #

Eq (v n) => Eq (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

Methods

(==) :: SizeSpec v n -> SizeSpec v n -> Bool #

(/=) :: SizeSpec v n -> SizeSpec v n -> Bool #

Hashable (v n) => Hashable (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

Methods

hashWithSalt :: Int -> SizeSpec v n -> Int

hash :: SizeSpec v n -> Int

type Rep (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

type Rep (SizeSpec v n) = D1 ('MetaData "SizeSpec" "Diagrams.Size" "diagrams-lib-1.4.6.2-9ym4nU13AVa88SQ1myBzrG" 'True) (C1 ('MetaCons "SizeSpec" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (v n))))
type N (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

type N (SizeSpec v n) = n
type V (SizeSpec v n) 
Instance details

Defined in Diagrams.Size

type V (SizeSpec v n) = v

type OrderedField s = (Floating s, Ord s) #

class Alignable a where #

Minimal complete definition

defaultBoundary

Methods

alignBy' :: (InSpace v n a, Fractional n, HasOrigin a) => (v n -> a -> Point v n) -> v n -> n -> a -> a #

defaultBoundary :: (V a ~ v, N a ~ n) => v n -> a -> Point v n #

alignBy :: (InSpace v n a, Fractional n, HasOrigin a) => v n -> n -> a -> a #

Instances

Instances details
(V b ~ v, N b ~ n, Metric v, OrderedField n, Alignable b) => Alignable (Set b) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (Set b), Fractional n0, HasOrigin (Set b)) => (v0 n0 -> Set b -> Point v0 n0) -> v0 n0 -> n0 -> Set b -> Set b #

defaultBoundary :: (V (Set b) ~ v0, N (Set b) ~ n0) => v0 n0 -> Set b -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Set b), Fractional n0, HasOrigin (Set b)) => v0 n0 -> n0 -> Set b -> Set b #

Alignable a => Alignable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

alignBy' :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => (v n -> Located a -> Point v n) -> v n -> n -> Located a -> Located a #

defaultBoundary :: (V (Located a) ~ v, N (Located a) ~ n) => v n -> Located a -> Point v n #

alignBy :: (InSpace v n (Located a), Fractional n, HasOrigin (Located a)) => v n -> n -> Located a -> Located a #

(V b ~ v, N b ~ n, Metric v, OrderedField n, Alignable b) => Alignable [b] 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 [b], Fractional n0, HasOrigin [b]) => (v0 n0 -> [b] -> Point v0 n0) -> v0 n0 -> n0 -> [b] -> [b] #

defaultBoundary :: (V [b] ~ v0, N [b] ~ n0) => v0 n0 -> [b] -> Point v0 n0 #

alignBy :: (InSpace v0 n0 [b], Fractional n0, HasOrigin [b]) => v0 n0 -> n0 -> [b] -> [b] #

(V b ~ v, N b ~ n, Metric v, OrderedField n, Alignable b) => Alignable (Map k b) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (Map k b), Fractional n0, HasOrigin (Map k b)) => (v0 n0 -> Map k b -> Point v0 n0) -> v0 n0 -> n0 -> Map k b -> Map k b #

defaultBoundary :: (V (Map k b) ~ v0, N (Map k b) ~ n0) => v0 n0 -> Map k b -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Map k b), Fractional n0, HasOrigin (Map k b)) => v0 n0 -> n0 -> Map k b -> Map k b #

(Metric v, OrderedField n) => Alignable (Envelope v n) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => (v0 n0 -> Envelope v n -> Point v0 n0) -> v0 n0 -> n0 -> Envelope v n -> Envelope v n #

defaultBoundary :: (V (Envelope v n) ~ v0, N (Envelope v n) ~ n0) => v0 n0 -> Envelope v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => v0 n0 -> n0 -> Envelope v n -> Envelope v n #

(Metric v, OrderedField n) => Alignable (Trace v n) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => (v0 n0 -> Trace v n -> Point v0 n0) -> v0 n0 -> n0 -> Trace v n -> Trace v n #

defaultBoundary :: (V (Trace v n) ~ v0, N (Trace v n) ~ n0) => v0 n0 -> Trace v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => v0 n0 -> n0 -> Trace v n -> Trace v n #

(Metric v, Traversable v, OrderedField n) => Alignable (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

alignBy' :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => (v0 n0 -> BoundingBox v n -> Point v0 n0) -> v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n #

defaultBoundary :: (V (BoundingBox v n) ~ v0, N (BoundingBox v n) ~ n0) => v0 n0 -> BoundingBox v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n #

(Metric v, OrderedField n) => Alignable (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

alignBy' :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => (v0 n0 -> Path v n -> Point v0 n0) -> v0 n0 -> n0 -> Path v n -> Path v n #

defaultBoundary :: (V (Path v n) ~ v0, N (Path v n) ~ n0) => v0 n0 -> Path v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Path v n), Fractional n0, HasOrigin (Path v n)) => v0 n0 -> n0 -> Path v n -> Path v n #

(InSpace v n a, HasOrigin a, Alignable a) => Alignable (b -> a) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (b -> a), Fractional n0, HasOrigin (b -> a)) => (v0 n0 -> (b -> a) -> Point v0 n0) -> v0 n0 -> n0 -> (b -> a) -> b -> a #

defaultBoundary :: (V (b -> a) ~ v0, N (b -> a) ~ n0) => v0 n0 -> (b -> a) -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (b -> a), Fractional n0, HasOrigin (b -> a)) => v0 n0 -> n0 -> (b -> a) -> b -> a #

(Metric v, OrderedField n, Monoid' m) => Alignable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => (v0 n0 -> QDiagram b v n m -> Point v0 n0) -> v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m #

defaultBoundary :: (V (QDiagram b v n m) ~ v0, N (QDiagram b v n m) ~ n0) => v0 n0 -> QDiagram b v n m -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (QDiagram b v n m), Fractional n0, HasOrigin (QDiagram b v n m)) => v0 n0 -> n0 -> QDiagram b v n m -> QDiagram b v n m #

align :: (InSpace v n a, Fractional n, Alignable a, HasOrigin a) => v n -> a -> a #

alignBy'Default :: (InSpace v n a, Fractional n, HasOrigin a) => (v n -> a -> Point v n) -> v n -> n -> a -> a #

centerV :: (InSpace v n a, Fractional n, Alignable a, HasOrigin a) => v n -> a -> a #

envelopeBoundary :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> Point v n #

snug :: (InSpace v n a, Fractional n, Alignable a, Traced a, HasOrigin a) => v n -> a -> a #

snugBy :: (InSpace v n a, Fractional n, Alignable a, Traced a, HasOrigin a) => v n -> n -> a -> a #

snugCenter :: forall (v :: Type -> Type) n a. (InSpace v n a, Traversable v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugCenterV :: (InSpace v n a, Fractional n, Alignable a, Traced a, HasOrigin a) => v n -> a -> a #

traceBoundary :: (V a ~ v, N a ~ n, Num n, Traced a) => v n -> a -> Point v n #

(@@) :: b -> AReview a b -> a #

data Angle n #

Instances

Instances details
Applicative Angle 
Instance details

Defined in Diagrams.Angle

Methods

pure :: a -> Angle a #

(<*>) :: Angle (a -> b) -> Angle a -> Angle b #

liftA2 :: (a -> b -> c) -> Angle a -> Angle b -> Angle c #

(*>) :: Angle a -> Angle b -> Angle b #

(<*) :: Angle a -> Angle b -> Angle a #

Functor Angle 
Instance details

Defined in Diagrams.Angle

Methods

fmap :: (a -> b) -> Angle a -> Angle b #

(<$) :: a -> Angle b -> Angle a #

Additive Angle 
Instance details

Defined in Diagrams.Angle

Methods

zero :: Num a => Angle a #

(^+^) :: Num a => Angle a -> Angle a -> Angle a #

(^-^) :: Num a => Angle a -> Angle a -> Angle a #

lerp :: Num a => a -> Angle a -> Angle a -> Angle a #

liftU2 :: (a -> a -> a) -> Angle a -> Angle a -> Angle a #

liftI2 :: (a -> b -> c) -> Angle a -> Angle b -> Angle c #

Num n => Monoid (Angle n) 
Instance details

Defined in Diagrams.Angle

Methods

mempty :: Angle n #

mappend :: Angle n -> Angle n -> Angle n #

mconcat :: [Angle n] -> Angle n #

Num n => Semigroup (Angle n) 
Instance details

Defined in Diagrams.Angle

Methods

(<>) :: Angle n -> Angle n -> Angle n #

sconcat :: NonEmpty (Angle n) -> Angle n #

stimes :: Integral b => b -> Angle n -> Angle n #

Enum n => Enum (Angle n) 
Instance details

Defined in Diagrams.Angle

Methods

succ :: Angle n -> Angle n #

pred :: Angle n -> Angle n #

toEnum :: Int -> Angle n #

fromEnum :: Angle n -> Int #

enumFrom :: Angle n -> [Angle n] #

enumFromThen :: Angle n -> Angle n -> [Angle n] #

enumFromTo :: Angle n -> Angle n -> [Angle n] #

enumFromThenTo :: Angle n -> Angle n -> Angle n -> [Angle n] #

Read n => Read (Angle n) 
Instance details

Defined in Diagrams.Angle

Show n => Show (Angle n) 
Instance details

Defined in Diagrams.Angle

Methods

showsPrec :: Int -> Angle n -> ShowS #

show :: Angle n -> String #

showList :: [Angle n] -> ShowS #

Eq n => Eq (Angle n) 
Instance details

Defined in Diagrams.Angle

Methods

(==) :: Angle n -> Angle n -> Bool #

(/=) :: Angle n -> Angle n -> Bool #

Ord n => Ord (Angle n) 
Instance details

Defined in Diagrams.Angle

Methods

compare :: Angle n -> Angle n -> Ordering #

(<) :: Angle n -> Angle n -> Bool #

(<=) :: Angle n -> Angle n -> Bool #

(>) :: Angle n -> Angle n -> Bool #

(>=) :: Angle n -> Angle n -> Bool #

max :: Angle n -> Angle n -> Angle n #

min :: Angle n -> Angle n -> Angle n #

(V t ~ V2, N t ~ n, Transformable t, Floating n) => Action (Angle n) t 
Instance details

Defined in Diagrams.Angle

Methods

act :: Angle n -> t -> t

type N (Angle n) 
Instance details

Defined in Diagrams.Angle

type N (Angle n) = n

class HasTheta t => HasPhi (t :: Type -> Type) where #

Methods

_phi :: RealFloat n => Lens' (t n) (Angle n) #

Instances

Instances details
HasPhi v => HasPhi (Direction v) 
Instance details

Defined in Diagrams.Direction

Methods

_phi :: RealFloat n => Lens' (Direction v n) (Angle n) #

HasPhi v => HasPhi (Point v) 
Instance details

Defined in Diagrams.Angle

Methods

_phi :: RealFloat n => Lens' (Point v n) (Angle n) #

class HasTheta (t :: Type -> Type) where #

Methods

_theta :: RealFloat n => Lens' (t n) (Angle n) #

Instances

Instances details
HasTheta v => HasTheta (Direction v) 
Instance details

Defined in Diagrams.Direction

Methods

_theta :: RealFloat n => Lens' (Direction v n) (Angle n) #

HasTheta v => HasTheta (Point v) 
Instance details

Defined in Diagrams.Angle

Methods

_theta :: RealFloat n => Lens' (Point v n) (Angle n) #

acosA :: Floating n => n -> Angle n #

angleBetween :: (Metric v, Floating n, Ord n) => v n -> v n -> Angle n #

angleRatio :: Floating n => Angle n -> Angle n -> n #

asinA :: Floating n => n -> Angle n #

atan2A :: RealFloat n => n -> n -> Angle n #

atan2A' :: OrderedField n => n -> n -> Angle n #

atanA :: Floating n => n -> Angle n #

cosA :: Floating n => Angle n -> n #

deg :: Floating n => Iso' (Angle n) n #

normalizeAngle :: (Floating n, Real n) => Angle n -> Angle n #

rad :: forall n p f. (Profunctor p, Functor f) => p n (f n) -> p (Angle n) (f (Angle n)) #

sinA :: Floating n => Angle n -> n #

tanA :: Floating n => Angle n -> n #

turn :: Floating n => Iso' (Angle n) n #

type Animation b (v :: Type -> Type) n = QAnimation b v n Any #

type QAnimation b (v :: Type -> Type) n m = Active (QDiagram b v n m) #

animEnvelope :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => QAnimation b v n m -> QAnimation b v n m #

animEnvelope' :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => Rational -> QAnimation b v n m -> QAnimation b v n m #

data Dashing n #

Constructors

Dashing [n] n 

Instances

Instances details
Functor Dashing 
Instance details

Defined in Diagrams.Attributes

Methods

fmap :: (a -> b) -> Dashing a -> Dashing b #

(<$) :: a -> Dashing b -> Dashing a #

Semigroup (Dashing n) 
Instance details

Defined in Diagrams.Attributes

Methods

(<>) :: Dashing n -> Dashing n -> Dashing n #

sconcat :: NonEmpty (Dashing n) -> Dashing n #

stimes :: Integral b => b -> Dashing n -> Dashing n #

Typeable n => AttributeClass (Dashing n) 
Instance details

Defined in Diagrams.Attributes

Eq n => Eq (Dashing n) 
Instance details

Defined in Diagrams.Attributes

Methods

(==) :: Dashing n -> Dashing n -> Bool #

(/=) :: Dashing n -> Dashing n -> Bool #

data FillOpacity #

Instances

Instances details
Semigroup FillOpacity 
Instance details

Defined in Diagrams.Attributes

AttributeClass FillOpacity 
Instance details

Defined in Diagrams.Attributes

data LineCap #

Instances

Instances details
Semigroup LineCap 
Instance details

Defined in Diagrams.Attributes

Show LineCap 
Instance details

Defined in Diagrams.Attributes

Default LineCap 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineCap #

AttributeClass LineCap 
Instance details

Defined in Diagrams.Attributes

Eq LineCap 
Instance details

Defined in Diagrams.Attributes

Methods

(==) :: LineCap -> LineCap -> Bool #

(/=) :: LineCap -> LineCap -> Bool #

Ord LineCap 
Instance details

Defined in Diagrams.Attributes

data LineJoin #

Instances

Instances details
Semigroup LineJoin 
Instance details

Defined in Diagrams.Attributes

Show LineJoin 
Instance details

Defined in Diagrams.Attributes

Default LineJoin 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineJoin #

AttributeClass LineJoin 
Instance details

Defined in Diagrams.Attributes

Eq LineJoin 
Instance details

Defined in Diagrams.Attributes

Ord LineJoin 
Instance details

Defined in Diagrams.Attributes

data LineWidth n #

Instances

Instances details
Semigroup (LineWidth n) 
Instance details

Defined in Diagrams.Attributes

Methods

(<>) :: LineWidth n -> LineWidth n -> LineWidth n #

sconcat :: NonEmpty (LineWidth n) -> LineWidth n #

stimes :: Integral b => b -> LineWidth n -> LineWidth n #

OrderedField n => Default (LineWidthM n) 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineWidthM n #

Typeable n => AttributeClass (LineWidth n) 
Instance details

Defined in Diagrams.Attributes

data Opacity #

Instances

Instances details
Semigroup Opacity 
Instance details

Defined in Diagrams.Attributes

AttributeClass Opacity 
Instance details

Defined in Diagrams.Attributes

data SomeColor #

Constructors

Color c => SomeColor c 

Instances

Instances details
Show SomeColor 
Instance details

Defined in Diagrams.Attributes

Color SomeColor 
Instance details

Defined in Diagrams.Attributes

_Commit :: forall a p f. (Choice p, Applicative f) => p a (f a) -> p (Recommend a) (f (Recommend a)) #

_LineWidth :: forall n p f. (Profunctor p, Functor f) => p n (f n) -> p (LineWidth n) (f (LineWidth n)) #

_LineWidthM :: forall n p f. (Profunctor p, Functor f) => p (Measure n) (f (Measure n)) -> p (LineWidthM n) (f (LineWidthM n)) #

_Recommend :: forall a p f. (Choice p, Applicative f) => p a (f a) -> p (Recommend a) (f (Recommend a)) #

_dashing :: forall n (v :: Type -> Type). Typeable n => Lens' (Style v n) (Maybe (Measured n (Dashing n))) #

_dashingU :: forall n (v :: Type -> Type). Typeable n => Lens' (Style v n) (Maybe (Dashing n)) #

_fillOpacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #

_lineCap :: forall (v :: Type -> Type) n f. Functor f => (LineCap -> f LineCap) -> Style v n -> f (Style v n) #

_lineJoin :: forall (v :: Type -> Type) n f. Functor f => (LineJoin -> f LineJoin) -> Style v n -> f (Style v n) #

_lineMiterLimit :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #

_lineWidth :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n) #

_lineWidthU :: forall n (v :: Type -> Type). Typeable n => Lens' (Style v n) (Maybe n) #

_lw :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n) #

_opacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #

_recommend :: forall a b f. Functor f => (a -> f b) -> Recommend a -> f (Recommend b) #

_strokeOpacity :: forall (v :: Type -> Type) n f. Functor f => (Double -> f Double) -> Style v n -> f (Style v n) #

committed :: forall a b p f. (Profunctor p, Functor f) => p a (f b) -> p (Recommend a) (f (Recommend b)) #

dashing :: (N a ~ n, HasStyle a, Typeable n) => [Measure n] -> Measure n -> a -> a #

dashingG :: (N a ~ n, HasStyle a, Typeable n, Num n) => [n] -> n -> a -> a #

dashingL :: (N a ~ n, HasStyle a, Typeable n, Num n) => [n] -> n -> a -> a #

dashingN :: (N a ~ n, HasStyle a, Typeable n, Num n) => [n] -> n -> a -> a #

dashingO :: (N a ~ n, HasStyle a, Typeable n) => [n] -> n -> a -> a #

fillOpacity :: HasStyle a => Double -> a -> a #

isCommitted :: forall a f. Functor f => (Bool -> f Bool) -> Recommend a -> f (Recommend a) #

lineCap :: HasStyle a => LineCap -> a -> a #

lineJoin :: HasStyle a => LineJoin -> a -> a #

lineMiterLimit :: HasStyle a => Double -> a -> a #

lineWidth :: (N a ~ n, HasStyle a, Typeable n) => Measure n -> a -> a #

lineWidthM :: (N a ~ n, HasStyle a, Typeable n) => LineWidthM n -> a -> a #

lw :: (N a ~ n, HasStyle a, Typeable n) => Measure n -> a -> a #

lwG :: (N a ~ n, HasStyle a, Typeable n, Num n) => n -> a -> a #

lwL :: (N a ~ n, HasStyle a, Typeable n, Num n) => n -> a -> a #

lwN :: (N a ~ n, HasStyle a, Typeable n, Num n) => n -> a -> a #

lwO :: (N a ~ n, HasStyle a, Typeable n) => n -> a -> a #

opacity :: HasStyle a => Double -> a -> a #

strokeOpacity :: HasStyle a => Double -> a -> a #

data BoundingBox (v :: Type -> Type) n #

Instances

Instances details
Functor v => Functor (BoundingBox v) 
Instance details

Defined in Diagrams.BoundingBox

Methods

fmap :: (a -> b) -> BoundingBox v a -> BoundingBox v b #

(<$) :: a -> BoundingBox v b -> BoundingBox v a #

(Additive v, Ord n) => Monoid (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

mempty :: BoundingBox v n #

mappend :: BoundingBox v n -> BoundingBox v n -> BoundingBox v n #

mconcat :: [BoundingBox v n] -> BoundingBox v n #

(Additive v, Ord n) => Semigroup (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

(<>) :: BoundingBox v n -> BoundingBox v n -> BoundingBox v n #

sconcat :: NonEmpty (BoundingBox v n) -> BoundingBox v n #

stimes :: Integral b => b -> BoundingBox v n -> BoundingBox v n #

Read (v n) => Read (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Show (v n) => Show (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

showsPrec :: Int -> BoundingBox v n -> ShowS #

show :: BoundingBox v n -> String #

showList :: [BoundingBox v n] -> ShowS #

(Metric v, Traversable v, OrderedField n) => Enveloped (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getEnvelope :: BoundingBox v n -> Envelope (V (BoundingBox v n)) (N (BoundingBox v n)) #

(Additive v, Num n) => HasOrigin (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

moveOriginTo :: Point (V (BoundingBox v n)) (N (BoundingBox v n)) -> BoundingBox v n -> BoundingBox v n #

RealFloat n => Traced (BoundingBox V2 n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getTrace :: BoundingBox V2 n -> Trace (V (BoundingBox V2 n)) (N (BoundingBox V2 n)) #

TypeableFloat n => Traced (BoundingBox V3 n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getTrace :: BoundingBox V3 n -> Trace (V (BoundingBox V3 n)) (N (BoundingBox V3 n)) #

(Metric v, Traversable v, OrderedField n) => Alignable (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

alignBy' :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => (v0 n0 -> BoundingBox v n -> Point v0 n0) -> v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n #

defaultBoundary :: (V (BoundingBox v n) ~ v0, N (BoundingBox v n) ~ n0) => v0 n0 -> BoundingBox v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (BoundingBox v n), Fractional n0, HasOrigin (BoundingBox v n)) => v0 n0 -> n0 -> BoundingBox v n -> BoundingBox v n #

Eq (v n) => Eq (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

(==) :: BoundingBox v n -> BoundingBox v n -> Bool #

(/=) :: BoundingBox v n -> BoundingBox v n -> Bool #

AsEmpty (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

_Empty :: Prism' (BoundingBox v n) () #

(Additive v, Foldable v, Ord n) => HasQuery (BoundingBox v n) Any 
Instance details

Defined in Diagrams.BoundingBox

Methods

getQuery :: BoundingBox v n -> Query (V (BoundingBox v n)) (N (BoundingBox v n)) Any #

(Additive v', Foldable v', Ord n') => Each (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') 
Instance details

Defined in Diagrams.BoundingBox

Methods

each :: Traversal (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') #

type N (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

type N (BoundingBox v n) = n
type V (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

type V (BoundingBox v n) = v

boundingBox :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> BoundingBox v n #

boxCenter :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => BoundingBox v n -> Maybe (Point v n) #

boxExtents :: (Additive v, Num n) => BoundingBox v n -> v n #

boxFit :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a, Transformable a, Monoid a) => BoundingBox v n -> a -> a #

boxGrid :: forall (v :: Type -> Type) n. (Traversable v, Additive v, Num n, Enum n) => n -> BoundingBox v n -> [Point v n] #

boxTransform :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => BoundingBox v n -> BoundingBox v n -> Maybe (Transformation v n) #

centerPoint :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> Point v n #

contains' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> Point v n -> Bool #

emptyBox :: forall (v :: Type -> Type) n. BoundingBox v n #

fromCorners :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => Point v n -> Point v n -> BoundingBox v n #

fromPoint :: forall (v :: Type -> Type) n. Point v n -> BoundingBox v n #

fromPoints :: forall (v :: Type -> Type) n. (Additive v, Ord n) => [Point v n] -> BoundingBox v n #

getAllCorners :: forall (v :: Type -> Type) n. (Additive v, Traversable v) => BoundingBox v n -> [Point v n] #

getCorners :: forall (v :: Type -> Type) n. BoundingBox v n -> Maybe (Point v n, Point v n) #

inside' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> BoundingBox v n -> Bool #

isEmptyBox :: forall (v :: Type -> Type) n. BoundingBox v n -> Bool #

mCenterPoint :: forall (v :: Type -> Type) n a. (InSpace v n a, HasBasis v, Enveloped a) => a -> Maybe (Point v n) #

outside' :: forall (v :: Type -> Type) n. (Additive v, Foldable v, Ord n) => BoundingBox v n -> BoundingBox v n -> Bool #

data CatMethod #

Constructors

Cat 
Distrib 

data CatOpts n #

Instances

Instances details
Num n => Default (CatOpts n) 
Instance details

Defined in Diagrams.Combinators

Methods

def :: CatOpts n #

appends :: (Juxtaposable a, Monoid' a) => a -> [(Vn a, a)] -> a #

atDirection :: forall (v :: Type -> Type) n a. (InSpace v n a, Metric v, Floating n, Juxtaposable a, Semigroup a) => Direction v n -> a -> a -> a #

atPoints :: forall (v :: Type -> Type) n a. (InSpace v n a, HasOrigin a, Monoid' a) => [Point v n] -> [a] -> a #

beneath :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #

beside :: (Juxtaposable a, Semigroup a) => Vn a -> a -> a -> a #

cat' :: (InSpace v n a, Metric v, Floating n, Juxtaposable a, Monoid' a, HasOrigin a) => v n -> CatOpts n -> [a] -> a #

catMethod :: forall n f. Functor f => (CatMethod -> f CatMethod) -> CatOpts n -> f (CatOpts n) #

composeAligned :: forall m n (v :: Type -> Type) b. (Monoid' m, Floating n, Ord n, Metric v) => (QDiagram b v n m -> QDiagram b v n m) -> ([QDiagram b v n m] -> QDiagram b v n m) -> [QDiagram b v n m] -> QDiagram b v n m #

extrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m #

frame :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m #

intrudeEnvelope :: (Metric v, OrderedField n, Monoid' m) => v n -> QDiagram b v n m -> QDiagram b v n m #

position :: forall (v :: Type -> Type) n a. (InSpace v n a, HasOrigin a, Monoid' a) => [(Point v n, a)] -> a #

strut :: (Metric v, OrderedField n) => v n -> QDiagram b v n m #

withEnvelope :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Monoid' m, Enveloped a) => a -> QDiagram b v n m -> QDiagram b v n m #

withTrace :: forall (v :: Type -> Type) n a m b. (InSpace v n a, Metric v, OrderedField n, Monoid' m, Traced a) => a -> QDiagram b v n m -> QDiagram b v n m #

data a :& b #

Constructors

a :& b 

Instances

Instances details
(Show a, Show b) => Show (a :& b) 
Instance details

Defined in Diagrams.Coordinates

Methods

showsPrec :: Int -> (a :& b) -> ShowS #

show :: (a :& b) -> String #

showList :: [a :& b] -> ShowS #

Coordinates (a :& b) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a :& b) = b
type PrevDim (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a :& b) = a
type Decomposition (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a :& b) = a :& b

Methods

(^&) :: PrevDim (a :& b) -> FinalCoord (a :& b) -> a :& b #

pr :: PrevDim (a :& b) -> FinalCoord (a :& b) -> a :& b #

coords :: (a :& b) -> Decomposition (a :& b) #

(Eq a, Eq b) => Eq (a :& b) 
Instance details

Defined in Diagrams.Coordinates

Methods

(==) :: (a :& b) -> (a :& b) -> Bool #

(/=) :: (a :& b) -> (a :& b) -> Bool #

(Ord a, Ord b) => Ord (a :& b) 
Instance details

Defined in Diagrams.Coordinates

Methods

compare :: (a :& b) -> (a :& b) -> Ordering #

(<) :: (a :& b) -> (a :& b) -> Bool #

(<=) :: (a :& b) -> (a :& b) -> Bool #

(>) :: (a :& b) -> (a :& b) -> Bool #

(>=) :: (a :& b) -> (a :& b) -> Bool #

max :: (a :& b) -> (a :& b) -> a :& b #

min :: (a :& b) -> (a :& b) -> a :& b #

type Decomposition (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a :& b) = a :& b
type FinalCoord (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a :& b) = b
type PrevDim (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a :& b) = a

class Coordinates c where #

Minimal complete definition

(^&), coords

Associated Types

type FinalCoord c #

type PrevDim c #

type Decomposition c #

Methods

(^&) :: PrevDim c -> FinalCoord c -> c #

pr :: PrevDim c -> FinalCoord c -> c #

coords :: c -> Decomposition c #

Instances

Instances details
Coordinates (V2 n) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V2 n) = n
type PrevDim (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V2 n) = n
type Decomposition (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V2 n) = n :& n

Methods

(^&) :: PrevDim (V2 n) -> FinalCoord (V2 n) -> V2 n #

pr :: PrevDim (V2 n) -> FinalCoord (V2 n) -> V2 n #

coords :: V2 n -> Decomposition (V2 n) #

Coordinates (V3 n) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V3 n) = n
type PrevDim (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V3 n) = V2 n
type Decomposition (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V3 n) = (n :& n) :& n

Methods

(^&) :: PrevDim (V3 n) -> FinalCoord (V3 n) -> V3 n #

pr :: PrevDim (V3 n) -> FinalCoord (V3 n) -> V3 n #

coords :: V3 n -> Decomposition (V3 n) #

Coordinates (V4 n) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (V4 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V4 n) = n
type PrevDim (V4 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V4 n) = V3 n
type Decomposition (V4 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V4 n) = ((n :& n) :& n) :& n

Methods

(^&) :: PrevDim (V4 n) -> FinalCoord (V4 n) -> V4 n #

pr :: PrevDim (V4 n) -> FinalCoord (V4 n) -> V4 n #

coords :: V4 n -> Decomposition (V4 n) #

Coordinates (a :& b) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a :& b) = b
type PrevDim (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a :& b) = a
type Decomposition (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a :& b) = a :& b

Methods

(^&) :: PrevDim (a :& b) -> FinalCoord (a :& b) -> a :& b #

pr :: PrevDim (a :& b) -> FinalCoord (a :& b) -> a :& b #

coords :: (a :& b) -> Decomposition (a :& b) #

Coordinates (v n) => Coordinates (Point v n) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (Point v n) = FinalCoord (v n)
type PrevDim (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (Point v n) = PrevDim (v n)
type Decomposition (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (Point v n) = Decomposition (v n)

Methods

(^&) :: PrevDim (Point v n) -> FinalCoord (Point v n) -> Point v n #

pr :: PrevDim (Point v n) -> FinalCoord (Point v n) -> Point v n #

coords :: Point v n -> Decomposition (Point v n) #

Coordinates (a, b) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (a, b) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a, b) = b
type PrevDim (a, b) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a, b) = a
type Decomposition (a, b) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a, b) = a :& b

Methods

(^&) :: PrevDim (a, b) -> FinalCoord (a, b) -> (a, b) #

pr :: PrevDim (a, b) -> FinalCoord (a, b) -> (a, b) #

coords :: (a, b) -> Decomposition (a, b) #

Coordinates (a, b, c) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (a, b, c) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a, b, c) = c
type PrevDim (a, b, c) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a, b, c) = (a, b)
type Decomposition (a, b, c) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a, b, c) = Decomposition (a, b) :& c

Methods

(^&) :: PrevDim (a, b, c) -> FinalCoord (a, b, c) -> (a, b, c) #

pr :: PrevDim (a, b, c) -> FinalCoord (a, b, c) -> (a, b, c) #

coords :: (a, b, c) -> Decomposition (a, b, c) #

Coordinates (a, b, c, d) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (a, b, c, d) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a, b, c, d) = d
type PrevDim (a, b, c, d) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a, b, c, d) = (a, b, c)
type Decomposition (a, b, c, d) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a, b, c, d) = Decomposition (a, b, c) :& d

Methods

(^&) :: PrevDim (a, b, c, d) -> FinalCoord (a, b, c, d) -> (a, b, c, d) #

pr :: PrevDim (a, b, c, d) -> FinalCoord (a, b, c, d) -> (a, b, c, d) #

coords :: (a, b, c, d) -> Decomposition (a, b, c, d) #

type family Decomposition c #

Instances

Instances details
type Decomposition (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V2 n) = n :& n
type Decomposition (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V3 n) = (n :& n) :& n
type Decomposition (V4 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V4 n) = ((n :& n) :& n) :& n
type Decomposition (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a :& b) = a :& b
type Decomposition (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (Point v n) = Decomposition (v n)
type Decomposition (a, b) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a, b) = a :& b
type Decomposition (a, b, c) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a, b, c) = Decomposition (a, b) :& c
type Decomposition (a, b, c, d) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (a, b, c, d) = Decomposition (a, b, c) :& d

type family FinalCoord c #

Instances

Instances details
type FinalCoord (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V2 n) = n
type FinalCoord (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V3 n) = n
type FinalCoord (V4 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V4 n) = n
type FinalCoord (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a :& b) = b
type FinalCoord (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (Point v n) = FinalCoord (v n)
type FinalCoord (a, b) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a, b) = b
type FinalCoord (a, b, c) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a, b, c) = c
type FinalCoord (a, b, c, d) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (a, b, c, d) = d

type family PrevDim c #

Instances

Instances details
type PrevDim (V2 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V2 n) = n
type PrevDim (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V3 n) = V2 n
type PrevDim (V4 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V4 n) = V3 n
type PrevDim (a :& b) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a :& b) = a
type PrevDim (Point v n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (Point v n) = PrevDim (v n)
type PrevDim (a, b) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a, b) = a
type PrevDim (a, b, c) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a, b, c) = (a, b)
type PrevDim (a, b, c, d) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (a, b, c, d) = (a, b, c)

cubicSpline :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t, Fractional (v n)) => Bool -> [Point v n] -> t #

type BSpline (v :: Type -> Type) n = [Point v n] #

bspline :: forall t (v :: Type -> Type) n. (TrailLike t, V t ~ v, N t ~ n) => BSpline v n -> t #

class Deformable a b where #

Methods

deform' :: N a -> Deformation (V a) (V b) (N a) -> a -> b #

deform :: Deformation (V a) (V b) (N a) -> a -> b #

Instances

Instances details
(Metric v, Metric u, OrderedField n, r ~ Located (Trail u n)) => Deformable (Located (Trail v n)) r 
Instance details

Defined in Diagrams.Deform

Methods

deform' :: N (Located (Trail v n)) -> Deformation (V (Located (Trail v n))) (V r) (N (Located (Trail v n))) -> Located (Trail v n) -> r #

deform :: Deformation (V (Located (Trail v n))) (V r) (N (Located (Trail v n))) -> Located (Trail v n) -> r #

(Metric v, Metric u, OrderedField n, r ~ Path u n) => Deformable (Path v n) r 
Instance details

Defined in Diagrams.Deform

Methods

deform' :: N (Path v n) -> Deformation (V (Path v n)) (V r) (N (Path v n)) -> Path v n -> r #

deform :: Deformation (V (Path v n)) (V r) (N (Path v n)) -> Path v n -> r #

r ~ Point u n => Deformable (Point v n) r 
Instance details

Defined in Diagrams.Deform

Methods

deform' :: N (Point v n) -> Deformation (V (Point v n)) (V r) (N (Point v n)) -> Point v n -> r #

deform :: Deformation (V (Point v n)) (V r) (N (Point v n)) -> Point v n -> r #

newtype Deformation (v :: Type -> Type) (u :: Type -> Type) n #

Constructors

Deformation (Point v n -> Point u n) 

Instances

Instances details
Monoid (Deformation v v n) 
Instance details

Defined in Diagrams.Deform

Methods

mempty :: Deformation v v n #

mappend :: Deformation v v n -> Deformation v v n -> Deformation v v n #

mconcat :: [Deformation v v n] -> Deformation v v n #

Semigroup (Deformation v v n) 
Instance details

Defined in Diagrams.Deform

Methods

(<>) :: Deformation v v n -> Deformation v v n -> Deformation v v n #

sconcat :: NonEmpty (Deformation v v n) -> Deformation v v n #

stimes :: Integral b => b -> Deformation v v n -> Deformation v v n #

asDeformation :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Deformation v v n #

data Direction (v :: Type -> Type) n #

Instances

Instances details
Functor v => Functor (Direction v) 
Instance details

Defined in Diagrams.Direction

Methods

fmap :: (a -> b) -> Direction v a -> Direction v b #

(<$) :: a -> Direction v b -> Direction v a #

HasPhi v => HasPhi (Direction v) 
Instance details

Defined in Diagrams.Direction

Methods

_phi :: RealFloat n => Lens' (Direction v n) (Angle n) #

HasTheta v => HasTheta (Direction v) 
Instance details

Defined in Diagrams.Direction

Methods

_theta :: RealFloat n => Lens' (Direction v n) (Angle n) #

Read (v n) => Read (Direction v n) 
Instance details

Defined in Diagrams.Direction

Show (v n) => Show (Direction v n) 
Instance details

Defined in Diagrams.Direction

Methods

showsPrec :: Int -> Direction v n -> ShowS #

show :: Direction v n -> String #

showList :: [Direction v n] -> ShowS #

(V (v n) ~ v, N (v n) ~ n, Transformable (v n)) => Transformable (Direction v n) 
Instance details

Defined in Diagrams.Direction

Methods

transform :: Transformation (V (Direction v n)) (N (Direction v n)) -> Direction v n -> Direction v n #

Eq (v n) => Eq (Direction v n) 
Instance details

Defined in Diagrams.Direction

Methods

(==) :: Direction v n -> Direction v n -> Bool #

(/=) :: Direction v n -> Direction v n -> Bool #

Ord (v n) => Ord (Direction v n) 
Instance details

Defined in Diagrams.Direction

Methods

compare :: Direction v n -> Direction v n -> Ordering #

(<) :: Direction v n -> Direction v n -> Bool #

(<=) :: Direction v n -> Direction v n -> Bool #

(>) :: Direction v n -> Direction v n -> Bool #

(>=) :: Direction v n -> Direction v n -> Bool #

max :: Direction v n -> Direction v n -> Direction v n #

min :: Direction v n -> Direction v n -> Direction v n #

type N (Direction v n) 
Instance details

Defined in Diagrams.Direction

type N (Direction v n) = n
type V (Direction v n) 
Instance details

Defined in Diagrams.Direction

type V (Direction v n) = v

_Dir :: forall v n p f. (Profunctor p, Functor f) => p (v n) (f (v n)) -> p (Direction v n) (f (Direction v n)) #

angleBetweenDirs :: forall (v :: Type -> Type) n. (Metric v, Floating n, Ord n) => Direction v n -> Direction v n -> Angle n #

dirBetween :: forall (v :: Type -> Type) n. (Additive v, Num n) => Point v n -> Point v n -> Direction v n #

direction :: v n -> Direction v n #

fromDir :: (Metric v, Floating n) => Direction v n -> v n #

fromDirection :: (Metric v, Floating n) => Direction v n -> v n #

_loc :: forall a f. Functor f => (Point (V a) (N a) -> f (Point (V a) (N a))) -> Located a -> f (Located a) #

at :: a -> Point (V a) (N a) -> Located a #

located :: SameSpace a b => Lens (Located a) (Located b) a b #

mapLoc :: SameSpace a b => (a -> b) -> Located a -> Located b #

viewLoc :: Located a -> (Point (V a) (N a), a) #

namePoint :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => (QDiagram b v n m -> Point v n) -> nm -> QDiagram b v n m -> QDiagram b v n m #

named :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => nm -> QDiagram b v n m -> QDiagram b v n m #

type family Codomain p :: Type -> Type #

Instances

Instances details
type Codomain (Located a) 
Instance details

Defined in Diagrams.Located

type Codomain (Tangent t) 
Instance details

Defined in Diagrams.Tangent

type Codomain (Tangent t) = V t
type Codomain (GetSegment t) 
Instance details

Defined in Diagrams.Trail

type Codomain (BernsteinPoly n) 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

type Codomain (BernsteinPoly n) = V1
type Codomain (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

type Codomain (FixedSegment v n) = Point v
type Codomain (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type Codomain (SegTree v n) = v
type Codomain (Trail v n) 
Instance details

Defined in Diagrams.Trail

type Codomain (Trail v n) = v
type Codomain (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

type Codomain (Segment Closed v n) = v
type Codomain (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

type Codomain (Trail' l v n) = v

class DomainBounds p where #

Minimal complete definition

Nothing

Methods

domainLower :: p -> N p #

domainUpper :: p -> N p #

Instances

Instances details
DomainBounds a => DomainBounds (Located a) 
Instance details

Defined in Diagrams.Located

Methods

domainLower :: Located a -> N (Located a) #

domainUpper :: Located a -> N (Located a) #

DomainBounds t => DomainBounds (Tangent t) 
Instance details

Defined in Diagrams.Tangent

Methods

domainLower :: Tangent t -> N (Tangent t) #

domainUpper :: Tangent t -> N (Tangent t) #

DomainBounds t => DomainBounds (GetSegment t) 
Instance details

Defined in Diagrams.Trail

Num n => DomainBounds (BernsteinPoly n) 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Methods

domainLower :: BernsteinPoly n -> N (BernsteinPoly n) #

domainUpper :: BernsteinPoly n -> N (BernsteinPoly n) #

Num n => DomainBounds (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Num n => DomainBounds (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

domainLower :: SegTree v n -> N (SegTree v n) #

domainUpper :: SegTree v n -> N (SegTree v n) #

Num n => DomainBounds (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

domainLower :: Trail v n -> N (Trail v n) #

domainUpper :: Trail v n -> N (Trail v n) #

Num n => DomainBounds (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Num n => DomainBounds (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

domainLower :: Trail' l v n -> N (Trail' l v n) #

domainUpper :: Trail' l v n -> N (Trail' l v n) #

class (Parametric p, DomainBounds p) => EndValues p where #

Minimal complete definition

Nothing

Methods

atStart :: p -> Codomain p (N p) #

atEnd :: p -> Codomain p (N p) #

Instances

Instances details
(InSpace v n a, EndValues a, Codomain a ~ v) => EndValues (Located a) 
Instance details

Defined in Diagrams.Located

Methods

atStart :: Located a -> Codomain (Located a) (N (Located a)) #

atEnd :: Located a -> Codomain (Located a) (N (Located a)) #

(DomainBounds t, EndValues (Tangent t)) => EndValues (Tangent (Located t)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => EndValues (Tangent (FixedSegment v n)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => EndValues (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

(Metric v, OrderedField n, Real n) => EndValues (Tangent (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Tangent (Trail v n) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

atEnd :: Tangent (Trail v n) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

(Parametric (GetSegment (Trail' c v n)), EndValues (GetSegment (Trail' c v n)), Additive v, Num n) => EndValues (Tangent (Trail' c v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Tangent (Trail' c v n) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

atEnd :: Tangent (Trail' c v n) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

atEnd :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

Fractional n => EndValues (BernsteinPoly n) 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Methods

atStart :: BernsteinPoly n -> Codomain (BernsteinPoly n) (N (BernsteinPoly n)) #

atEnd :: BernsteinPoly n -> Codomain (BernsteinPoly n) (N (BernsteinPoly n)) #

(Additive v, Num n) => EndValues (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n, Real n) => EndValues (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: SegTree v n -> Codomain (SegTree v n) (N (SegTree v n)) #

atEnd :: SegTree v n -> Codomain (SegTree v n) (N (SegTree v n)) #

(Metric v, OrderedField n, Real n) => EndValues (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Trail v n -> Codomain (Trail v n) (N (Trail v n)) #

atEnd :: Trail v n -> Codomain (Trail v n) (N (Trail v n)) #

(Additive v, Num n) => EndValues (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n, Real n) => EndValues (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Trail' l v n -> Codomain (Trail' l v n) (N (Trail' l v n)) #

atEnd :: Trail' l v n -> Codomain (Trail' l v n) (N (Trail' l v n)) #

class Parametric p => HasArcLength p where #

Minimal complete definition

arcLengthBounded, arcLengthToParam

Methods

arcLengthBounded :: N p -> p -> Interval (N p) #

arcLength :: N p -> p -> N p #

stdArcLength :: p -> N p #

arcLengthToParam :: N p -> p -> N p -> N p #

stdArcLengthToParam :: p -> N p -> N p #

Instances

Instances details
(InSpace v n a, Fractional n, HasArcLength a, Codomain a ~ v) => HasArcLength (Located a) 
Instance details

Defined in Diagrams.Located

Methods

arcLengthBounded :: N (Located a) -> Located a -> Interval (N (Located a)) #

arcLength :: N (Located a) -> Located a -> N (Located a) #

stdArcLength :: Located a -> N (Located a) #

arcLengthToParam :: N (Located a) -> Located a -> N (Located a) -> N (Located a) #

stdArcLengthToParam :: Located a -> N (Located a) -> N (Located a) #

(Metric v, OrderedField n) => HasArcLength (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n, Real n) => HasArcLength (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

arcLengthBounded :: N (SegTree v n) -> SegTree v n -> Interval (N (SegTree v n)) #

arcLength :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) #

stdArcLength :: SegTree v n -> N (SegTree v n) #

arcLengthToParam :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) -> N (SegTree v n) #

stdArcLengthToParam :: SegTree v n -> N (SegTree v n) -> N (SegTree v n) #

(Metric v, OrderedField n, Real n) => HasArcLength (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

arcLengthBounded :: N (Trail v n) -> Trail v n -> Interval (N (Trail v n)) #

arcLength :: N (Trail v n) -> Trail v n -> N (Trail v n) #

stdArcLength :: Trail v n -> N (Trail v n) #

arcLengthToParam :: N (Trail v n) -> Trail v n -> N (Trail v n) -> N (Trail v n) #

stdArcLengthToParam :: Trail v n -> N (Trail v n) -> N (Trail v n) #

(Metric v, OrderedField n) => HasArcLength (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

arcLengthBounded :: N (Segment Closed v n) -> Segment Closed v n -> Interval (N (Segment Closed v n)) #

arcLength :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) #

stdArcLength :: Segment Closed v n -> N (Segment Closed v n) #

arcLengthToParam :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) #

stdArcLengthToParam :: Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) #

(Metric v, OrderedField n, Real n) => HasArcLength (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

arcLengthBounded :: N (Trail' l v n) -> Trail' l v n -> Interval (N (Trail' l v n)) #

arcLength :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) #

stdArcLength :: Trail' l v n -> N (Trail' l v n) #

arcLengthToParam :: N (Trail' l v n) -> Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) #

stdArcLengthToParam :: Trail' l v n -> N (Trail' l v n) -> N (Trail' l v n) #

class Parametric p where #

Methods

atParam :: p -> N p -> Codomain p (N p) #

Instances

Instances details
(InSpace v n a, Parametric a, Codomain a ~ v) => Parametric (Located a) 
Instance details

Defined in Diagrams.Located

Methods

atParam :: Located a -> N (Located a) -> Codomain (Located a) (N (Located a)) #

Parametric (Tangent t) => Parametric (Tangent (Located t)) 
Instance details

Defined in Diagrams.Tangent

Methods

atParam :: Tangent (Located t) -> N (Tangent (Located t)) -> Codomain (Tangent (Located t)) (N (Tangent (Located t))) #

(Additive v, Num n) => Parametric (Tangent (FixedSegment v n)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => Parametric (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

(Metric v, OrderedField n, Real n) => Parametric (Tangent (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Tangent (Trail v n) -> N (Tangent (Trail v n)) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

(Parametric (GetSegment (Trail' c v n)), Additive v, Num n) => Parametric (Tangent (Trail' c v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Tangent (Trail' c v n) -> N (Tangent (Trail' c v n)) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: GetSegment (Trail v n) -> N (GetSegment (Trail v n)) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

Fractional n => Parametric (BernsteinPoly n) 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Methods

atParam :: BernsteinPoly n -> N (BernsteinPoly n) -> Codomain (BernsteinPoly n) (N (BernsteinPoly n)) #

(Additive v, Num n) => Parametric (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

atParam :: FixedSegment v n -> N (FixedSegment v n) -> Codomain (FixedSegment v n) (N (FixedSegment v n)) #

(Metric v, OrderedField n, Real n) => Parametric (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: SegTree v n -> N (SegTree v n) -> Codomain (SegTree v n) (N (SegTree v n)) #

(Metric v, OrderedField n, Real n) => Parametric (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Trail v n -> N (Trail v n) -> Codomain (Trail v n) (N (Trail v n)) #

(Additive v, Num n) => Parametric (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

atParam :: Segment Closed v n -> N (Segment Closed v n) -> Codomain (Segment Closed v n) (N (Segment Closed v n)) #

(Metric v, OrderedField n, Real n) => Parametric (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Trail' l v n -> N (Trail' l v n) -> Codomain (Trail' l v n) (N (Trail' l v n)) #

class DomainBounds p => Sectionable p where #

Minimal complete definition

reverseDomain

Methods

splitAtParam :: p -> N p -> (p, p) #

section :: p -> N p -> N p -> p #

reverseDomain :: p -> p #

Instances

Instances details
(InSpace v n a, Fractional n, Parametric a, Sectionable a, Codomain a ~ v) => Sectionable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

splitAtParam :: Located a -> N (Located a) -> (Located a, Located a) #

section :: Located a -> N (Located a) -> N (Located a) -> Located a #

reverseDomain :: Located a -> Located a #

Fractional n => Sectionable (BernsteinPoly n) 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Methods

splitAtParam :: BernsteinPoly n -> N (BernsteinPoly n) -> (BernsteinPoly n, BernsteinPoly n) #

section :: BernsteinPoly n -> N (BernsteinPoly n) -> N (BernsteinPoly n) -> BernsteinPoly n #

reverseDomain :: BernsteinPoly n -> BernsteinPoly n #

(Additive v, Fractional n) => Sectionable (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n, Real n) => Sectionable (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

splitAtParam :: SegTree v n -> N (SegTree v n) -> (SegTree v n, SegTree v n) #

section :: SegTree v n -> N (SegTree v n) -> N (SegTree v n) -> SegTree v n #

reverseDomain :: SegTree v n -> SegTree v n #

(Metric v, OrderedField n, Real n) => Sectionable (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

splitAtParam :: Trail v n -> N (Trail v n) -> (Trail v n, Trail v n) #

section :: Trail v n -> N (Trail v n) -> N (Trail v n) -> Trail v n #

reverseDomain :: Trail v n -> Trail v n #

(Additive v, Fractional n) => Sectionable (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n, Real n) => Sectionable (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

splitAtParam :: Trail' Line v n -> N (Trail' Line v n) -> (Trail' Line v n, Trail' Line v n) #

section :: Trail' Line v n -> N (Trail' Line v n) -> N (Trail' Line v n) -> Trail' Line v n #

reverseDomain :: Trail' Line v n -> Trail' Line v n #

domainBounds :: DomainBounds p => p -> (N p, N p) #

data AdjustMethod n #

Constructors

ByParam n 
ByAbsolute n 
ToAbsolute n 

Instances

Instances details
Fractional n => Default (AdjustMethod n) 
Instance details

Defined in Diagrams.Parametric.Adjust

Methods

def :: AdjustMethod n #

data AdjustOpts n #

Instances

Instances details
Fractional n => Default (AdjustOpts n) 
Instance details

Defined in Diagrams.Parametric.Adjust

Methods

def :: AdjustOpts n #

adjEps :: forall n f. Functor f => (n -> f n) -> AdjustOpts n -> f (AdjustOpts n) #

adjMethod :: forall n f. Functor f => (AdjustMethod n -> f (AdjustMethod n)) -> AdjustOpts n -> f (AdjustOpts n) #

adjSide :: forall n f. Functor f => (AdjustSide -> f AdjustSide) -> AdjustOpts n -> f (AdjustOpts n) #

class ToPath t where #

Methods

toPath :: t -> Path (V t) (N t) #

Instances

Instances details
ToPath (Located (Segment Closed v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Segment Closed v n) -> Path (V (Located (Segment Closed v n))) (N (Located (Segment Closed v n))) #

ToPath (Located (Trail v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Trail v n) -> Path (V (Located (Trail v n))) (N (Located (Trail v n))) #

ToPath (Located (Trail' l v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Trail' l v n) -> Path (V (Located (Trail' l v n))) (N (Located (Trail' l v n))) #

ToPath (Located [Segment Closed v n]) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located [Segment Closed v n] -> Path (V (Located [Segment Closed v n])) (N (Located [Segment Closed v n])) #

ToPath a => ToPath [a] 
Instance details

Defined in Diagrams.Path

Methods

toPath :: [a] -> Path (V [a]) (N [a]) #

ToPath (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Path v n -> Path (V (Path v n)) (N (Path v n)) #

ToPath (FixedSegment v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: FixedSegment v n -> Path (V (FixedSegment v n)) (N (FixedSegment v n)) #

ToPath (Trail v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Trail v n -> Path (V (Trail v n)) (N (Trail v n)) #

ToPath (Trail' l v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Trail' l v n -> Path (V (Trail' l v n)) (N (Trail' l v n)) #

explodePath :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Path v n -> [[t]] #

fixPath :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[FixedSegment v n]] #

partitionPath :: forall (v :: Type -> Type) n. (Located (Trail v n) -> Bool) -> Path v n -> (Path v n, Path v n) #

pathCentroid :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> Point v n #

pathFromLocTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> Path v n #

pathFromTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Path v n #

pathFromTrailAt :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Point v n -> Path v n #

pathLocSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[Located (Segment Closed v n)]] #

pathOffsets :: (Metric v, OrderedField n) => Path v n -> [v n] #

pathTrails :: forall (v :: Type -> Type) n. Path v n -> [Located (Trail v n)] #

pathVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> [[Point v n]] #

pathVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Path v n -> [[Point v n]] #

reversePath :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Path v n -> Path v n #

scalePath :: forall (v :: Type -> Type) n. (HasLinearMap v, Metric v, OrderedField n) => n -> Path v n -> Path v n #

centroid :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => [Point v n] -> Point v n #

class HasQuery t m | t -> m where #

Methods

getQuery :: t -> Query (V t) (N t) m #

Instances

Instances details
(Num n, Ord n) => HasQuery (Box n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Box n -> Query (V (Box n)) (N (Box n)) Any #

(Floating n, Ord n) => HasQuery (CSG n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: CSG n -> Query (V (CSG n)) (N (CSG n)) Any #

(Num n, Ord n) => HasQuery (Ellipsoid n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Ellipsoid n -> Query (V (Ellipsoid n)) (N (Ellipsoid n)) Any #

OrderedField n => HasQuery (Frustum n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Frustum n -> Query (V (Frustum n)) (N (Frustum n)) Any #

RealFloat n => HasQuery (Clip n) All 
Instance details

Defined in Diagrams.TwoD.Path

Methods

getQuery :: Clip n -> Query (V (Clip n)) (N (Clip n)) All #

(Additive v, Foldable v, Ord n) => HasQuery (BoundingBox v n) Any 
Instance details

Defined in Diagrams.BoundingBox

Methods

getQuery :: BoundingBox v n -> Query (V (BoundingBox v n)) (N (BoundingBox v n)) Any #

RealFloat n => HasQuery (DImage n a) Any 
Instance details

Defined in Diagrams.TwoD.Image

Methods

getQuery :: DImage n a -> Query (V (DImage n a)) (N (DImage n a)) Any #

HasQuery (Query v n m) m 
Instance details

Defined in Diagrams.Query

Methods

getQuery :: Query v n m -> Query (V (Query v n m)) (N (Query v n m)) m #

Monoid m => HasQuery (QDiagram b v n m) m 
Instance details

Defined in Diagrams.Query

Methods

getQuery :: QDiagram b v n m -> Query (V (QDiagram b v n m)) (N (QDiagram b v n m)) m #

clearValue :: forall b (v :: Type -> Type) n m. QDiagram b v n m -> QDiagram b v n Any #

inquire :: HasQuery t Any => t -> Point (V t) (N t) -> Bool #

resetValue :: forall m b (v :: Type -> Type) n. (Eq m, Monoid m) => QDiagram b v n m -> QDiagram b v n Any #

sample :: HasQuery t m => t -> Point (V t) (N t) -> m #

newtype ArcLength n #

Constructors

ArcLength (Sum (Interval n), n -> Sum (Interval n)) 

Instances

Instances details
(Num n, Ord n) => Monoid (ArcLength n) 
Instance details

Defined in Diagrams.Segment

(Num n, Ord n) => Semigroup (ArcLength n) 
Instance details

Defined in Diagrams.Segment

Methods

(<>) :: ArcLength n -> ArcLength n -> ArcLength n #

sconcat :: NonEmpty (ArcLength n) -> ArcLength n #

stimes :: Integral b => b -> ArcLength n -> ArcLength n #

Wrapped (ArcLength n) 
Instance details

Defined in Diagrams.Segment

Associated Types

type Unwrapped (ArcLength n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (ArcLength n) = (Sum (Interval n), n -> Sum (Interval n))
Rewrapped (ArcLength n) (ArcLength n') 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n) => Measured (SegMeasure v n) (SegMeasure v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: SegMeasure v n -> SegMeasure v n

(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

measure :: SegTree v n -> SegMeasure v n

(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: Segment Closed v n -> SegMeasure v n

type Unwrapped (ArcLength n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (ArcLength n) = (Sum (Interval n), n -> Sum (Interval n))

data Closed #

Instances

Instances details
(Additive v, Num n) => EndValues (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => Parametric (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

ToPath (Located (Segment Closed v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Segment Closed v n) -> Path (V (Located (Segment Closed v n))) (N (Located (Segment Closed v n))) #

ToPath (Located [Segment Closed v n]) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located [Segment Closed v n] -> Path (V (Located [Segment Closed v n])) (N (Located [Segment Closed v n])) #

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (SegTree v n) (SegTree u n') (Segment Closed v n, SegTree v n) (Segment Closed u n', SegTree u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (SegTree v n) (SegTree u n') (SegTree v n, Segment Closed v n) (SegTree u n', Segment Closed u n') #

(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: Segment Closed v n -> SegMeasure v n

Serialize (v n) => Serialize (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

put :: Putter (Segment Closed v n)

get :: Get (Segment Closed v n)

(Metric v, OrderedField n) => Enveloped (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

getEnvelope :: Segment Closed v n -> Envelope (V (Segment Closed v n)) (N (Segment Closed v n)) #

Num n => DomainBounds (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

(Additive v, Num n) => EndValues (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n) => HasArcLength (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

arcLengthBounded :: N (Segment Closed v n) -> Segment Closed v n -> Interval (N (Segment Closed v n)) #

arcLength :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) #

stdArcLength :: Segment Closed v n -> N (Segment Closed v n) #

arcLengthToParam :: N (Segment Closed v n) -> Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) #

stdArcLengthToParam :: Segment Closed v n -> N (Segment Closed v n) -> N (Segment Closed v n) #

(Additive v, Num n) => Parametric (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

atParam :: Segment Closed v n -> N (Segment Closed v n) -> Codomain (Segment Closed v n) (N (Segment Closed v n)) #

(Additive v, Fractional n) => Sectionable (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

(Additive v, Num n) => Reversing (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

reversing :: Segment Closed v n -> Segment Closed v n #

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (Trail' Line v n) (Trail' Line u n') (Segment Closed v n, Trail' Line v n) (Segment Closed u n', Trail' Line u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (Trail' Line v n) (Trail' Line u n') (Trail' Line v n, Segment Closed v n) (Trail' Line u n', Segment Closed u n') #

type Codomain (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

type Codomain (Segment Closed v n) = v

data FixedSegment (v :: Type -> Type) n #

Constructors

FLinear (Point v n) (Point v n) 
FCubic (Point v n) (Point v n) (Point v n) (Point v n) 

Instances

Instances details
(Additive v, Num n) => EndValues (Tangent (FixedSegment v n)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => Parametric (Tangent (FixedSegment v n)) 
Instance details

Defined in Diagrams.Tangent

Show (v n) => Show (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n) => Enveloped (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

getEnvelope :: FixedSegment v n -> Envelope (V (FixedSegment v n)) (N (FixedSegment v n)) #

(Additive v, Num n) => HasOrigin (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

moveOriginTo :: Point (V (FixedSegment v n)) (N (FixedSegment v n)) -> FixedSegment v n -> FixedSegment v n #

(Additive v, Num n) => Transformable (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Num n => DomainBounds (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

(Additive v, Num n) => EndValues (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n) => HasArcLength (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

(Additive v, Num n) => Parametric (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

atParam :: FixedSegment v n -> N (FixedSegment v n) -> Codomain (FixedSegment v n) (N (FixedSegment v n)) #

(Additive v, Fractional n) => Sectionable (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

ToPath (FixedSegment v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: FixedSegment v n -> Path (V (FixedSegment v n)) (N (FixedSegment v n)) #

Eq (v n) => Eq (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

(==) :: FixedSegment v n -> FixedSegment v n -> Bool #

(/=) :: FixedSegment v n -> FixedSegment v n -> Bool #

Ord (v n) => Ord (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Reversing (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

reversing :: FixedSegment v n -> FixedSegment v n #

r ~ FixedSegment u n => AffineMappable (FixedSegment v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (FixedSegment v n)) (V r) (N r) -> FixedSegment v n -> r

r ~ FixedSegment u m => LinearMappable (FixedSegment v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (FixedSegment v n) -> Vn r) -> FixedSegment v n -> r

Each (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') 
Instance details

Defined in Diagrams.Segment

Methods

each :: Traversal (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') #

type N (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

type N (FixedSegment v n) = n
type V (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

type V (FixedSegment v n) = v
type Codomain (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

type Codomain (FixedSegment v n) = Point v

data Offset c (v :: Type -> Type) n where #

Constructors

OffsetOpen :: forall (v :: Type -> Type) n. Offset Open v n 
OffsetClosed :: forall (v :: Type -> Type) n. v n -> Offset Closed v n 

Instances

Instances details
Functor v => Functor (Offset c v) 
Instance details

Defined in Diagrams.Segment

Methods

fmap :: (a -> b) -> Offset c v a -> Offset c v b #

(<$) :: a -> Offset c v b -> Offset c v a #

Show (v n) => Show (Offset c v n) 
Instance details

Defined in Diagrams.Segment

Methods

showsPrec :: Int -> Offset c v n -> ShowS #

show :: Offset c v n -> String #

showList :: [Offset c v n] -> ShowS #

Transformable (Offset c v n) 
Instance details

Defined in Diagrams.Segment

Methods

transform :: Transformation (V (Offset c v n)) (N (Offset c v n)) -> Offset c v n -> Offset c v n #

Eq (v n) => Eq (Offset c v n) 
Instance details

Defined in Diagrams.Segment

Methods

(==) :: Offset c v n -> Offset c v n -> Bool #

(/=) :: Offset c v n -> Offset c v n -> Bool #

Ord (v n) => Ord (Offset c v n) 
Instance details

Defined in Diagrams.Segment

Methods

compare :: Offset c v n -> Offset c v n -> Ordering #

(<) :: Offset c v n -> Offset c v n -> Bool #

(<=) :: Offset c v n -> Offset c v n -> Bool #

(>) :: Offset c v n -> Offset c v n -> Bool #

(>=) :: Offset c v n -> Offset c v n -> Bool #

max :: Offset c v n -> Offset c v n -> Offset c v n #

min :: Offset c v n -> Offset c v n -> Offset c v n #

(Additive v, Num n) => Reversing (Offset c v n) 
Instance details

Defined in Diagrams.Segment

Methods

reversing :: Offset c v n -> Offset c v n #

r ~ Offset c u n => AffineMappable (Offset c v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (Offset c v n)) (V r) (N r) -> Offset c v n -> r

r ~ Offset c u m => LinearMappable (Offset c v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (Offset c v n) -> Vn r) -> Offset c v n -> r

Each (Offset c v n) (Offset c v' n') (v n) (v' n') 
Instance details

Defined in Diagrams.Segment

Methods

each :: Traversal (Offset c v n) (Offset c v' n') (v n) (v' n') #

type N (Offset c v n) 
Instance details

Defined in Diagrams.Segment

type N (Offset c v n) = n
type V (Offset c v n) 
Instance details

Defined in Diagrams.Segment

type V (Offset c v n) = v

data OffsetEnvelope (v :: Type -> Type) n #

Constructors

OffsetEnvelope 

Fields

Instances

Instances details
(Metric v, OrderedField n) => Semigroup (OffsetEnvelope v n) 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n) => Measured (SegMeasure v n) (SegMeasure v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: SegMeasure v n -> SegMeasure v n

(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

measure :: SegTree v n -> SegMeasure v n

(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: Segment Closed v n -> SegMeasure v n

data Open #

Instances

Instances details
Serialize (v n) => Serialize (Segment Open v n) 
Instance details

Defined in Diagrams.Segment

Methods

put :: Putter (Segment Open v n)

get :: Get (Segment Open v n)

newtype SegCount #

Constructors

SegCount (Sum Int) 

Instances

Instances details
Monoid SegCount 
Instance details

Defined in Diagrams.Segment

Semigroup SegCount 
Instance details

Defined in Diagrams.Segment

Wrapped SegCount 
Instance details

Defined in Diagrams.Segment

Associated Types

type Unwrapped SegCount 
Instance details

Defined in Diagrams.Segment

Rewrapped SegCount SegCount 
Instance details

Defined in Diagrams.Segment

(Metric v, OrderedField n) => Measured (SegMeasure v n) (SegMeasure v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: SegMeasure v n -> SegMeasure v n

(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

measure :: SegTree v n -> SegMeasure v n

(OrderedField n, Metric v) => Measured (SegMeasure v n) (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

measure :: Segment Closed v n -> SegMeasure v n

type Unwrapped SegCount 
Instance details

Defined in Diagrams.Segment

type SegMeasure (v :: Type -> Type) n = SegCount ::: (ArcLength n ::: (OffsetEnvelope v n ::: ())) #

newtype TotalOffset (v :: Type -> Type) n #

Constructors

TotalOffset (v n) 

Instances

Instances details
(Num n, Additive v) => Monoid (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

Methods

mempty :: TotalOffset v n #

mappend :: TotalOffset v n -> TotalOffset v n -> TotalOffset v n #

mconcat :: [TotalOffset v n] -> TotalOffset v n #

(Num n, Additive v) => Semigroup (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

Methods

(<>) :: TotalOffset v n -> TotalOffset v n -> TotalOffset v n #

sconcat :: NonEmpty (TotalOffset v n) -> TotalOffset v n #

stimes :: Integral b => b -> TotalOffset v n -> TotalOffset v n #

Wrapped (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

Associated Types

type Unwrapped (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (TotalOffset v n) = v n
Rewrapped (TotalOffset v n) (TotalOffset v' n') 
Instance details

Defined in Diagrams.Segment

type Unwrapped (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (TotalOffset v n) = v n

bezier3 :: v n -> v n -> v n -> Segment Closed v n #

bézier3 :: v n -> v n -> v n -> Segment Closed v n #

fixedSegIso :: forall n (v :: Type -> Type). (Num n, Additive v) => Iso' (FixedSegment v n) (Located (Segment Closed v n)) #

fromFixedSeg :: forall n (v :: Type -> Type). (Num n, Additive v) => FixedSegment v n -> Located (Segment Closed v n) #

getArcLengthBounded :: (Num n, Ord n) => n -> ArcLength n -> Interval n #

getArcLengthCached :: ArcLength n -> Interval n #

getArcLengthFun :: ArcLength n -> n -> Interval n #

mapSegmentVectors :: (v n -> v' n') -> Segment c v n -> Segment c v' n' #

mkFixedSeg :: forall n (v :: Type -> Type). (Num n, Additive v) => Located (Segment Closed v n) -> FixedSegment v n #

oeEnvelope :: forall (v :: Type -> Type) n f. Functor f => (Envelope v n -> f (Envelope v n)) -> OffsetEnvelope v n -> f (OffsetEnvelope v n) #

oeOffset :: forall (v :: Type -> Type) n f. Functor f => (TotalOffset v n -> f (TotalOffset v n)) -> OffsetEnvelope v n -> f (OffsetEnvelope v n) #

openCubic :: v n -> v n -> Segment Open v n #

openLinear :: forall (v :: Type -> Type) n. Segment Open v n #

reverseSegment :: forall n (v :: Type -> Type). (Num n, Additive v) => Segment Closed v n -> Segment Closed v n #

segOffset :: Segment Closed v n -> v n #

straight :: v n -> Segment Closed v n #

absolute :: forall (v :: Type -> Type) n. (Additive v, Num n) => SizeSpec v n #

dims :: v n -> SizeSpec v n #

getSpec :: (Functor v, Num n, Ord n) => SizeSpec v n -> v (Maybe n) #

mkSizeSpec :: (Functor v, Num n) => v (Maybe n) -> SizeSpec v n #

requiredScale :: (Additive v, Foldable v, Fractional n, Ord n) => SizeSpec v n -> v n -> n #

sized :: forall (v :: Type -> Type) n a. (InSpace v n a, HasLinearMap v, Transformable a, Enveloped a) => SizeSpec v n -> a -> a #

sizedAs :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasLinearMap v, Transformable a, Enveloped a, Enveloped b) => b -> a -> a #

specToSize :: (Foldable v, Functor v, Num n, Ord n) => n -> SizeSpec v n -> v n #

newtype Tangent t #

Constructors

Tangent t 

Instances

Instances details
DomainBounds t => DomainBounds (Tangent t) 
Instance details

Defined in Diagrams.Tangent

Methods

domainLower :: Tangent t -> N (Tangent t) #

domainUpper :: Tangent t -> N (Tangent t) #

(DomainBounds t, EndValues (Tangent t)) => EndValues (Tangent (Located t)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => EndValues (Tangent (FixedSegment v n)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => EndValues (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

(Metric v, OrderedField n, Real n) => EndValues (Tangent (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Tangent (Trail v n) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

atEnd :: Tangent (Trail v n) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

(Parametric (GetSegment (Trail' c v n)), EndValues (GetSegment (Trail' c v n)), Additive v, Num n) => EndValues (Tangent (Trail' c v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Tangent (Trail' c v n) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

atEnd :: Tangent (Trail' c v n) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

Parametric (Tangent t) => Parametric (Tangent (Located t)) 
Instance details

Defined in Diagrams.Tangent

Methods

atParam :: Tangent (Located t) -> N (Tangent (Located t)) -> Codomain (Tangent (Located t)) (N (Tangent (Located t))) #

(Additive v, Num n) => Parametric (Tangent (FixedSegment v n)) 
Instance details

Defined in Diagrams.Tangent

(Additive v, Num n) => Parametric (Tangent (Segment Closed v n)) 
Instance details

Defined in Diagrams.Tangent

(Metric v, OrderedField n, Real n) => Parametric (Tangent (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Tangent (Trail v n) -> N (Tangent (Trail v n)) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

(Parametric (GetSegment (Trail' c v n)), Additive v, Num n) => Parametric (Tangent (Trail' c v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Tangent (Trail' c v n) -> N (Tangent (Trail' c v n)) -> Codomain (Tangent (Trail' c v n)) (N (Tangent (Trail' c v n))) #

type N (Tangent t) 
Instance details

Defined in Diagrams.Tangent

type N (Tangent t) = N t
type V (Tangent t) 
Instance details

Defined in Diagrams.Tangent

type V (Tangent t) = V t
type Codomain (Tangent t) 
Instance details

Defined in Diagrams.Tangent

type Codomain (Tangent t) = V t

normalAtEnd :: (InSpace V2 n t, EndValues (Tangent t), Floating n) => t -> V2 n #

normalAtParam :: (InSpace V2 n t, Parametric (Tangent t), Floating n) => t -> n -> V2 n #

normalAtStart :: (InSpace V2 n t, EndValues (Tangent t), Floating n) => t -> V2 n #

tangentAtEnd :: EndValues (Tangent t) => t -> Vn t #

tangentAtParam :: Parametric (Tangent t) => t -> N t -> Vn t #

alignXMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignXMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignYMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignYMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a #

alignZMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignZMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

centerXYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

centerXZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

centerYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

centerZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

snugCenterXYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugCenterXZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugCenterYZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugCenterZ :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugXMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugXMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugYMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugYMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugZ :: forall a (v :: Type -> Type) n. (V a ~ v, N a ~ n, Alignable a, Traced a, HasOrigin a, R3 v, Fractional n) => n -> a -> a #

snugZMax :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

snugZMin :: forall (v :: Type -> Type) n a. (InSpace v n a, R3 v, Fractional n, Alignable a, HasOrigin a, Traced a) => a -> a #

newtype Ambient #

Constructors

Ambient (Last Double) 

Instances

Instances details
Semigroup Ambient 
Instance details

Defined in Diagrams.ThreeD.Attributes

Show Ambient 
Instance details

Defined in Diagrams.ThreeD.Attributes

AttributeClass Ambient 
Instance details

Defined in Diagrams.ThreeD.Attributes

newtype Diffuse #

Constructors

Diffuse (Last Double) 

Instances

Instances details
Semigroup Diffuse 
Instance details

Defined in Diagrams.ThreeD.Attributes

Show Diffuse 
Instance details

Defined in Diagrams.ThreeD.Attributes

AttributeClass Diffuse 
Instance details

Defined in Diagrams.ThreeD.Attributes

newtype Highlight #

Constructors

Highlight (Last Specular) 

Instances

Instances details
Semigroup Highlight 
Instance details

Defined in Diagrams.ThreeD.Attributes

Show Highlight 
Instance details

Defined in Diagrams.ThreeD.Attributes

AttributeClass Highlight 
Instance details

Defined in Diagrams.ThreeD.Attributes

data Specular #

Instances

Instances details
Show Specular 
Instance details

Defined in Diagrams.ThreeD.Attributes

_ambient :: forall (v :: Type -> Type) n f. Functor f => (Maybe Double -> f (Maybe Double)) -> Style v n -> f (Style v n) #

_diffuse :: forall (v :: Type -> Type) n f. Functor f => (Maybe Double -> f (Maybe Double)) -> Style v n -> f (Style v n) #

_highlight :: forall (v :: Type -> Type) n f. Functor f => (Maybe Specular -> f (Maybe Specular)) -> Style v n -> f (Style v n) #

_sc :: forall (v :: Type -> Type) n f. Functor f => (Maybe (Colour Double) -> f (Maybe (Colour Double))) -> Style v n -> f (Style v n) #

ambient :: HasStyle d => Double -> d -> d #

diffuse :: HasStyle d => Double -> d -> d #

highlight :: HasStyle d => Specular -> d -> d #

highlightIntensity :: forall (v :: Type -> Type) n f. Applicative f => (Double -> f Double) -> Style v n -> f (Style v n) #

highlightSize :: forall (v :: Type -> Type) n f. Applicative f => (Double -> f Double) -> Style v n -> f (Style v n) #

sc :: HasStyle d => Colour Double -> d -> d #

data Camera (l :: Type -> Type) n #

Instances

Instances details
Num n => Transformable (Camera l n) 
Instance details

Defined in Diagrams.ThreeD.Camera

Methods

transform :: Transformation (V (Camera l n)) (N (Camera l n)) -> Camera l n -> Camera l n #

Num n => Renderable (Camera l n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Camera

Methods

render :: NullBackend -> Camera l n -> Render NullBackend (V (Camera l n)) (N (Camera l n)) #

type N (Camera l n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type N (Camera l n) = n
type V (Camera l n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type V (Camera l n) = V3

data OrthoLens n #

Constructors

OrthoLens 

Fields

Instances

Instances details
CameraLens OrthoLens 
Instance details

Defined in Diagrams.ThreeD.Camera

Methods

aspect :: Floating n => OrthoLens n -> n #

type N (OrthoLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type N (OrthoLens n) = n
type V (OrthoLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type V (OrthoLens n) = V3

data PerspectiveLens n #

Instances

Instances details
CameraLens PerspectiveLens 
Instance details

Defined in Diagrams.ThreeD.Camera

Methods

aspect :: Floating n => PerspectiveLens n -> n #

type N (PerspectiveLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type N (PerspectiveLens n) = n
type V (PerspectiveLens n) 
Instance details

Defined in Diagrams.ThreeD.Camera

type V (PerspectiveLens n) = V3

aspect :: (CameraLens l, Floating n) => l n -> n #

camAspect :: forall n (l :: Type -> Type). (Floating n, CameraLens l) => Camera l n -> n #

camForward :: forall (l :: Type -> Type) n. Camera l n -> Direction V3 n #

camLens :: Camera l n -> l n #

camRight :: forall n (l :: Type -> Type). Fractional n => Camera l n -> Direction V3 n #

camUp :: forall (l :: Type -> Type) n. Camera l n -> Direction V3 n #

facing_ZCamera :: (Floating n, Ord n, Typeable n, CameraLens l, Renderable (Camera l n) b) => l n -> QDiagram b V3 n Any #

horizontalFieldOfView :: forall n f. Functor f => (Angle n -> f (Angle n)) -> PerspectiveLens n -> f (PerspectiveLens n) #

orthoHeight :: forall n f. Functor f => (n -> f n) -> OrthoLens n -> f (OrthoLens n) #

orthoWidth :: forall n f. Functor f => (n -> f n) -> OrthoLens n -> f (OrthoLens n) #

verticalFieldOfView :: forall n f. Functor f => (Angle n -> f (Angle n)) -> PerspectiveLens n -> f (PerspectiveLens n) #

facingZ :: forall (v :: Type -> Type) n. (R3 v, Functor v, Fractional n) => Deformation v v n #

parallelZ0 :: forall (v :: Type -> Type) n. (R3 v, Num n) => Deformation v v n #

perspectiveZ1 :: forall (v :: Type -> Type) n. (R3 v, Functor v, Fractional n) => Deformation v v n #

data ParallelLight n #

Constructors

ParallelLight (V3 n) (Colour Double) 

Instances

Instances details
Transformable (ParallelLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type N (ParallelLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type N (ParallelLight n) = n
type V (ParallelLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type V (ParallelLight n) = V3

data PointLight n #

Constructors

PointLight (Point V3 n) (Colour Double) 

Instances

Instances details
Fractional n => Transformable (PointLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type N (PointLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type N (PointLight n) = n
type V (PointLight n) 
Instance details

Defined in Diagrams.ThreeD.Light

type V (PointLight n) = V3

data Box n #

Constructors

Box (Transformation V3 n) 

Instances

Instances details
CsgPrim Box 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

toCsg :: Box n -> CSG n

OrderedField n => Enveloped (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: Box n -> Envelope (V (Box n)) (N (Box n)) #

(Fractional n, Ord n) => Traced (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: Box n -> Trace (V (Box n)) (N (Box n)) #

Fractional n => Transformable (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

transform :: Transformation (V (Box n)) (N (Box n)) -> Box n -> Box n #

OrderedField n => Skinned (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (Box n) b, N (Box n) ~ n0, TypeableFloat n0) => Box n -> QDiagram b V3 n0 Any #

Fractional n => Renderable (Box n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

render :: NullBackend -> Box n -> Render NullBackend (V (Box n)) (N (Box n)) #

(Num n, Ord n) => HasQuery (Box n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Box n -> Query (V (Box n)) (N (Box n)) Any #

type N (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (Box n) = n
type V (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (Box n) = V3

data CSG n #

Instances

Instances details
CsgPrim CSG 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

toCsg :: CSG n -> CSG n

RealFloat n => Enveloped (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: CSG n -> Envelope (V (CSG n)) (N (CSG n)) #

(RealFloat n, Ord n) => Traced (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: CSG n -> Trace (V (CSG n)) (N (CSG n)) #

Fractional n => Transformable (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

transform :: Transformation (V (CSG n)) (N (CSG n)) -> CSG n -> CSG n #

(RealFloat n, Ord n) => Skinned (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (CSG n) b, N (CSG n) ~ n0, TypeableFloat n0) => CSG n -> QDiagram b V3 n0 Any #

(Floating n, Ord n) => HasQuery (CSG n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: CSG n -> Query (V (CSG n)) (N (CSG n)) Any #

type N (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (CSG n) = n
type V (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (CSG n) = V3

data Ellipsoid n #

Constructors

Ellipsoid (Transformation V3 n) 

Instances

Instances details
CsgPrim Ellipsoid 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

toCsg :: Ellipsoid n -> CSG n

OrderedField n => Enveloped (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: Ellipsoid n -> Envelope (V (Ellipsoid n)) (N (Ellipsoid n)) #

OrderedField n => Traced (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: Ellipsoid n -> Trace (V (Ellipsoid n)) (N (Ellipsoid n)) #

Fractional n => Transformable (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

OrderedField n => Skinned (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (Ellipsoid n) b, N (Ellipsoid n) ~ n0, TypeableFloat n0) => Ellipsoid n -> QDiagram b V3 n0 Any #

Fractional n => Renderable (Ellipsoid n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

(Num n, Ord n) => HasQuery (Ellipsoid n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Ellipsoid n -> Query (V (Ellipsoid n)) (N (Ellipsoid n)) Any #

type N (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (Ellipsoid n) = n
type V (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (Ellipsoid n) = V3

data Frustum n #

Constructors

Frustum n n (Transformation V3 n) 

Instances

Instances details
CsgPrim Frustum 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

toCsg :: Frustum n -> CSG n

(OrderedField n, RealFloat n) => Enveloped (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: Frustum n -> Envelope (V (Frustum n)) (N (Frustum n)) #

(RealFloat n, Ord n) => Traced (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: Frustum n -> Trace (V (Frustum n)) (N (Frustum n)) #

Fractional n => Transformable (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

transform :: Transformation (V (Frustum n)) (N (Frustum n)) -> Frustum n -> Frustum n #

Skinned (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (Frustum n) b, N (Frustum n) ~ n0, TypeableFloat n0) => Frustum n -> QDiagram b V3 n0 Any #

Fractional n => Renderable (Frustum n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

render :: NullBackend -> Frustum n -> Render NullBackend (V (Frustum n)) (N (Frustum n)) #

OrderedField n => HasQuery (Frustum n) Any 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getQuery :: Frustum n -> Query (V (Frustum n)) (N (Frustum n)) Any #

type N (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type N (Frustum n) = n
type V (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

type V (Frustum n) = V3

class Skinned t where #

Methods

skin :: (Renderable t b, N t ~ n, TypeableFloat n) => t -> QDiagram b V3 n Any #

Instances

Instances details
OrderedField n => Skinned (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (Box n) b, N (Box n) ~ n0, TypeableFloat n0) => Box n -> QDiagram b V3 n0 Any #

(RealFloat n, Ord n) => Skinned (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (CSG n) b, N (CSG n) ~ n0, TypeableFloat n0) => CSG n -> QDiagram b V3 n0 Any #

OrderedField n => Skinned (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (Ellipsoid n) b, N (Ellipsoid n) ~ n0, TypeableFloat n0) => Ellipsoid n -> QDiagram b V3 n0 Any #

Skinned (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

skin :: (Renderable (Frustum n) b, N (Frustum n) ~ n0, TypeableFloat n0) => Frustum n -> QDiagram b V3 n0 Any #

cone :: Num n => Frustum n #

cube :: Num n => Box n #

cylinder :: Num n => Frustum n #

frustum :: Num n => n -> n -> Frustum n #

sphere :: Num n => Ellipsoid n #

pointAt' :: (Floating n, Ord n) => V3 n -> V3 n -> V3 n -> Transformation V3 n #

reflectAcross :: (InSpace v n t, Metric v, Fractional n, Transformable t) => Point v n -> v n -> t -> t #

reflectZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Transformable t) => t -> t #

reflectionAcross :: (Metric v, Fractional n) => Point v n -> v n -> Transformation v n #

reflectionZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Num n) => Transformation v n #

rotateAbout :: (InSpace V3 n t, Floating n, Transformable t) => Point V3 n -> Direction V3 n -> Angle n -> t -> t #

scaleZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Fractional n, Transformable t) => n -> t -> t #

scalingZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Fractional n) => n -> Transformation v n #

translateZ :: forall (v :: Type -> Type) n t. (InSpace v n t, R3 v, Transformable t) => n -> t -> t #

translationZ :: forall (v :: Type -> Type) n. (Additive v, R3 v, Num n) => n -> Transformation v n #

type P3 = Point V3 #

mkP3 :: n -> n -> n -> P3 n #

mkR3 :: n -> n -> n -> V3 n #

p3 :: (n, n, n) -> P3 n #

p3Iso :: forall n p f. (Profunctor p, Functor f) => p (n, n, n) (f (n, n, n)) -> p (P3 n) (f (P3 n)) #

r3 :: (n, n, n) -> V3 n #

r3CylindricalIso :: RealFloat n => Iso' (V3 n) (n, Angle n, n) #

r3Iso :: forall n p f. (Profunctor p, Functor f) => p (n, n, n) (f (n, n, n)) -> p (V3 n) (f (V3 n)) #

r3SphericalIso :: RealFloat n => Iso' (V3 n) (n, Angle n, Angle n) #

unp3 :: P3 n -> (n, n, n) #

unr3 :: V3 n -> (n, n, n) #

unitZ :: (R3 v, Additive v, Num n) => v n #

unit_Z :: (R3 v, Additive v, Num n) => v n #

zDir :: forall (v :: Type -> Type) n. (R3 v, Additive v, Num n) => Direction v n #

boundaryFrom :: (OrderedField n, Metric v, Semigroup m) => Subdiagram b v n m -> v n -> Point v n #

boundaryFromMay :: (Metric v, OrderedField n, Semigroup m) => Subdiagram b v n m -> v n -> Maybe (Point v n) #

newtype GetSegment t #

Constructors

GetSegment t 

Instances

Instances details
DomainBounds t => DomainBounds (GetSegment t) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

atEnd :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

(Metric v, OrderedField n) => EndValues (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: GetSegment (Trail v n) -> N (GetSegment (Trail v n)) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

(Metric v, OrderedField n) => Parametric (GetSegment (Trail' Line v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

type N (GetSegment t) 
Instance details

Defined in Diagrams.Trail

type N (GetSegment t) = N t
type V (GetSegment t) 
Instance details

Defined in Diagrams.Trail

type V (GetSegment t) = V t
type Codomain (GetSegment t) 
Instance details

Defined in Diagrams.Trail

newtype GetSegmentCodomain (v :: Type -> Type) n #

Constructors

GetSegmentCodomain (Maybe (v n, Segment Closed v n, AnIso' n n)) 

data Loop #

Instances

Instances details
(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail' Loop v n)) 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n) => TrailLike (Trail' Loop v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail' Loop v n)) (N (Trail' Loop v n))) -> Trail' Loop v n #

newtype SegTree (v :: Type -> Type) n #

Constructors

SegTree (FingerTree (SegMeasure v n) (Segment Closed v n)) 

Instances

Instances details
(Ord n, Floating n, Metric v) => Monoid (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

mempty :: SegTree v n #

mappend :: SegTree v n -> SegTree v n -> SegTree v n #

mconcat :: [SegTree v n] -> SegTree v n #

(Ord n, Floating n, Metric v) => Semigroup (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

(<>) :: SegTree v n -> SegTree v n -> SegTree v n #

sconcat :: NonEmpty (SegTree v n) -> SegTree v n #

stimes :: Integral b => b -> SegTree v n -> SegTree v n #

Show (v n) => Show (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

showsPrec :: Int -> SegTree v n -> ShowS #

show :: SegTree v n -> String #

showList :: [SegTree v n] -> ShowS #

(OrderedField n, Metric v, Serialize (v n)) => Serialize (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

put :: Putter (SegTree v n)

get :: Get (SegTree v n)

(Floating n, Ord n, Metric v) => Transformable (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

transform :: Transformation (V (SegTree v n)) (N (SegTree v n)) -> SegTree v n -> SegTree v n #

Num n => DomainBounds (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

domainLower :: SegTree v n -> N (SegTree v n) #

domainUpper :: SegTree v n -> N (SegTree v n) #

(Metric v, OrderedField n, Real n) => EndValues (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: SegTree v n -> Codomain (SegTree v n) (N (SegTree v n)) #

atEnd :: SegTree v n -> Codomain (SegTree v n) (N (SegTree v n)) #

(Metric v, OrderedField n, Real n) => HasArcLength (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

arcLengthBounded :: N (SegTree v n) -> SegTree v n -> Interval (N (SegTree v n)) #

arcLength :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) #

stdArcLength :: SegTree v n -> N (SegTree v n) #

arcLengthToParam :: N (SegTree v n) -> SegTree v n -> N (SegTree v n) -> N (SegTree v n) #

stdArcLengthToParam :: SegTree v n -> N (SegTree v n) -> N (SegTree v n) #

(Metric v, OrderedField n, Real n) => Parametric (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: SegTree v n -> N (SegTree v n) -> Codomain (SegTree v n) (N (SegTree v n)) #

(Metric v, OrderedField n, Real n) => Sectionable (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

splitAtParam :: SegTree v n -> N (SegTree v n) -> (SegTree v n, SegTree v n) #

section :: SegTree v n -> N (SegTree v n) -> N (SegTree v n) -> SegTree v n #

reverseDomain :: SegTree v n -> SegTree v n #

Eq (v n) => Eq (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

(==) :: SegTree v n -> SegTree v n -> Bool #

(/=) :: SegTree v n -> SegTree v n -> Bool #

Ord (v n) => Ord (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

compare :: SegTree v n -> SegTree v n -> Ordering #

(<) :: SegTree v n -> SegTree v n -> Bool #

(<=) :: SegTree v n -> SegTree v n -> Bool #

(>) :: SegTree v n -> SegTree v n -> Bool #

(>=) :: SegTree v n -> SegTree v n -> Bool #

max :: SegTree v n -> SegTree v n -> SegTree v n #

min :: SegTree v n -> SegTree v n -> SegTree v n #

Wrapped (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Associated Types

type Unwrapped (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (SegTree v n) = FingerTree (SegMeasure v n) (Segment Closed v n)

Methods

_Wrapped' :: Iso' (SegTree v n) (Unwrapped (SegTree v n)) #

(Metric v, Metric u, OrderedField n, r ~ SegTree u n) => AffineMappable (SegTree v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (SegTree v n)) (V r) (N r) -> SegTree v n -> r

(Metric v, Metric u, OrderedField n, OrderedField m, r ~ SegTree u m) => LinearMappable (SegTree v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (SegTree v n) -> Vn r) -> SegTree v n -> r

(Ord n, Metric v, Floating n) => Measured (SegMeasure v n) (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Methods

measure :: SegTree v n -> SegMeasure v n

Rewrapped (SegTree v n) (SegTree v' n') 
Instance details

Defined in Diagrams.Trail

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (SegTree v n) (SegTree u n') (Segment Closed v n, SegTree v n) (Segment Closed u n', SegTree u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (SegTree v n) (SegTree u n') (SegTree v n, Segment Closed v n) (SegTree u n', Segment Closed u n') #

type N (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type N (SegTree v n) = n
type V (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type V (SegTree v n) = v
type Codomain (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type Codomain (SegTree v n) = v
type Unwrapped (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (SegTree v n) = FingerTree (SegMeasure v n) (Segment Closed v n)

data Trail (v :: Type -> Type) n where #

Constructors

Trail :: forall l (v :: Type -> Type) n. Trail' l v n -> Trail v n 

Instances

Instances details
(Metric v, OrderedField n, Real n) => EndValues (Tangent (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Tangent (Trail v n) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

atEnd :: Tangent (Trail v n) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

(Metric v, OrderedField n, Real n) => EndValues (GetSegment (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

atEnd :: GetSegment (Trail v n) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

(Metric v, OrderedField n, Real n) => Parametric (Tangent (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Tangent (Trail v n) -> N (Tangent (Trail v n)) -> Codomain (Tangent (Trail v n)) (N (Tangent (Trail v n))) #

(Metric v, OrderedField n, Real n) => Parametric (GetSegment (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: GetSegment (Trail v n) -> N (GetSegment (Trail v n)) -> Codomain (GetSegment (Trail v n)) (N (GetSegment (Trail v n))) #

ToPath (Located (Trail v n)) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Located (Trail v n) -> Path (V (Located (Trail v n))) (N (Located (Trail v n))) #

(Metric v, OrderedField n) => Reversing (Located (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Located (Trail v n) -> Located (Trail v n) #

(Metric v, Metric u, OrderedField n, r ~ Located (Trail u n)) => Deformable (Located (Trail v n)) r 
Instance details

Defined in Diagrams.Deform

Methods

deform' :: N (Located (Trail v n)) -> Deformation (V (Located (Trail v n))) (V r) (N (Located (Trail v n))) -> Located (Trail v n) -> r #

deform :: Deformation (V (Located (Trail v n))) (V r) (N (Located (Trail v n))) -> Located (Trail v n) -> r #

(Metric v, OrderedField n) => Monoid (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

mempty :: Trail v n #

mappend :: Trail v n -> Trail v n -> Trail v n #

mconcat :: [Trail v n] -> Trail v n #

(OrderedField n, Metric v) => Semigroup (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

(<>) :: Trail v n -> Trail v n -> Trail v n #

sconcat :: NonEmpty (Trail v n) -> Trail v n #

stimes :: Integral b => b -> Trail v n -> Trail v n #

Show (v n) => Show (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

showsPrec :: Int -> Trail v n -> ShowS #

show :: Trail v n -> String #

showList :: [Trail v n] -> ShowS #

(Serialize (v n), OrderedField n, Metric v) => Serialize (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

put :: Putter (Trail v n)

get :: Get (Trail v n)

(Metric v, OrderedField n) => Enveloped (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

getEnvelope :: Trail v n -> Envelope (V (Trail v n)) (N (Trail v n)) #

(HasLinearMap v, Metric v, OrderedField n) => Transformable (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

transform :: Transformation (V (Trail v n)) (N (Trail v n)) -> Trail v n -> Trail v n #

Num n => DomainBounds (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

domainLower :: Trail v n -> N (Trail v n) #

domainUpper :: Trail v n -> N (Trail v n) #

(Metric v, OrderedField n, Real n) => EndValues (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

atStart :: Trail v n -> Codomain (Trail v n) (N (Trail v n)) #

atEnd :: Trail v n -> Codomain (Trail v n) (N (Trail v n)) #

(Metric v, OrderedField n, Real n) => HasArcLength (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

arcLengthBounded :: N (Trail v n) -> Trail v n -> Interval (N (Trail v n)) #

arcLength :: N (Trail v n) -> Trail v n -> N (Trail v n) #

stdArcLength :: Trail v n -> N (Trail v n) #

arcLengthToParam :: N (Trail v n) -> Trail v n -> N (Trail v n) -> N (Trail v n) #

stdArcLengthToParam :: Trail v n -> N (Trail v n) -> N (Trail v n) #

(Metric v, OrderedField n, Real n) => Parametric (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

atParam :: Trail v n -> N (Trail v n) -> Codomain (Trail v n) (N (Trail v n)) #

(Metric v, OrderedField n, Real n) => Sectionable (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

splitAtParam :: Trail v n -> N (Trail v n) -> (Trail v n, Trail v n) #

section :: Trail v n -> N (Trail v n) -> N (Trail v n) -> Trail v n #

reverseDomain :: Trail v n -> Trail v n #

ToPath (Trail v n) 
Instance details

Defined in Diagrams.Path

Methods

toPath :: Trail v n -> Path (V (Trail v n)) (N (Trail v n)) #

(Metric v, OrderedField n) => TrailLike (Trail v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail v n)) (N (Trail v n))) -> Trail v n #

Eq (v n) => Eq (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

(==) :: Trail v n -> Trail v n -> Bool #

(/=) :: Trail v n -> Trail v n -> Bool #

Ord (v n) => Ord (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

compare :: Trail v n -> Trail v n -> Ordering #

(<) :: Trail v n -> Trail v n -> Bool #

(<=) :: Trail v n -> Trail v n -> Bool #

(>) :: Trail v n -> Trail v n -> Bool #

(>=) :: Trail v n -> Trail v n -> Bool #

max :: Trail v n -> Trail v n -> Trail v n #

min :: Trail v n -> Trail v n -> Trail v n #

(Metric v, OrderedField n) => AsEmpty (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

_Empty :: Prism' (Trail v n) () #

(Metric v, OrderedField n) => Reversing (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Trail v n -> Trail v n #

Wrapped (Trail v n) 
Instance details

Defined in Diagrams.Trail

Associated Types

type Unwrapped (Trail v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail v n) = Either (Trail' Line v n) (Trail' Loop v n)

Methods

_Wrapped' :: Iso' (Trail v n) (Unwrapped (Trail v n)) #

(Metric v, Metric u, OrderedField n, r ~ Trail u n) => AffineMappable (Trail v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

amap :: AffineMap (V (Trail v n)) (V r) (N r) -> Trail v n -> r

(Metric v, Metric u, OrderedField n, OrderedField m, r ~ Trail u m) => LinearMappable (Trail v n) r 
Instance details

Defined in Diagrams.LinearMap

Methods

vmap :: (Vn (Trail v n) -> Vn r) -> Trail v n -> r

Rewrapped (Trail v n) (Trail v' n') 
Instance details

Defined in Diagrams.Trail

Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Cons :: Prism (Path v n) (Path v' n') (Located (Trail v n), Path v n) (Located (Trail v' n'), Path v' n') #

Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Snoc :: Prism (Path v n) (Path v' n') (Path v n, Located (Trail v n)) (Path v' n', Located (Trail v' n')) #

Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

each :: Traversal (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) #

type N (Trail v n) 
Instance details

Defined in Diagrams.Trail

type N (Trail v n) = n
type V (Trail v n) 
Instance details

Defined in Diagrams.Trail

type V (Trail v n) = v
type Codomain (Trail v n) 
Instance details

Defined in Diagrams.Trail

type Codomain (Trail v n) = v
type Unwrapped (Trail v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail v n) = Either (Trail' Line v n) (Trail' Loop v n)

_Line :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Trail' Line v n) (f (Trail' Line v n)) -> p (Trail v n) (f (Trail v n)) #

_LocLine :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Located (Trail' Line v n)) (f (Located (Trail' Line v n))) -> p (Located (Trail v n)) (f (Located (Trail v n))) #

_LocLoop :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Located (Trail' Loop v n)) (f (Located (Trail' Loop v n))) -> p (Located (Trail v n)) (f (Located (Trail v n))) #

_Loop :: forall (v :: Type -> Type) n p f. (Choice p, Applicative f) => p (Trail' Loop v n) (f (Trail' Loop v n)) -> p (Trail v n) (f (Trail v n)) #

closeLine :: forall (v :: Type -> Type) n. Trail' Line v n -> Trail' Loop v n #

closeTrail :: forall (v :: Type -> Type) n. Trail v n -> Trail v n #

cutLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Loop v n -> Trail' Line v n #

cutTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Trail v n #

emptyLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n #

emptyTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n #

fixTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [FixedSegment v n] #

glueLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Trail' Loop v n #

glueTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Trail v n #

isLine :: forall (v :: Type -> Type) n. Trail v n -> Bool #

isLineEmpty :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Bool #

isLoop :: forall (v :: Type -> Type) n. Trail v n -> Bool #

isTrailEmpty :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Bool #

lineFromOffsets :: (Metric v, OrderedField n) => [v n] -> Trail' Line v n #

lineFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Trail' Line v n #

lineFromVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Point v n] -> Trail' Line v n #

lineOffset :: (Metric v, OrderedField n) => Trail' Line v n -> v n #

lineOffsets :: Trail' Line v n -> [v n] #

lineSegments :: forall (v :: Type -> Type) n. Trail' Line v n -> [Segment Closed v n] #

lineVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Line v n) -> [Point v n] #

lineVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail' Line v n) -> [Point v n] #

loopFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Segment Open v n -> Trail' Loop v n #

loopOffsets :: (Metric v, OrderedField n) => Trail' Loop v n -> [v n] #

loopSegments :: forall (v :: Type -> Type) n. Trail' Loop v n -> ([Segment Closed v n], Segment Open v n) #

loopVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Loop v n) -> [Point v n] #

loopVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail' Loop v n) -> [Point v n] #

numSegs :: forall c (v :: Type -> Type) n a. (Num c, Measured (SegMeasure v n) a) => a -> c #

offset :: (OrderedField n, Metric v, Measured (SegMeasure v n) t) => t -> v n #

onLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => (Trail' Line v n -> Trail' Line v n) -> Trail v n -> Trail v n #

onLineSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => ([Segment Closed v n] -> [Segment Closed v n]) -> Trail' Line v n -> Trail' Line v n #

onTrail :: forall (v :: Type -> Type) n l1 l2. (Trail' Line v n -> Trail' l1 v n) -> (Trail' Loop v n -> Trail' l2 v n) -> Trail v n -> Trail v n #

reverseLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Line v n -> Trail' Line v n #

reverseLocLine :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Line v n) -> Located (Trail' Line v n) #

reverseLocLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail' Loop v n) -> Located (Trail' Loop v n) #

reverseLocTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> Located (Trail v n) #

reverseLoop :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail' Loop v n -> Trail' Loop v n #

reverseTrail :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> Trail v n #

trailFromOffsets :: (Metric v, OrderedField n) => [v n] -> Trail v n #

trailFromSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Segment Closed v n] -> Trail v n #

trailFromVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => [Point v n] -> Trail v n #

trailLocSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [Located (Segment Closed v n)] #

trailMeasure :: forall (v :: Type -> Type) n m t a. (SegMeasure v n :>: m, Measured (SegMeasure v n) t) => a -> (m -> a) -> t -> a #

trailOffset :: (Metric v, OrderedField n) => Trail v n -> v n #

trailOffsets :: (Metric v, OrderedField n) => Trail v n -> [v n] #

trailSegments :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Trail v n -> [Segment Closed v n] #

trailVertices :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => Located (Trail v n) -> [Point v n] #

trailVertices' :: forall (v :: Type -> Type) n. (Metric v, OrderedField n) => n -> Located (Trail v n) -> [Point v n] #

unfixTrail :: forall (v :: Type -> Type) n. (Metric v, Ord n, Floating n) => [FixedSegment v n] -> Located (Trail v n) #

withLine :: forall (v :: Type -> Type) n r. (Metric v, OrderedField n) => (Trail' Line v n -> r) -> Trail v n -> r #

withTrail :: forall (v :: Type -> Type) n r. (Trail' Line v n -> r) -> (Trail' Loop v n -> r) -> Trail v n -> r #

withTrail' :: forall (v :: Type -> Type) n r l. (Trail' Line v n -> r) -> (Trail' Loop v n -> r) -> Trail' l v n -> r #

wrapLine :: forall (v :: Type -> Type) n. Trail' Line v n -> Trail v n #

wrapLoop :: forall (v :: Type -> Type) n. Trail' Loop v n -> Trail v n #

wrapTrail :: forall l (v :: Type -> Type) n. Trail' l v n -> Trail v n #

class (Metric (V t), OrderedField (N t)) => TrailLike t where #

Methods

trailLike :: Located (Trail (V t) (N t)) -> t #

Instances

Instances details
TrailLike t => TrailLike (TransInv t) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (TransInv t)) (N (TransInv t))) -> TransInv t #

TrailLike t => TrailLike (Located t) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Located t)) (N (Located t))) -> Located t #

(Metric v, OrderedField n) => TrailLike [Point v n] 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V [Point v n]) (N [Point v n])) -> [Point v n] #

(Metric v, OrderedField n) => TrailLike (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

trailLike :: Located (Trail (V (Path v n)) (N (Path v n))) -> Path v n #

(Metric v, OrderedField n) => TrailLike (Trail v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail v n)) (N (Trail v n))) -> Trail v n #

(Metric v, OrderedField n) => TrailLike (Trail' Line v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail' Line v n)) (N (Trail' Line v n))) -> Trail' Line v n #

(Metric v, OrderedField n) => TrailLike (Trail' Loop v n) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (Trail' Loop v n)) (N (Trail' Loop v n))) -> Trail' Loop v n #

explodeTrail :: forall t (v :: Type -> Type) n. (V t ~ v, N t ~ n, TrailLike t) => Located (Trail v n) -> [t] #

fromLocOffsets :: (V t ~ v, N t ~ n, V (v n) ~ v, N (v n) ~ n, TrailLike t) => Located [v n] -> t #

fromOffsets :: TrailLike t => [Vn t] -> t #

fromSegments :: TrailLike t => [Segment Closed (V t) (N t)] -> t #

fromVertices :: TrailLike t => [Point (V t) (N t)] -> t #

movedFrom :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasOrigin a, HasOrigin b) => Point v n -> Iso a b a b #

movedTo :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, HasOrigin a, HasOrigin b) => Point v n -> Iso a b a b #

transformed :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => Transformation v n -> Iso a b a b #

translated :: (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => v n -> Iso a b a b #

underT :: forall (v :: Type -> Type) n a b. (InSpace v n a, SameSpace a b, Transformable a, Transformable b) => (a -> b) -> Transformation v n -> a -> b #

alignB :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignBL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignBR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignT :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignTL :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignTR :: (InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) => a -> a #

alignX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a #

alignY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => n -> a -> a #

centerX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

centerXY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

centerY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) => a -> a #

snugB :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #

snugCenterX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #

snugCenterXY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #

snugCenterY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #

snugL :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #

snugR :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #

snugT :: (InSpace V2 n a, Fractional n, Alignable a, Traced a, HasOrigin a) => a -> a #

snugX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n -> a -> a #

snugY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Fractional n, Alignable a, Traced a, HasOrigin a) => n -> a -> a #

annularWedge :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => n -> n -> Direction V2 n -> Angle n -> t #

arc :: (InSpace V2 n t, OrderedField n, TrailLike t) => Direction V2 n -> Angle n -> t #

arc' :: (InSpace V2 n t, OrderedField n, TrailLike t) => n -> Direction V2 n -> Angle n -> t #

arcBetween :: (TrailLike t, V t ~ V2, N t ~ n, RealFloat n) => Point V2 n -> Point V2 n -> n -> t #

arcCCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n -> Direction V2 n -> t #

arcCW :: (InSpace V2 n t, RealFloat n, TrailLike t) => Direction V2 n -> Direction V2 n -> t #

wedge :: (InSpace V2 n t, OrderedField n, TrailLike t) => n -> Direction V2 n -> Angle n -> t #

data ArrowOpts n #

Instances

Instances details
TypeableFloat n => Default (ArrowOpts n) 
Instance details

Defined in Diagrams.TwoD.Arrow

Methods

def :: ArrowOpts n #

arrow' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> n -> QDiagram b V2 n Any #

arrowAt :: (TypeableFloat n, Renderable (Path V2 n) b) => Point V2 n -> V2 n -> QDiagram b V2 n Any #

arrowAt' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> Point V2 n -> V2 n -> QDiagram b V2 n Any #

arrowHead :: forall n f. Functor f => (ArrowHT n -> f (ArrowHT n)) -> ArrowOpts n -> f (ArrowOpts n) #

arrowShaft :: forall n f. Functor f => (Trail V2 n -> f (Trail V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #

arrowTail :: forall n f. Functor f => (ArrowHT n -> f (ArrowHT n)) -> ArrowOpts n -> f (ArrowOpts n) #

arrowV :: (TypeableFloat n, Renderable (Path V2 n) b) => V2 n -> QDiagram b V2 n Any #

arrowV' :: (TypeableFloat n, Renderable (Path V2 n) b) => ArrowOpts n -> V2 n -> QDiagram b V2 n Any #

connect :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #

connect' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #

connectOutside :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #

connectOutside' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> QDiagram b V2 n Any -> QDiagram b V2 n Any #

connectPerim :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => n1 -> n2 -> Angle n -> Angle n -> QDiagram b V2 n Any -> QDiagram b V2 n Any #

connectPerim' :: (TypeableFloat n, Renderable (Path V2 n) b, IsName n1, IsName n2) => ArrowOpts n -> n1 -> n2 -> Angle n -> Angle n -> QDiagram b V2 n Any -> QDiagram b V2 n Any #

gap :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #

gaps :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #

headGap :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #

headLength :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #

headStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #

lengths :: forall n f. Applicative f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #

shaftStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #

tailGap :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #

tailLength :: forall n f. Functor f => (Measure n -> f (Measure n)) -> ArrowOpts n -> f (ArrowOpts n) #

tailStyle :: forall n f. Functor f => (Style V2 n -> f (Style V2 n)) -> ArrowOpts n -> f (ArrowOpts n) #

type ArrowHT n = n -> n -> (Path V2 n, Path V2 n) #

quill :: (Floating n, Ord n) => ArrowHT n #

data GradientStop d #

Constructors

GradientStop 

data Texture n #

Constructors

SC SomeColor 
LG (LGradient n) 
RG (RGradient n) 

Instances

Instances details
Floating n => Transformable (Texture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Methods

transform :: Transformation (V (Texture n)) (N (Texture n)) -> Texture n -> Texture n #

type N (Texture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (Texture n) = n
type V (Texture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (Texture n) = V2

data LGradient n #

Instances

Instances details
Fractional n => Transformable (LGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (LGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (LGradient n) = n
type V (LGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (LGradient n) = V2

data RGradient n #

Instances

Instances details
Fractional n => Transformable (RGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (RGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type N (RGradient n) = n
type V (RGradient n) 
Instance details

Defined in Diagrams.TwoD.Attributes

type V (RGradient n) = V2

_AC :: forall n p f. (Choice p, Applicative f) => p (AlphaColour Double) (f (AlphaColour Double)) -> p (Texture n) (f (Texture n)) #

_FillTexture :: forall n p f. (Profunctor p, Functor f) => p (Recommend (Texture n)) (f (Recommend (Texture n))) -> p (FillTexture n) (f (FillTexture n)) #

_LG :: forall n p f. (Choice p, Applicative f) => p (LGradient n) (f (LGradient n)) -> p (Texture n) (f (Texture n)) #

_LineTexture :: forall n n' p f. (Profunctor p, Functor f) => p (Texture n) (f (Texture n')) -> p (LineTexture n) (f (LineTexture n')) #

_RG :: forall n p f. (Choice p, Applicative f) => p (RGradient n) (f (RGradient n)) -> p (Texture n) (f (Texture n)) #

_SC :: forall n p f. (Choice p, Applicative f) => p SomeColor (f SomeColor) -> p (Texture n) (f (Texture n)) #

fc :: (InSpace V2 n a, Floating n, Typeable n, HasStyle a) => Colour Double -> a -> a #

fcA :: (InSpace V2 n a, Floating n, Typeable n, HasStyle a) => AlphaColour Double -> a -> a #

fillColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c -> a -> a #

fillTexture :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Texture n -> a -> a #

getFillTexture :: FillTexture n -> Texture n #

getLineTexture :: LineTexture n -> Texture n #

lGradEnd :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> LGradient n -> f (LGradient n) #

lGradSpreadMethod :: forall n f. Functor f => (SpreadMethod -> f SpreadMethod) -> LGradient n -> f (LGradient n) #

lGradStart :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> LGradient n -> f (LGradient n) #

lGradStops :: forall n f. Functor f => ([GradientStop n] -> f [GradientStop n]) -> LGradient n -> f (LGradient n) #

lGradTrans :: forall n f. Functor f => (Transformation V2 n -> f (Transformation V2 n)) -> LGradient n -> f (LGradient n) #

lc :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Colour Double -> a -> a #

lcA :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => AlphaColour Double -> a -> a #

lineColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c -> a -> a #

lineTexture :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => Texture n -> a -> a #

lineTextureA :: (InSpace V2 n a, Typeable n, Floating n, HasStyle a) => LineTexture n -> a -> a #

mkRadialGradient :: Num n => [GradientStop n] -> Point V2 n -> n -> Point V2 n -> n -> SpreadMethod -> Texture n #

rGradCenter0 :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> RGradient n -> f (RGradient n) #

rGradCenter1 :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> RGradient n -> f (RGradient n) #

rGradRadius0 :: forall n f. Functor f => (n -> f n) -> RGradient n -> f (RGradient n) #

rGradRadius1 :: forall n f. Functor f => (n -> f n) -> RGradient n -> f (RGradient n) #

rGradSpreadMethod :: forall n f. Functor f => (SpreadMethod -> f SpreadMethod) -> RGradient n -> f (RGradient n) #

rGradStops :: forall n f. Functor f => ([GradientStop n] -> f [GradientStop n]) -> RGradient n -> f (RGradient n) #

rGradTrans :: forall n f. Functor f => (Transformation V2 n -> f (Transformation V2 n)) -> RGradient n -> f (RGradient n) #

recommendFillColor :: (InSpace V2 n a, Color c, Typeable n, Floating n, HasStyle a) => c -> a -> a #

solid :: Color a => a -> Texture n #

stopColor :: forall n f. Functor f => (SomeColor -> f SomeColor) -> GradientStop n -> f (GradientStop n) #

stopFraction :: forall n f. Functor f => (n -> f n) -> GradientStop n -> f (GradientStop n) #

(===) :: (InSpace V2 n a, Juxtaposable a, Semigroup a) => a -> a -> a #

bg :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' q) => Colour Double -> QDiagram b V2 n q -> QDiagram b V2 n q #

bgFrame :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' q) => n -> Colour Double -> QDiagram b V2 n q -> QDiagram b V2 n q #

crop :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n -> V2 n -> QDiagram b V2 n m -> QDiagram b V2 n m #

extrudeBottom :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #

extrudeLeft :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #

extrudeRight :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #

extrudeTop :: (OrderedField n, Monoid' m) => n -> QDiagram b V2 n m -> QDiagram b V2 n m #

hcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n -> [a] -> a #

padX :: forall (v :: Type -> Type) n m b. (Metric v, R2 v, OrderedField n, Monoid' m) => n -> QDiagram b v n m -> QDiagram b v n m #

padY :: forall (v :: Type -> Type) m n b. (Metric v, R2 v, Monoid' m, OrderedField n) => n -> QDiagram b v n m -> QDiagram b v n m #

rectEnvelope :: forall b n m. (OrderedField n, Monoid' m) => Point V2 n -> V2 n -> QDiagram b V2 n m -> QDiagram b V2 n m #

strutX :: forall (v :: Type -> Type) n b m. (Metric v, R1 v, OrderedField n) => n -> QDiagram b v n m #

strutY :: forall (v :: Type -> Type) n b m. (Metric v, R2 v, OrderedField n) => n -> QDiagram b v n m #

vcat' :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => CatOpts n -> [a] -> a #

vsep :: (InSpace V2 n a, Floating n, Juxtaposable a, HasOrigin a, Monoid' a) => n -> [a] -> a #

facingX :: forall (v :: Type -> Type) n. (R1 v, Functor v, Fractional n) => Deformation v v n #

facingY :: forall (v :: Type -> Type) n. (R2 v, Functor v, Fractional n) => Deformation v v n #

parallelX0 :: forall (v :: Type -> Type) n. (R1 v, Num n) => Deformation v v n #

parallelY0 :: forall (v :: Type -> Type) n. (R2 v, Num n) => Deformation v v n #

perspectiveX1 :: forall (v :: Type -> Type) n. (R1 v, Functor v, Fractional n) => Deformation v v n #

perspectiveY1 :: forall (v :: Type -> Type) n. (R2 v, Functor v, Floating n) => Deformation v v n #

circle :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n -> t #

ellipse :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n -> t #

ellipseXY :: (TrailLike t, V t ~ V2, N t ~ n, Transformable t) => n -> n -> t #

unitCircle :: (TrailLike t, V t ~ V2, N t ~ n) => t #

data External #

image :: (TypeableFloat n, Typeable a, Renderable (DImage n a) b) => DImage n a -> QDiagram b V2 n Any #

raster :: Num n => (Int -> Int -> AlphaColour Double) -> Int -> Int -> DImage n Embedded #

data EnvelopeOpts n #

Constructors

EnvelopeOpts 

Instances

Instances details
OrderedField n => Default (EnvelopeOpts n) 
Instance details

Defined in Diagrams.TwoD.Model

Methods

def :: EnvelopeOpts n #

data OriginOpts n #

Constructors

OriginOpts 

Fields

Instances

Instances details
Fractional n => Default (OriginOpts n) 
Instance details

Defined in Diagrams.TwoD.Model

Methods

def :: OriginOpts n #

data TraceOpts n #

Constructors

TraceOpts 

Fields

Instances

Instances details
Floating n => Default (TraceOpts n) 
Instance details

Defined in Diagrams.TwoD.Model

Methods

def :: TraceOpts n #

eColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> EnvelopeOpts n -> f (EnvelopeOpts n) #

eLineWidth :: forall n1 n2 f. Functor f => (Measure n1 -> f (Measure n2)) -> EnvelopeOpts n1 -> f (EnvelopeOpts n2) #

ePoints :: forall n f. Functor f => (Int -> f Int) -> EnvelopeOpts n -> f (EnvelopeOpts n) #

oColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> OriginOpts n -> f (OriginOpts n) #

oMinSize :: forall n f. Functor f => (n -> f n) -> OriginOpts n -> f (OriginOpts n) #

oScale :: forall n f. Functor f => (n -> f n) -> OriginOpts n -> f (OriginOpts n) #

showLabels :: (TypeableFloat n, Renderable (Text n) b, Semigroup m) => QDiagram b V2 n m -> QDiagram b V2 n Any #

showOrigin :: (TypeableFloat n, Renderable (Path V2 n) b, Monoid' m) => QDiagram b V2 n m -> QDiagram b V2 n m #

tColor :: forall n f. Functor f => (Colour Double -> f (Colour Double)) -> TraceOpts n -> f (TraceOpts n) #

tMinSize :: forall n f. Functor f => (n -> f n) -> TraceOpts n -> f (TraceOpts n) #

tPoints :: forall n f. Functor f => (Int -> f Int) -> TraceOpts n -> f (TraceOpts n) #

tScale :: forall n f. Functor f => (n -> f n) -> TraceOpts n -> f (TraceOpts n) #

data FillRule #

Constructors

Winding 
EvenOdd 

Instances

Instances details
Semigroup FillRule 
Instance details

Defined in Diagrams.TwoD.Path

Show FillRule 
Instance details

Defined in Diagrams.TwoD.Path

Default FillRule 
Instance details

Defined in Diagrams.TwoD.Path

Methods

def :: FillRule #

AttributeClass FillRule 
Instance details

Defined in Diagrams.TwoD.Path

Eq FillRule 
Instance details

Defined in Diagrams.TwoD.Path

Ord FillRule 
Instance details

Defined in Diagrams.TwoD.Path

data StrokeOpts a #

Constructors

StrokeOpts 

Fields

Instances

Instances details
Default (StrokeOpts a) 
Instance details

Defined in Diagrams.TwoD.Path

Methods

def :: StrokeOpts a #

_Clip :: forall n n' p f. (Profunctor p, Functor f) => p [Path V2 n] (f [Path V2 n']) -> p (Clip n) (f (Clip n')) #

_fillRule :: forall n f. Functor f => (FillRule -> f FillRule) -> Style V2 n -> f (Style V2 n) #

clipBy :: (HasStyle a, V a ~ V2, N a ~ n, TypeableFloat n) => Path V2 n -> a -> a #

fillRule :: HasStyle a => FillRule -> a -> a #

intersectPoints :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => t -> s -> [P2 n] #

intersectPoints' :: (InSpace V2 n t, SameSpace t s, ToPath t, ToPath s, OrderedField n) => n -> t -> s -> [P2 n] #

intersectPointsP :: OrderedField n => Path V2 n -> Path V2 n -> [P2 n] #

intersectPointsP' :: OrderedField n => n -> Path V2 n -> Path V2 n -> [P2 n] #

intersectPointsT' :: OrderedField n => n -> Located (Trail V2 n) -> Located (Trail V2 n) -> [P2 n] #

queryFillRule :: forall a f. Functor f => (FillRule -> f FillRule) -> StrokeOpts a -> f (StrokeOpts a) #

stroke :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b) => t -> QDiagram b V2 n Any #

stroke' :: (InSpace V2 n t, ToPath t, TypeableFloat n, Renderable (Path V2 n) b, IsName a) => StrokeOpts a -> t -> QDiagram b V2 n Any #

vertexNames :: forall a a' f. Functor f => ([[a]] -> f [[a']]) -> StrokeOpts a -> f (StrokeOpts a') #

data PolyType n #

Constructors

PolyPolar [Angle n] [n] 
PolySides [Angle n] [n] 
PolyRegular Int n 

data PolygonOpts n #

Instances

Instances details
Num n => Default (PolygonOpts n) 
Instance details

Defined in Diagrams.TwoD.Polygons

Methods

def :: PolygonOpts n #

data StarOpts #

Constructors

StarFun (Int -> Int) 
StarSkip Int 

polyCenter :: forall n f. Functor f => (Point V2 n -> f (Point V2 n)) -> PolygonOpts n -> f (PolygonOpts n) #

polyOrient :: forall n f. Functor f => (PolyOrientation n -> f (PolyOrientation n)) -> PolygonOpts n -> f (PolygonOpts n) #

polyType :: forall n f. Functor f => (PolyType n -> f (PolyType n)) -> PolygonOpts n -> f (PolygonOpts n) #

polygon :: (InSpace V2 n t, TrailLike t) => PolygonOpts n -> t #

star :: OrderedField n => StarOpts -> [Point V2 n] -> Path V2 n #

data RoundedRectOpts d #

Constructors

RoundedRectOpts 

Fields

Instances

Instances details
Num d => Default (RoundedRectOpts d) 
Instance details

Defined in Diagrams.TwoD.Shapes

Methods

def :: RoundedRectOpts d #

decagon :: (InSpace V2 n t, TrailLike t) => n -> t #

dodecagon :: (InSpace V2 n t, TrailLike t) => n -> t #

eqTriangle :: (InSpace V2 n t, TrailLike t) => n -> t #

hendecagon :: (InSpace V2 n t, TrailLike t) => n -> t #

heptagon :: (InSpace V2 n t, TrailLike t) => n -> t #

hexagon :: (InSpace V2 n t, TrailLike t) => n -> t #

hrule :: (InSpace V2 n t, TrailLike t) => n -> t #

nonagon :: (InSpace V2 n t, TrailLike t) => n -> t #

octagon :: (InSpace V2 n t, TrailLike t) => n -> t #

pentagon :: (InSpace V2 n t, TrailLike t) => n -> t #

radiusBL :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #

radiusBR :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #

radiusTL :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #

radiusTR :: forall d f. Functor f => (d -> f d) -> RoundedRectOpts d -> f (RoundedRectOpts d) #

rect :: (InSpace V2 n t, TrailLike t) => n -> n -> t #

regPoly :: (InSpace V2 n t, TrailLike t) => Int -> n -> t #

roundedRect :: (InSpace V2 n t, TrailLike t, RealFloat n) => n -> n -> n -> t #

roundedRect' :: (InSpace V2 n t, TrailLike t, RealFloat n) => n -> n -> RoundedRectOpts n -> t #

septagon :: (InSpace V2 n t, TrailLike t) => n -> t #

square :: (InSpace V2 n t, TrailLike t) => n -> t #

triangle :: (InSpace V2 n t, TrailLike t) => n -> t #

unitSquare :: (InSpace V2 n t, TrailLike t) => t #

vrule :: (InSpace V2 n t, TrailLike t) => n -> t #

dims2D :: n -> n -> SizeSpec V2 n #

extentX :: forall (v :: Type -> Type) n a. (InSpace v n a, R1 v, Enveloped a) => a -> Maybe (n, n) #

extentY :: forall (v :: Type -> Type) n a. (InSpace v n a, R2 v, Enveloped a) => a -> Maybe (n, n) #

height :: (InSpace V2 n a, Enveloped a) => a -> n #

mkHeight :: Num n => n -> SizeSpec V2 n #

mkSizeSpec2D :: Num n => Maybe n -> Maybe n -> SizeSpec V2 n #

width :: (InSpace V2 n a, Enveloped a) => a -> n #

_font :: forall (v :: Type -> Type) n f. Functor f => (Maybe String -> f (Maybe String)) -> Style v n -> f (Style v n) #

_fontSize :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measure n) #

_fontSizeR :: forall n (v :: Type -> Type). (Typeable n, OrderedField n) => Lens' (Style v n) (Measured n (Recommend n)) #

alignedText :: (TypeableFloat n, Renderable (Text n) b) => n -> n -> String -> QDiagram b V2 n Any #

bold :: HasStyle a => a -> a #

bolder :: HasStyle a => a -> a #

font :: HasStyle a => String -> a -> a #

fontSize :: (N a ~ n, Typeable n, HasStyle a) => Measure n -> a -> a #

fontSizeG :: (N a ~ n, Typeable n, Num n, HasStyle a) => n -> a -> a #

fontSizeL :: (N a ~ n, Typeable n, Num n, HasStyle a) => n -> a -> a #

fontSizeN :: (N a ~ n, Typeable n, Num n, HasStyle a) => n -> a -> a #

fontSizeO :: (N a ~ n, Typeable n, HasStyle a) => n -> a -> a #

heavy :: HasStyle a => a -> a #

italic :: HasStyle a => a -> a #

light :: HasStyle a => a -> a #

lighter :: HasStyle a => a -> a #

mediumWeight :: HasStyle a => a -> a #

oblique :: HasStyle a => a -> a #

semiBold :: HasStyle a => a -> a #

thinWeight :: HasStyle a => a -> a #

topLeftText :: (TypeableFloat n, Renderable (Text n) b) => String -> QDiagram b V2 n Any #

ultraBold :: HasStyle a => a -> a #

ultraLight :: HasStyle a => a -> a #

reflectAbout :: (InSpace V2 n t, OrderedField n, Transformable t) => P2 n -> Direction V2 n -> t -> t #

reflectX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Transformable t) => t -> t #

reflectXY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Transformable t) => t -> t #

reflectY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Transformable t) => t -> t #

reflectionX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Num n) => Transformation v n #

reflectionXY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => Transformation v n #

reflectionY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => Transformation v n #

rotateAround :: (InSpace V2 n t, Transformable t, Floating n) => P2 n -> Angle n -> t -> t #

rotateBy :: (InSpace V2 n t, Transformable t, Floating n) => n -> t -> t #

rotateTo :: (InSpace V2 n t, OrderedField n, Transformable t) => Direction V2 n -> t -> t #

rotated :: (InSpace V2 n a, Floating n, SameSpace a b, Transformable a, Transformable b) => Angle n -> Iso a b a b #

rotationAround :: Floating n => P2 n -> Angle n -> T2 n #

scaleRotateTo :: (InSpace V2 n t, Transformable t, Floating n) => V2 n -> t -> t #

scaleToX :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t #

scaleToY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t #

scaleUToX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Enveloped t, Transformable t) => n -> t -> t #

scaleUToY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Enveloped t, Transformable t) => n -> t -> t #

scaleX :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Fractional n, Transformable t) => n -> t -> t #

scaleY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Fractional n, Transformable t) => n -> t -> t #

scalingX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Fractional n) => n -> Transformation v n #

scalingY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Fractional n) => n -> Transformation v n #

shearX :: (InSpace V2 n t, Transformable t) => n -> t -> t #

shearY :: (InSpace V2 n t, Transformable t) => n -> t -> t #

shearingX :: Num n => n -> T2 n #

shearingY :: Num n => n -> T2 n #

translateX :: forall (v :: Type -> Type) n t. (InSpace v n t, R1 v, Transformable t) => n -> t -> t #

translateY :: forall (v :: Type -> Type) n t. (InSpace v n t, R2 v, Transformable t) => n -> t -> t #

translationX :: forall (v :: Type -> Type) n. (Additive v, R1 v, Num n) => n -> Transformation v n #

translationY :: forall (v :: Type -> Type) n. (Additive v, R2 v, Num n) => n -> Transformation v n #

class HasR (t :: Type -> Type) where #

Methods

_r :: RealFloat n => Lens' (t n) n #

Instances

Instances details
HasR V2 
Instance details

Defined in Diagrams.TwoD.Types

Methods

_r :: RealFloat n => Lens' (V2 n) n #

HasR v => HasR (Point v) 
Instance details

Defined in Diagrams.TwoD.Types

Methods

_r :: RealFloat n => Lens' (Point v n) n #

type P2 = Point V2 #

mkP2 :: n -> n -> P2 n #

mkR2 :: n -> n -> V2 n #

p2 :: (n, n) -> P2 n #

r2 :: (n, n) -> V2 n #

r2PolarIso :: RealFloat n => Iso' (V2 n) (n, Angle n) #

unp2 :: P2 n -> (n, n) #

unr2 :: V2 n -> (n, n) #

angleV :: Floating n => Angle n -> V2 n #

leftTurn :: (Num n, Ord n) => V2 n -> V2 n -> Bool #

signedAngleBetween :: RealFloat n => V2 n -> V2 n -> Angle n #

unitX :: (R1 v, Additive v, Num n) => v n #

unitY :: (R2 v, Additive v, Num n) => v n #

unit_X :: (R1 v, Additive v, Num n) => v n #

unit_Y :: (R2 v, Additive v, Num n) => v n #

xDir :: forall (v :: Type -> Type) n. (R1 v, Additive v, Num n) => Direction v n #

yDir :: forall (v :: Type -> Type) n. (R2 v, Additive v, Num n) => Direction v n #

(#) :: a -> (a -> b) -> b #

(##) :: AReview t b -> b -> t #

applyAll :: [a -> a] -> a -> a #

foldB :: (a -> a -> a) -> a -> [a] -> a #

tau :: Floating a => a #

(->>) :: Semigroup a => Active a -> Active a -> Active a #

activeEnd :: Active a -> a #

activeStart :: Active a -> a #

after :: Active a -> Active a -> Active a #

discrete :: [a] -> Active a #

duration :: Num n => Era n -> Duration n #

during :: Active a -> Active a -> Active a #

end :: Era n -> Time n #

fromTime :: Time n -> n #

mkEra :: Time n -> Time n -> Era n #

modActive :: (a -> b) -> (Dynamic a -> Dynamic b) -> Active a -> Active b #

movie :: [Active a] -> Active a #

onActive :: (a -> b) -> (Dynamic a -> b) -> Active a -> b #

onDynamic :: (Time Rational -> Time Rational -> (Time Rational -> a) -> b) -> Dynamic a -> b #

simulate :: Rational -> Active a -> [a] #

start :: Era n -> Time n #

toTime :: n -> Time n #

trim :: Monoid a => Active a -> Active a #

trimAfter :: Monoid a => Active a -> Active a #

ui :: Fractional a => Active a #

(|>>) :: Active a -> Active a -> Active a #

black :: Num a => Colour a #

blend :: (Num a, AffineSpace f) => a -> f a -> f a -> f a #

dissolve :: Num a => a -> AlphaColour a -> AlphaColour a #

opaque :: Num a => Colour a -> AlphaColour a #

withOpacity :: Num a => Colour a -> a -> AlphaColour a #

aliceblue :: (Ord a, Floating a) => Colour a #

aqua :: (Ord a, Floating a) => Colour a #

aquamarine :: (Ord a, Floating a) => Colour a #

azure :: (Ord a, Floating a) => Colour a #

beige :: (Ord a, Floating a) => Colour a #

bisque :: (Ord a, Floating a) => Colour a #

blue :: (Ord a, Floating a) => Colour a #

blueviolet :: (Ord a, Floating a) => Colour a #

brown :: (Ord a, Floating a) => Colour a #

burlywood :: (Ord a, Floating a) => Colour a #

cadetblue :: (Ord a, Floating a) => Colour a #

chartreuse :: (Ord a, Floating a) => Colour a #

chocolate :: (Ord a, Floating a) => Colour a #

coral :: (Ord a, Floating a) => Colour a #

cornsilk :: (Ord a, Floating a) => Colour a #

crimson :: (Ord a, Floating a) => Colour a #

cyan :: (Ord a, Floating a) => Colour a #

darkblue :: (Ord a, Floating a) => Colour a #

darkcyan :: (Ord a, Floating a) => Colour a #

darkgray :: (Ord a, Floating a) => Colour a #

darkgreen :: (Ord a, Floating a) => Colour a #

darkgrey :: (Ord a, Floating a) => Colour a #

darkkhaki :: (Ord a, Floating a) => Colour a #

darkorange :: (Ord a, Floating a) => Colour a #

darkorchid :: (Ord a, Floating a) => Colour a #

darkred :: (Ord a, Floating a) => Colour a #

darksalmon :: (Ord a, Floating a) => Colour a #

darkviolet :: (Ord a, Floating a) => Colour a #

deeppink :: (Ord a, Floating a) => Colour a #

dimgray :: (Ord a, Floating a) => Colour a #

dimgrey :: (Ord a, Floating a) => Colour a #

dodgerblue :: (Ord a, Floating a) => Colour a #

firebrick :: (Ord a, Floating a) => Colour a #

fuchsia :: (Ord a, Floating a) => Colour a #

gainsboro :: (Ord a, Floating a) => Colour a #

ghostwhite :: (Ord a, Floating a) => Colour a #

gold :: (Ord a, Floating a) => Colour a #

goldenrod :: (Ord a, Floating a) => Colour a #

gray :: (Ord a, Floating a) => Colour a #

green :: (Ord a, Floating a) => Colour a #

grey :: (Ord a, Floating a) => Colour a #

honeydew :: (Ord a, Floating a) => Colour a #

hotpink :: (Ord a, Floating a) => Colour a #

indianred :: (Ord a, Floating a) => Colour a #

indigo :: (Ord a, Floating a) => Colour a #

ivory :: (Ord a, Floating a) => Colour a #

khaki :: (Ord a, Floating a) => Colour a #

lavender :: (Ord a, Floating a) => Colour a #

lawngreen :: (Ord a, Floating a) => Colour a #

lightblue :: (Ord a, Floating a) => Colour a #

lightcoral :: (Ord a, Floating a) => Colour a #

lightcyan :: (Ord a, Floating a) => Colour a #

lightgray :: (Ord a, Floating a) => Colour a #

lightgreen :: (Ord a, Floating a) => Colour a #

lightgrey :: (Ord a, Floating a) => Colour a #

lightpink :: (Ord a, Floating a) => Colour a #

lime :: (Ord a, Floating a) => Colour a #

limegreen :: (Ord a, Floating a) => Colour a #

linen :: (Ord a, Floating a) => Colour a #

magenta :: (Ord a, Floating a) => Colour a #

maroon :: (Ord a, Floating a) => Colour a #

mediumblue :: (Ord a, Floating a) => Colour a #

mintcream :: (Ord a, Floating a) => Colour a #

mistyrose :: (Ord a, Floating a) => Colour a #

moccasin :: (Ord a, Floating a) => Colour a #

navy :: (Ord a, Floating a) => Colour a #

oldlace :: (Ord a, Floating a) => Colour a #

olive :: (Ord a, Floating a) => Colour a #

olivedrab :: (Ord a, Floating a) => Colour a #

orange :: (Ord a, Floating a) => Colour a #

orangered :: (Ord a, Floating a) => Colour a #

orchid :: (Ord a, Floating a) => Colour a #

palegreen :: (Ord a, Floating a) => Colour a #

papayawhip :: (Ord a, Floating a) => Colour a #

peachpuff :: (Ord a, Floating a) => Colour a #

peru :: (Ord a, Floating a) => Colour a #

pink :: (Ord a, Floating a) => Colour a #

plum :: (Ord a, Floating a) => Colour a #

powderblue :: (Ord a, Floating a) => Colour a #

purple :: (Ord a, Floating a) => Colour a #

readColourName :: (MonadFail m, Monad m, Ord a, Floating a) => String -> m (Colour a) #

red :: (Ord a, Floating a) => Colour a #

rosybrown :: (Ord a, Floating a) => Colour a #

royalblue :: (Ord a, Floating a) => Colour a #

salmon :: (Ord a, Floating a) => Colour a #

sandybrown :: (Ord a, Floating a) => Colour a #

seagreen :: (Ord a, Floating a) => Colour a #

seashell :: (Ord a, Floating a) => Colour a #

sienna :: (Ord a, Floating a) => Colour a #

silver :: (Ord a, Floating a) => Colour a #

skyblue :: (Ord a, Floating a) => Colour a #

slateblue :: (Ord a, Floating a) => Colour a #

slategray :: (Ord a, Floating a) => Colour a #

slategrey :: (Ord a, Floating a) => Colour a #

snow :: (Ord a, Floating a) => Colour a #

steelblue :: (Ord a, Floating a) => Colour a #

teal :: (Ord a, Floating a) => Colour a #

thistle :: (Ord a, Floating a) => Colour a #

tomato :: (Ord a, Floating a) => Colour a #

turquoise :: (Ord a, Floating a) => Colour a #

violet :: (Ord a, Floating a) => Colour a #

wheat :: (Ord a, Floating a) => Colour a #

white :: (Ord a, Floating a) => Colour a #

whitesmoke :: (Ord a, Floating a) => Colour a #

yellow :: (Ord a, Floating a) => Colour a #

sRGB :: (Ord b, Floating b) => b -> b -> b -> Colour b #

sRGB24 :: (Ord b, Floating b) => Word8 -> Word8 -> Word8 -> Colour b #

sRGB24read :: (Ord b, Floating b) => String -> Colour b #

sRGBBounded :: (Ord b, Floating b, Integral a, Bounded a) => a -> a -> a -> Colour b #

sRGBSpace :: (Ord a, Floating a) => RGBSpace a #

toSRGB :: (Ord b, Floating b) => Colour b -> RGB b #

renderDiaT :: forall b (v :: Type -> Type) n m. (Backend b v n, HasLinearMap v, Metric v, Typeable n, OrderedField n, Monoid' m) => b -> Options b v n -> QDiagram b v n m -> (Transformation v n, Result b v n) #

appEnvelope :: Envelope v n -> Maybe (v n -> n) #

diameter :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> n #

envelopeP :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> Point v n #

envelopePMay :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> Maybe (Point v n) #

envelopeV :: Enveloped a => Vn a -> a -> Vn a #

envelopeVMay :: Enveloped a => Vn a -> a -> Maybe (Vn a) #

mkEnvelope :: (v n -> n) -> Envelope v n #

onEnvelope :: ((v n -> n) -> v n -> n) -> Envelope v n -> Envelope v n #

radius :: (V a ~ v, N a ~ n, Enveloped a) => v n -> a -> n #

moveOriginBy :: (V t ~ v, N t ~ n, HasOrigin t) => v n -> t -> t #

moveTo :: forall (v :: Type -> Type) n t. (InSpace v n t, HasOrigin t) => Point v n -> t -> t #

place :: forall (v :: Type -> Type) n t. (InSpace v n t, HasOrigin t) => t -> Point v n -> t #

juxtaposeDefault :: (Enveloped a, HasOrigin a) => Vn a -> a -> a -> a #

atLeast :: Ord n => Measure n -> Measure n -> Measure n #

fromMeasured :: Num n => n -> n -> Measured n a -> a #

global :: Num n => n -> Measure n #

normalized :: Num n => n -> Measure n #

output :: n -> Measure n #

scaleLocal :: Num n => n -> Measured n a -> Measured n a #

(.>) :: (IsName a1, IsName a2) => a1 -> a2 -> Name #

(*.) :: forall (v :: Type -> Type) n. (Functor v, Num n) => n -> Point v n -> Point v n #

applyAttr :: (AttributeClass a, HasStyle d) => a -> d -> d #

applyMAttr :: (AttributeClass a, N d ~ n, HasStyle d) => Measured n a -> d -> d #

applyTAttr :: (AttributeClass a, Transformable a, V a ~ V d, N a ~ N d, HasStyle d) => a -> d -> d #

atAttr :: forall a (v :: Type -> Type) n. AttributeClass a => Lens' (Style v n) (Maybe a) #

atMAttr :: forall a n (v :: Type -> Type). (AttributeClass a, Typeable n) => Lens' (Style v n) (Maybe (Measured n a)) #

atTAttr :: forall a (v :: Type -> Type) n. (V a ~ v, N a ~ n, AttributeClass a, Transformable a) => Lens' (Style v n) (Maybe a) #

maxRayTraceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) #

maxRayTraceV :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (V a n) #

maxTraceP :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) #

maxTraceV :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (V a n) #

mkSortedList :: Ord a => [a] -> SortedList a #

mkTrace :: (Point v n -> v n -> SortedList n) -> Trace v n #

rayTraceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) #

rayTraceV :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (V a n) #

traceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) #

traceV :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (V a n) #

(<->) :: (u -> v) -> (v -> u) -> u :-: v #

avgScale :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Floating n) => Transformation v n -> n #

determinant :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Num n) => Transformation v n -> n #

dimension :: (Additive (V a), Traversable (V a)) => a -> Int #

dropTransl :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Transformation v n #

eye :: (HasBasis v, Num n) => v (v n) #

fromLinear :: (Additive v, Num n) => (v n :-: v n) -> (v n :-: v n) -> Transformation v n #

inv :: forall (v :: Type -> Type) n. (Functor v, Num n) => Transformation v n -> Transformation v n #

isReflection :: forall (v :: Type -> Type) n. (Additive v, Traversable v, Num n, Ord n) => Transformation v n -> Bool #

lapp :: (u :-: v) -> u -> v #

linv :: (u :-: v) -> v :-: u #

papply :: forall (v :: Type -> Type) n. (Additive v, Num n) => Transformation v n -> Point v n -> Point v n #

scaling :: forall (v :: Type -> Type) n. (Additive v, Fractional n) => n -> Transformation v n #

transl :: Transformation v n -> v n #

transp :: Transformation v n -> v n :-: v n #

atop :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Semigroup m) => QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #

envelope :: forall n (v :: Type -> Type) m b. (OrderedField n, Metric v, Monoid' m) => Lens' (QDiagram b v n m) (Envelope v n) #

fromNames :: forall a b (v :: Type -> Type) n m. IsName a => [(a, Subdiagram b v n m)] -> SubMap b v n m #

getSub :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Subdiagram b v n m -> QDiagram b v n m #

groupOpacity :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Double -> QDiagram b v n m -> QDiagram b v n m #

href :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => String -> QDiagram b v n m -> QDiagram b v n m #

localize :: forall b (v :: Type -> Type) n m. (Metric v, OrderedField n, Semigroup m) => QDiagram b v n m -> QDiagram b v n m #

lookupSub :: forall nm b (v :: Type -> Type) n m. IsName nm => nm -> SubMap b v n m -> Maybe [Subdiagram b v n m] #

mkQD :: forall b (v :: Type -> Type) n m. Prim b v n -> Envelope v n -> Trace v n -> SubMap b v n m -> Query v n m -> QDiagram b v n m #

mkSubdiagram :: forall b (v :: Type -> Type) n m. QDiagram b v n m -> Subdiagram b v n m #

nameSub :: forall nm (v :: Type -> Type) n m b. (IsName nm, Metric v, OrderedField n, Semigroup m) => (QDiagram b v n m -> Subdiagram b v n m) -> nm -> QDiagram b v n m -> QDiagram b v n m #

names :: forall (v :: Type -> Type) m n b. (Metric v, Semigroup m, OrderedField n) => QDiagram b v n m -> [(Name, [Point v n])] #

opacityGroup :: forall (v :: Type -> Type) n m b. (Metric v, OrderedField n, Semigroup m) => Double -> QDiagram b v n m -> QDiagram b v n m #

pointDiagram :: forall (v :: Type -> Type) n b m. (Metric v, Fractional n) => Point v n -> QDiagram b v n m #

query :: forall m b (v :: Type -> Type) n. Monoid m => QDiagram b v n m -> Query v n m #

rawSub :: forall b (v :: Type -> Type) n m. Subdiagram b v n m -> QDiagram b v n m #

rememberAs :: forall a b (v :: Type -> Type) n m. IsName a => a -> QDiagram b v n m -> SubMap b v n m -> SubMap b v n m #

setEnvelope :: forall b (v :: Type -> Type) n m. (OrderedField n, Metric v, Monoid' m) => Envelope v n -> QDiagram b v n m -> QDiagram b v n m #

setTrace :: forall b (v :: Type -> Type) n m. (OrderedField n, Metric v, Semigroup m) => Trace v n -> QDiagram b v n m -> QDiagram b v n m #

subMap :: forall (v :: Type -> Type) m n b. (Metric v, Semigroup m, OrderedField n) => Lens' (QDiagram b v n m) (SubMap b v n m) #

subPoint :: forall (v :: Type -> Type) n b m. (Metric v, OrderedField n) => Point v n -> Subdiagram b v n m #

withName :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> (Subdiagram b v n m -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m #

withNameAll :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => nm -> ([Subdiagram b v n m] -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m #

withNames :: forall nm (v :: Type -> Type) m n b. (IsName nm, Metric v, Semigroup m, OrderedField n) => [nm] -> ([Subdiagram b v n m] -> QDiagram b v n m -> QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m #

iall :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #

iany :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #

iconcatMap :: FoldableWithIndex i f => (i -> a -> [b]) -> f a -> [b] #

ifind :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Maybe (i, a) #

ifoldlM :: (FoldableWithIndex i f, Monad m) => (i -> b -> a -> m b) -> b -> f a -> m b #

ifoldrM :: (FoldableWithIndex i f, Monad m) => (i -> a -> b -> m b) -> b -> f a -> m b #

iforM_ :: (FoldableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m () #

ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () #

imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m () #

inone :: FoldableWithIndex i f => (i -> a -> Bool) -> f a -> Bool #

itoList :: FoldableWithIndex i f => f a -> [(i, a)] #

itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () #

ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) #

iforM :: (TraversableWithIndex i t, Monad m) => t a -> (i -> a -> m b) -> m (t b) #

imapAccumL :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) #

imapAccumR :: TraversableWithIndex i t => (i -> s -> a -> (s, b)) -> s -> t a -> (s, t b) #

imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b) #

iat :: At m => Index m -> IndexedLens' (Index m) m (Maybe (IxValue m)) #

iix :: Ixed m => Index m -> IndexedTraversal' (Index m) m (IxValue m) #

ixAt :: At m => Index m -> Traversal' m (IxValue m) #

sans :: At m => Index m -> m -> m #

(<<<|=) :: (MonadState s m, Cons b b a a) => LensLike ((,) b) s s b b -> a -> m b #

(<<<|~) :: Cons b b a a => LensLike' ((,) b) s b -> a -> s -> (b, s) #

(<<|=) :: (MonadState s m, Cons b b a a) => LensLike ((,) b) s s b b -> a -> m b #

(<<|>=) :: (MonadState s m, Snoc b b p p) => LensLike ((,) b) s s b b -> p -> m b #

(<<|>~) :: Snoc b b p p => LensLike' ((,) b) s b -> p -> s -> (b, s) #

(<<|~) :: Cons b b a a => LensLike ((,) b) s t b b -> a -> s -> (b, t) #

(<|=) :: (MonadState s m, Cons b b a a) => ASetter s s b b -> a -> m () #

(<|>=) :: (MonadState s m, Snoc b b p p) => LensLike ((,) b) s s b b -> p -> m b #

(<|>~) :: Snoc b b p p => LensLike ((,) b) s t b b -> p -> s -> (b, t) #

(<|~) :: Cons b b a a => ASetter s t b b -> a -> s -> t #

_head :: Cons s s a a => Traversal' s a #

_init :: Snoc s s a a => Traversal' s s #

_last :: Snoc s s a a => Traversal' s a #

_tail :: Cons s s a a => Traversal' s s #

(|>=) :: (MonadState s m, Snoc b b a a) => ASetter s s b b -> a -> m () #

(|>~) :: Snoc b b a a => ASetter s t b b -> a -> s -> t #

cloneEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Equality s t a b #

equality :: forall {k1} {k2} (s :: k1) (a :: k1) (b :: k2) (t :: k2). (s :~: a) -> (b :~: t) -> Equality s t a b #

equality' :: forall {k2} (a :: k2) (b :: k2). (a :~: b) -> Equality' a b #

fromEq :: forall {k2} {k1} (s :: k2) (t :: k1) (a :: k2) (b :: k1). AnEquality s t a b -> Equality b a t s #

fromLeibniz :: forall {k1} {k2} (a :: k1) (b :: k2) (s :: k1) (t :: k2). (Identical a b a b -> Identical a b s t) -> Equality s t a b #

fromLeibniz' :: forall {k2} (s :: k2) (a :: k2). ((s :~: s) -> s :~: a) -> Equality' s a #

mapEq :: forall k1 k2 (s :: k1) (t :: k2) (a :: k1) (b :: k2) f. AnEquality s t a b -> f s -> f a #

overEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p a b -> p s t #

runEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2). AnEquality s t a b -> Identical s t a b #

simple :: forall {k2} (a :: k2) k3 p (f :: k2 -> k3). p a (f a) -> p a (f a) #

simply :: forall {k} {k1} p (f :: k -> k1) (s :: k) (a :: k) r. (Optic' p f s a -> r) -> Optic' p f s a -> r #

substEq :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) r. AnEquality s t a b -> ((s ~ a, t ~ b) => r) -> r #

underEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) p. AnEquality s t a b -> p t s -> p b a #

withEquality :: forall {k1} {k2} (s :: k1) (t :: k2) (a :: k1) (b :: k2) r. AnEquality s t a b -> ((s :~: a) -> (b :~: t) -> r) -> r #

(^..) :: s -> Getting (Endo [a]) s a -> [a] #

(^?) :: s -> Getting (First a) s a -> Maybe a #

(^?!) :: HasCallStack => s -> Getting (Endo a) s a -> a #

(^@..) :: s -> IndexedGetting i (Endo [(i, a)]) s a -> [(i, a)] #

(^@?) :: s -> IndexedGetting i (Endo (Maybe (i, a))) s a -> Maybe (i, a) #

(^@?!) :: HasCallStack => s -> IndexedGetting i (Endo (i, a)) s a -> (i, a) #

allOf :: Getting All s a -> (a -> Bool) -> s -> Bool #

altOf :: Applicative f => Getting (Alt f a) s a -> s -> f a #

andOf :: Getting All s Bool -> s -> Bool #

anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool #

asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a #

concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r] #

concatOf :: Getting [r] s [r] -> s -> [r] #

cycled :: Apply f => LensLike f s t a b -> LensLike f s t a b #

droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a #

elemIndexOf :: Eq a => IndexedGetting i (First i) s a -> a -> s -> Maybe i #

elemIndicesOf :: Eq a => IndexedGetting i (Endo [i]) s a -> a -> s -> [i] #

elemOf :: Eq a => Getting Any s a -> a -> s -> Bool #

filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a #

filteredBy :: (Indexable i p, Applicative f) => Getting (First i) a i -> p a (f a) -> a -> f a #

findIndexOf :: IndexedGetting i (First i) s a -> (a -> Bool) -> s -> Maybe i #

findIndicesOf :: IndexedGetting i (Endo [i]) s a -> (a -> Bool) -> s -> [i] #

findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a) #

findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a #

first1Of :: Getting (First a) s a -> s -> a #

firstOf :: Getting (Leftmost a) s a -> s -> Maybe a #

foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a #

foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r #

foldMapOf :: Getting r s a -> (a -> r) -> s -> r #

foldOf :: Getting a s a -> s -> a #

folded :: forall (f :: Type -> Type) a. Foldable f => IndexedFold Int (f a) a #

folded64 :: forall (f :: Type -> Type) a. Foldable f => IndexedFold Int64 (f a) a #

folding :: Foldable f => (s -> f a) -> Fold s a #

foldl1Of :: HasCallStack => Getting (Dual (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a #

foldl1Of' :: HasCallStack => Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> a) -> s -> a #

foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r #

foldlOf :: Getting (Dual (Endo r)) s a -> (r -> a -> r) -> r -> s -> r #

foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r #

foldr1Of :: HasCallStack => Getting (Endo (Maybe a)) s a -> (a -> a -> a) -> s -> a #

foldr1Of' :: HasCallStack => Getting (Dual (Endo (Endo (Maybe a)))) s a -> (a -> a -> a) -> s -> a #

foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r #

foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r #

foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r #

foldring :: (Contravariant f, Applicative f) => ((a -> f a -> f a) -> f a -> s -> f a) -> LensLike f s t a b #

for1Of_ :: Functor f => Getting (TraversedF r f) s a -> s -> (a -> f r) -> f () #

forMOf_ :: Monad m => Getting (Sequenced r m) s a -> s -> (a -> m r) -> m () #

forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f () #

has :: Getting Any s a -> s -> Bool #

hasn't :: Getting All s a -> s -> Bool #

iallOf :: IndexedGetting i All s a -> (i -> a -> Bool) -> s -> Bool #

ianyOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool #

iconcatMapOf :: IndexedGetting i [r] s a -> (i -> a -> [r]) -> s -> [r] #

idroppingWhile :: (Indexable i p, Profunctor q, Applicative f) => (i -> a -> Bool) -> Optical (Indexed i) q (Compose (State Bool) f) s t a a -> Optical p q f s t a a #

ifiltered :: (Indexable i p, Applicative f) => (i -> a -> Bool) -> Optical' p (Indexed i) f a a #

ifindMOf :: Monad m => IndexedGetting i (Endo (m (Maybe a))) s a -> (i -> a -> m Bool) -> s -> m (Maybe a) #

ifindOf :: IndexedGetting i (Endo (Maybe a)) s a -> (i -> a -> Bool) -> s -> Maybe a #

ifoldMapOf :: IndexedGetting i m s a -> (i -> a -> m) -> s -> m #

ifolding :: (Foldable f, Indexable i p, Contravariant g, Applicative g) => (s -> f (i, a)) -> Over p g s t a b #

ifoldlMOf :: Monad m => IndexedGetting i (Endo (r -> m r)) s a -> (i -> r -> a -> m r) -> r -> s -> m r #

ifoldlOf :: IndexedGetting i (Dual (Endo r)) s a -> (i -> r -> a -> r) -> r -> s -> r #

ifoldlOf' :: IndexedGetting i (Endo (r -> r)) s a -> (i -> r -> a -> r) -> r -> s -> r #

ifoldrMOf :: Monad m => IndexedGetting i (Dual (Endo (r -> m r))) s a -> (i -> a -> r -> m r) -> r -> s -> m r #

ifoldrOf :: IndexedGetting i (Endo r) s a -> (i -> a -> r -> r) -> r -> s -> r #

ifoldrOf' :: IndexedGetting i (Dual (Endo (r -> r))) s a -> (i -> a -> r -> r) -> r -> s -> r #

ifoldring :: (Indexable i p, Contravariant f, Applicative f) => ((i -> a -> f a -> f a) -> f a -> s -> f a) -> Over p f s t a b #

iforMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> s -> (i -> a -> m r) -> m () #

iforOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> s -> (i -> a -> f r) -> f () #

imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m () #

inoneOf :: IndexedGetting i Any s a -> (i -> a -> Bool) -> s -> Bool #

ipre :: IndexedGetting i (First (i, a)) s a -> IndexPreservingGetter s (Maybe (i, a)) #

ipreuse :: MonadState s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) #

ipreuses :: MonadState s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) #

ipreview :: MonadReader s m => IndexedGetting i (First (i, a)) s a -> m (Maybe (i, a)) #

ipreviews :: MonadReader s m => IndexedGetting i (First r) s a -> (i -> a -> r) -> m (Maybe r) #

itakingWhile :: (Indexable i p, Profunctor q, Contravariant f, Applicative f) => (i -> a -> Bool) -> Optical' (Indexed i) q (Const (Endo (f s)) :: Type -> Type) s a -> Optical' p q f s a #

iterated :: Apply f => (a -> a) -> LensLike' f a a #

itoListOf :: IndexedGetting i (Endo [(i, a)]) s a -> s -> [(i, a)] #

itraverseOf_ :: Functor f => IndexedGetting i (Traversed r f) s a -> (i -> a -> f r) -> s -> f () #

last1Of :: Getting (Last a) s a -> s -> a #

lastOf :: Getting (Rightmost a) s a -> s -> Maybe a #

lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int #

lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v #

mapMOf_ :: Monad m => Getting (Sequenced r m) s a -> (a -> m r) -> s -> m () #

maximum1Of :: Ord a => Getting (Max a) s a -> s -> a #

maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a #

maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a #

minimum1Of :: Ord a => Getting (Min a) s a -> s -> a #

minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a #

minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a #

msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a #

notElemOf :: Eq a => Getting All s a -> a -> s -> Bool #

notNullOf :: Getting Any s a -> s -> Bool #

nullOf :: Getting All s a -> s -> Bool #

orOf :: Getting Any s Bool -> s -> Bool #

preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a) #

preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) #

preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a) #

previews :: MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) #

productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a #

repeated :: Apply f => LensLike' f a a #

replicated :: Int -> Fold a a #

sequence1Of_ :: Functor f => Getting (TraversedF a f) s (f a) -> s -> f () #

sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f () #

sequenceOf_ :: Monad m => Getting (Sequenced a m) s (m a) -> s -> m () #

sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a #

takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a #

toListOf :: Getting (Endo [a]) s a -> s -> [a] #

toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a #

traverse1Of_ :: Functor f => Getting (TraversedF r f) s a -> (a -> f r) -> s -> f () #

traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f () #

unfolded :: (b -> Maybe (a, b)) -> Fold b a #

(^.) :: s -> Getting a s a -> a #

(^@.) :: s -> IndexedGetting i (i, a) s a -> (i, a) #

getting :: (Profunctor p, Profunctor q, Functor f, Contravariant f) => Optical p q f s t a b -> Optical' p q f s a #

ilike :: (Indexable i p, Contravariant f, Functor f) => i -> a -> Over' p f s a #

ilistening :: MonadWriter w m => IndexedGetting i (i, u) w u -> m a -> m (a, (i, u)) #

ilistenings :: MonadWriter w m => IndexedGetting i v w u -> (i -> u -> v) -> m a -> m (a, v) #

ito :: (Indexable i p, Contravariant f) => (s -> (i, a)) -> Over' p f s a #

iuse :: MonadState s m => IndexedGetting i (i, a) s a -> m (i, a) #

iuses :: MonadState s m => IndexedGetting i r s a -> (i -> a -> r) -> m r #

iview :: MonadReader s m => IndexedGetting i (i, a) s a -> m (i, a) #

iviews :: MonadReader s m => IndexedGetting i r s a -> (i -> a -> r) -> m r #

like :: (Profunctor p, Contravariant f, Functor f) => a -> Optic' p f s a #

listening :: MonadWriter w m => Getting u w u -> m a -> m (a, u) #

listenings :: MonadWriter w m => Getting v w u -> (u -> v) -> m a -> m (a, v) #

use :: MonadState s m => Getting a s a -> m a #

uses :: MonadState s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r #

view :: MonadReader s m => Getting a s a -> m a #

views :: MonadReader s m => LensLike' (Const r :: Type -> Type) s a -> (a -> r) -> m r #

(<.) :: Indexable i p => (Indexed i s t -> r) -> ((a -> b) -> s -> t) -> p a b -> r #

icompose :: Indexable p c => (i -> j -> p) -> (Indexed i s t -> r) -> (Indexed j a b -> s -> t) -> c a b -> r #

ifoldMapBy :: FoldableWithIndex i t => (r -> r -> r) -> r -> (i -> a -> r) -> t a -> r #

ifoldMapByOf :: IndexedFold i t a -> (r -> r -> r) -> r -> (i -> a -> r) -> t -> r #

ifolded :: forall i (f :: Type -> Type) a. FoldableWithIndex i f => IndexedFold i (f a) a #

imapped :: forall i (f :: Type -> Type) a b. FunctorWithIndex i f => IndexedSetter i (f a) (f b) a b #

itraverseBy :: TraversableWithIndex i t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> t a -> f (t b) #

itraverseByOf :: IndexedTraversal i s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (i -> a -> f b) -> s -> f t #

itraversed :: forall i (t :: Type -> Type) a b. TraversableWithIndex i t => IndexedTraversal i (t a) (t b) a b #

reindexed :: Indexable j p => (i -> j) -> (Indexed i a b -> r) -> p a b -> r #

selfIndex :: Indexable a p => p a fb -> a -> fb #

asIndex :: (Indexable i p, Contravariant f, Functor f) => p i (f i) -> Indexed i s (f s) #

indexing :: Indexable Int p => ((a -> Indexing f b) -> s -> Indexing f t) -> p a (f b) -> s -> f t #

indexing64 :: Indexable Int64 p => ((a -> Indexing64 f b) -> s -> Indexing64 f t) -> p a (f b) -> s -> f t #

withIndex :: (Indexable i p, Functor f) => p (i, s) (f (j, t)) -> Indexed i s (f t) #

retagged :: (Profunctor p, Bifunctor p) => p a b -> p s b #

pattern Reversed :: Reversing t => t -> t #

pattern Swapped :: Swap p => p b a -> p a b #

anon :: a -> (a -> Bool) -> Iso' (Maybe a) a #

au :: Functor f => AnIso s t a b -> ((b -> t) -> f s) -> f a #

auf :: (Functor f, Functor g) => AnIso s t a b -> (f t -> g s) -> f b -> g a #

bimapping :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b s' t' a' b'. (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b') #

cloneIso :: AnIso s t a b -> Iso s t a b #

coerced :: forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b #

contramapping :: forall (f :: Type -> Type) s t a b. Contravariant f => AnIso s t a b -> Iso (f a) (f b) (f s) (f t) #

curried :: forall a b c d e f1 p f2. (Profunctor p, Functor f2) => p (a -> b -> c) (f2 (d -> e -> f1)) -> p ((a, b) -> c) (f2 ((d, e) -> f1)) #

dimapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b s' t' a' b'. (Profunctor p, Profunctor q) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (p a s') (q b t') (p s a') (q t b') #

enum :: Enum a => Iso' Int a #

firsting :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f s x) (g t y) (f a x) (g b y) #

flipped :: forall a b c a' b' c' p f. (Profunctor p, Functor f) => p (b -> a -> c) (f (b' -> a' -> c')) -> p (a -> b -> c) (f (a' -> b' -> c')) #

imagma :: Over (Indexed i) (Molten i a b) s t a b -> Iso s t' (Magma i t b a) (Magma j t' c c) #

involuted :: (a -> a) -> Iso' a a #

iso :: (s -> a) -> (b -> t) -> Iso s t a b #

lmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y) #

magma :: LensLike (Mafic a b) s t a b -> Iso s u (Magma Int t b a) (Magma j u c c) #

mapping :: forall (f :: Type -> Type) (g :: Type -> Type) s t a b. (Functor f, Functor g) => AnIso s t a b -> Iso (f s) (g t) (f a) (g b) #

non :: Eq a => a -> Iso' (Maybe a) a #

non' :: APrism' a () -> Iso' (Maybe a) a #

reversed :: Reversing a => Iso' a a #

rmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y. (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p x s) (q y t) (p x a) (q y b) #

seconding :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b x y. (Bifunctor f, Bifunctor g) => AnIso s t a b -> Iso (f x s) (g y t) (f x a) (g y b) #

swapped :: forall (p :: Type -> Type -> Type) a b c d. Swap p => Iso (p a b) (p c d) (p b a) (p d c) #

uncurried :: forall a b c d e f1 p f2. (Profunctor p, Functor f2) => p ((a, b) -> c) (f2 ((d, e) -> f1)) -> p (a -> b -> c) (f2 (d -> e -> f1)) #

under :: AnIso s t a b -> (t -> s) -> b -> a #

withIso :: AnIso s t a b -> ((s -> a) -> (b -> t) -> r) -> r #

xplat :: forall {k2} s g (t :: k2) a (b :: k2). Optic (Costar ((->) s)) g s t a b -> ((s -> a) -> g b) -> g t #

xplatf :: forall {k} {k2} f g (s :: k) (t :: k2) (a :: k) (b :: k2). Optic (Costar f) g s t a b -> (f a -> g b) -> f s -> g t #

(#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r #

(#%%~) :: Functor f => ALens s t a b -> (a -> f b) -> s -> f t #

(#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m () #

(#%~) :: ALens s t a b -> (a -> b) -> s -> t #

(#=) :: MonadState s m => ALens s s a b -> b -> m () #

(#~) :: ALens s t a b -> b -> s -> t #

(%%=) :: forall {k} s m p r (a :: k) b. MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r #

(%%@=) :: MonadState s m => Over (Indexed i) ((,) r) s s a b -> (i -> a -> (r, b)) -> m r #

(%%@~) :: forall {k1} i f s (t :: k1) a (b :: k1). Over (Indexed i) f s t a b -> (i -> a -> f b) -> s -> f t #

(%%~) :: forall {k} f s (t :: k) a (b :: k). LensLike f s t a b -> (a -> f b) -> s -> f t #

(&~) :: s -> State s a -> s #

(<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b #

(<#%~) :: ALens s t a b -> (a -> b) -> s -> (b, t) #

(<#=) :: MonadState s m => ALens s s a b -> b -> m b #

(<#~) :: ALens s t a b -> b -> s -> (b, t) #

(<%=) :: MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b #

(<%@=) :: MonadState s m => Over (Indexed i) ((,) b) s s a b -> (i -> a -> b) -> m b #

(<%@~) :: Over (Indexed i) ((,) b) s t a b -> (i -> a -> b) -> s -> (b, t) #

(<%~) :: LensLike ((,) b) s t a b -> (a -> b) -> s -> (b, t) #

(<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool #

(<&&~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t) #

(<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a #

(<**~) :: Floating a => LensLike ((,) a) s t a a -> a -> s -> (a, t) #

(<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a #

(<*~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t) #

(<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a #

(<+~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t) #

(<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a #

(<-~) :: Num a => LensLike ((,) a) s t a a -> a -> s -> (a, t) #

(<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a #

(<//~) :: Fractional a => LensLike ((,) a) s t a a -> a -> s -> (a, t) #

(<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a #

(<<%@=) :: MonadState s m => Over (Indexed i) ((,) a) s s a b -> (i -> a -> b) -> m a #

(<<%@~) :: Over (Indexed i) ((,) a) s t a b -> (i -> a -> b) -> s -> (a, t) #

(<<%~) :: LensLike ((,) a) s t a b -> (a -> b) -> s -> (a, t) #

(<<&&~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s) #

(<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a #

(<<**~) :: Floating a => LensLike' ((,) a) s a -> a -> s -> (a, s) #

(<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a #

(<<*~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s) #

(<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a #

(<<+~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s) #

(<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a #

(<<-~) :: Num a => LensLike' ((,) a) s a -> a -> s -> (a, s) #

(<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a #

(<<.~) :: LensLike ((,) a) s t a b -> b -> s -> (a, t) #

(<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a #

(<<//~) :: Fractional a => LensLike' ((,) a) s a -> a -> s -> (a, s) #

(<<<>:=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r #

(<<<>:~) :: Semigroup m => LensLike' ((,) m) s m -> m -> s -> (m, s) #

(<<<>=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r #

(<<<>~) :: Semigroup r => LensLike' ((,) r) s r -> r -> s -> (r, s) #

(<<>:=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r #

(<<>:~) :: Semigroup m => LensLike ((,) m) s t m m -> m -> s -> (m, t) #

(<<>=) :: (MonadState s m, Semigroup r) => LensLike' ((,) r) s r -> r -> m r #

(<<>~) :: Semigroup m => LensLike ((,) m) s t m m -> m -> s -> (m, t) #

(<<?=) :: MonadState s m => LensLike ((,) a) s s a (Maybe b) -> b -> m a #

(<<?~) :: LensLike ((,) a) s t a (Maybe b) -> b -> s -> (a, t) #

(<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a #

(<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a #

(<<^^~) :: (Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s) #

(<<^~) :: (Num a, Integral e) => LensLike' ((,) a) s a -> e -> s -> (a, s) #

(<<||~) :: LensLike' ((,) Bool) s Bool -> Bool -> s -> (Bool, s) #

(<<~) :: MonadState s m => ALens s s a b -> m b -> m b #

(<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a #

(<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a #

(<^^~) :: (Fractional a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t) #

(<^~) :: (Num a, Integral e) => LensLike ((,) a) s t a a -> e -> s -> (a, t) #

(<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool #

(<||~) :: LensLike ((,) Bool) s t Bool Bool -> Bool -> s -> (Bool, t) #

(??) :: Functor f => f (a -> b) -> a -> f b #

(^#) :: s -> ALens s t a b -> a #

alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b') #

choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b #

chosen :: forall a b p f. (Conjoined p, Functor f) => p a (f b) -> p (Either a a) (f (Either b b)) #

cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b #

cloneLens :: ALens s t a b -> Lens s t a b #

devoid :: forall {k} p f (a :: k) b. Over p f Void Void a b #

fusing :: Functor f => LensLike (Yoneda f) s t a b -> LensLike f s t a b #

head1 :: forall (t :: Type -> Type) a. Traversable1 t => Lens' (t a) a #

ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b #

iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b #

last1 :: forall (t :: Type -> Type) a. Traversable1 t => Lens' (t a) a #

locus :: forall (p :: Type -> Type -> Type -> Type) a c s b. IndexedComonadStore p => Lens (p a c s) (p b c s) a b #

overA :: Arrow ar => LensLike (Context a b) s t a b -> ar a b -> ar s t #

storing :: ALens s t a b -> b -> s -> t #

united :: forall a f. Functor f => (() -> f ()) -> a -> f a #

withLens :: ALens s t a b -> ((s -> a) -> (s -> b -> t) -> r) -> r #

ilevels :: forall (f :: Type -> Type) i s t a b j. Applicative f => Traversing (Indexed i) f s t a b -> IndexedLensLike Int f s t (Level i a) (Level j b) #

composOpFold :: Plated a => b -> (b -> b -> b) -> (a -> b) -> a -> b #

contexts :: Plated a => a -> [Context a a a] #

contextsOf :: ATraversal' a a -> a -> [Context a a a] #

contextsOn :: Plated a => ATraversal s t a a -> s -> [Context a a t] #

contextsOnOf :: ATraversal s t a a -> ATraversal' a a -> s -> [Context a a t] #

cosmos :: Plated a => Fold a a #

cosmosOnOf :: (Applicative f, Contravariant f) => LensLike' f s a -> LensLike' f a a -> LensLike' f s a #

deep :: (Conjoined p, Applicative f, Plated s) => Traversing p f s s a b -> Over p f s s a b #

gplate :: (Generic a, GPlated a (Rep a)) => Traversal' a a #

gplate1 :: forall {k} (f :: k -> Type) (a :: k). (Generic1 f, GPlated1 f (Rep1 f)) => Traversal' (f a) (f a) #

holes :: Plated a => a -> [Pretext (->) a a a] #

holesOn :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t] #

holesOnOf :: Conjoined p => LensLike (Bazaar p r r) s t a b -> Over p (Bazaar p r r) a b r r -> s -> [Pretext p r r t] #

para :: Plated a => (a -> [r] -> r) -> a -> r #

paraOf :: Getting (Endo [a]) a a -> (a -> [r] -> r) -> a -> r #

parts :: Plated a => Lens' a [a] #

rewrite :: Plated a => (a -> Maybe a) -> a -> a #

rewriteM :: (Monad m, Plated a) => (a -> m (Maybe a)) -> a -> m a #

rewriteMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> a -> m b #

rewriteMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m (Maybe a)) -> s -> m t #

rewriteMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m (Maybe a)) -> s -> m t #

rewriteOf :: ASetter a b a b -> (b -> Maybe a) -> a -> b #

rewriteOn :: Plated a => ASetter s t a a -> (a -> Maybe a) -> s -> t #

rewriteOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> Maybe a) -> s -> t #

transformM :: (Monad m, Plated a) => (a -> m a) -> a -> m a #

transformMOf :: Monad m => LensLike (WrappedMonad m) a b a b -> (b -> m b) -> a -> m b #

transformMOn :: (Monad m, Plated a) => LensLike (WrappedMonad m) s t a a -> (a -> m a) -> s -> m t #

transformMOnOf :: Monad m => LensLike (WrappedMonad m) s t a b -> LensLike (WrappedMonad m) a b a b -> (b -> m b) -> s -> m t #

transformOf :: ASetter a b a b -> (b -> b) -> a -> b #

transformOn :: Plated a => ASetter s t a a -> (a -> a) -> s -> t #

transformOnOf :: ASetter s t a b -> ASetter a b a b -> (b -> b) -> s -> t #

universe :: Plated a => a -> [a] #

universeOf :: Getting (Endo [a]) a a -> a -> [a] #

universeOn :: Plated a => Getting (Endo [a]) s a -> s -> [a] #

universeOnOf :: Getting (Endo [a]) s a -> Getting (Endo [a]) a a -> s -> [a] #

_Just :: forall a b p f. (Choice p, Applicative f) => p a (f b) -> p (Maybe a) (f (Maybe b)) #

_Left :: forall a c b p f. (Choice p, Applicative f) => p a (f b) -> p (Either a c) (f (Either b c)) #

_Nothing :: forall a p f. (Choice p, Applicative f) => p () (f ()) -> p (Maybe a) (f (Maybe a)) #

_Right :: forall c a b p f. (Choice p, Applicative f) => p a (f b) -> p (Either c a) (f (Either c b)) #

_Show :: (Read a, Show a) => Prism' String a #

_Void :: forall s a p f. (Choice p, Applicative f) => p a (f Void) -> p s (f s) #

aside :: APrism s t a b -> Prism (e, s) (e, t) (e, a) (e, b) #

below :: forall (f :: Type -> Type) s a. Traversable f => APrism' s a -> Prism' (f s) (f a) #

clonePrism :: APrism s t a b -> Prism s t a b #

isn't :: APrism s t a b -> s -> Bool #

matching :: APrism s t a b -> s -> Either t a #

matching' :: LensLike (Either a) s t a b -> s -> Either t a #

nearly :: a -> (a -> Bool) -> Prism' a () #

only :: Eq a => a -> Prism' a () #

prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b #

prism' :: (b -> s) -> (s -> Maybe a) -> Prism s s a b #

withPrism :: APrism s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r #

without :: APrism s t a b -> APrism u v c d -> Prism (Either s u) (Either t v) (Either a c) (Either b d) #

re :: AReview t b -> Getter b t #

reuse :: MonadState b m => AReview t b -> m t #

reuses :: MonadState b m => AReview t b -> (t -> r) -> m r #

review :: MonadReader b m => AReview t b -> m t #

reviewing :: (Bifunctor p, Functor f) => Optic (Tagged :: Type -> Type -> Type) Identity s t a b -> Optic' p f t b #

reviews :: MonadReader b m => AReview t b -> (t -> r) -> m r #

un :: (Profunctor p, Bifunctor p, Functor f) => Getting a s a -> Optic' p f a s #

unto :: (Profunctor p, Bifunctor p, Functor f) => (b -> t) -> Optic p f s t a b #

(%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m () #

(%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () #

(%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #

(%~) :: ASetter s t a b -> (a -> b) -> s -> t #

(&&=) :: MonadState s m => ASetter' s Bool -> Bool -> m () #

(&&~) :: ASetter s t Bool Bool -> Bool -> s -> t #

(**=) :: (MonadState s m, Floating a) => ASetter' s a -> a -> m () #

(**~) :: Floating a => ASetter s t a a -> a -> s -> t #

(*=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () #

(*~) :: Num a => ASetter s t a a -> a -> s -> t #

(+=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () #

(+~) :: Num a => ASetter s t a a -> a -> s -> t #

(-=) :: (MonadState s m, Num a) => ASetter' s a -> a -> m () #

(-~) :: Num a => ASetter s t a a -> a -> s -> t #

(.=) :: MonadState s m => ASetter s s a b -> b -> m () #

(.@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> b) -> m () #

(.@~) :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t #

(.~) :: ASetter s t a b -> b -> s -> t #

(//=) :: (MonadState s m, Fractional a) => ASetter' s a -> a -> m () #

(//~) :: Fractional a => ASetter s t a a -> a -> s -> t #

(<.=) :: MonadState s m => ASetter s s a b -> b -> m b #

(<.~) :: ASetter s t a b -> b -> s -> (b, t) #

(<>:=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m () #

(<>:~) :: Semigroup b => ASetter s t b b -> b -> s -> t #

(<>=) :: (MonadState s m, Semigroup a) => ASetter' s a -> a -> m () #

(<>~) :: Semigroup a => ASetter s t a a -> a -> s -> t #

(<?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m b #

(<?~) :: ASetter s t a (Maybe b) -> b -> s -> (b, t) #

(<~) :: MonadState s m => ASetter s s a b -> m b -> m () #

(?=) :: MonadState s m => ASetter s s a (Maybe b) -> b -> m () #

(?~) :: ASetter s t a (Maybe b) -> b -> s -> t #

(^=) :: (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m () #

(^^=) :: (MonadState s m, Fractional a, Integral e) => ASetter' s a -> e -> m () #

(^^~) :: (Fractional a, Integral e) => ASetter s t a a -> e -> s -> t #

(^~) :: (Num a, Integral e) => ASetter s t a a -> e -> s -> t #

assign :: MonadState s m => ASetter s s a b -> b -> m () #

assignA :: Arrow p => ASetter s t a b -> p s b -> p s t #

censoring :: MonadWriter w m => Setter w w u v -> (u -> v) -> m a -> m a #

cloneSetter :: ASetter s t a b -> Setter s t a b #

contramapped :: forall (f :: Type -> Type) b a. Contravariant f => Setter (f b) (f a) a b #

icensoring :: MonadWriter w m => IndexedSetter i w w u v -> (i -> u -> v) -> m a -> m a #

ilocally :: MonadReader s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m r -> m r #

imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #

imodifying :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m () #

iover :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t #

ipassing :: MonadWriter w m => IndexedSetter i w w u v -> m (a, i -> u -> v) -> m a #

iset :: AnIndexedSetter i s t a b -> (i -> b) -> s -> t #

isets :: ((i -> a -> b) -> s -> t) -> IndexedSetter i s t a b #

lifted :: forall (m :: Type -> Type) a b. Monad m => Setter (m a) (m b) a b #

locally :: MonadReader s m => ASetter s s a b -> (a -> b) -> m r -> m r #

mapOf :: ASetter s t a b -> (a -> b) -> s -> t #

mapped :: forall (f :: Type -> Type) a b. Functor f => Setter (f a) (f b) a b #

modifying :: MonadState s m => ASetter s s a b -> (a -> b) -> m () #

over :: ASetter s t a b -> (a -> b) -> s -> t #

passing :: MonadWriter w m => Setter w w u v -> m (a, u -> v) -> m a #

scribe :: (MonadWriter t m, Monoid s) => ASetter s t a b -> b -> m () #

set :: ASetter s t a b -> b -> s -> t #

set' :: ASetter' s a -> a -> s -> s #

sets :: (Profunctor p, Profunctor q, Settable f) => (p a b -> q s t) -> Optical p q f s t a b #

setting :: ((a -> b) -> s -> t) -> IndexPreservingSetter s t a b #

(||=) :: MonadState s m => ASetter' s Bool -> Bool -> m () #

(||~) :: ASetter s t Bool Bool -> Bool -> s -> t #

both :: forall (r :: Type -> Type -> Type) a b. Bitraversable r => Traversal (r a a) (r b b) a b #

both1 :: forall (r :: Type -> Type -> Type) a b. Bitraversable1 r => Traversal1 (r a a) (r b b) a b #

cloneTraversal :: ATraversal s t a b -> Traversal s t a b #

cloneTraversal1 :: ATraversal1 s t a b -> Traversal1 s t a b #

confusing :: Applicative f => LensLike (Curried (Yoneda f) (Yoneda f)) s t a b -> LensLike f s t a b #

deepOf :: (Conjoined p, Applicative f) => LensLike f s t s t -> Traversing p f s t a b -> Over p f s t a b #

dropping :: (Conjoined p, Applicative f) => Int -> Over p (Indexing f) s t a a -> Over p f s t a a #

element :: forall (t :: Type -> Type) a. Traversable t => Int -> IndexedTraversal' Int (t a) a #

elementOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> Int -> IndexedLensLike Int f s t a a #

elements :: forall (t :: Type -> Type) a. Traversable t => (Int -> Bool) -> IndexedTraversal' Int (t a) a #

elementsOf :: forall (f :: Type -> Type) s t a. Applicative f => LensLike (Indexing f) s t a a -> (Int -> Bool) -> IndexedLensLike Int f s t a a #

failing :: (Conjoined p, Applicative f) => Traversing p f s t a b -> Over p f s t a b -> Over p f s t a b #

failover :: Alternative m => LensLike ((,) Any) s t a b -> (a -> b) -> s -> m t #

forMOf :: LensLike (WrappedMonad m) s t a b -> s -> (a -> m b) -> m t #

forOf :: LensLike f s t a b -> s -> (a -> f b) -> f t #

holes1Of :: Conjoined p => Over p (Bazaar1 p a a) s t a a -> s -> NonEmpty (Pretext p a a t) #

holesOf :: Conjoined p => Over p (Bazaar p a a) s t a a -> s -> [Pretext p a a t] #

ifailover :: Alternative m => Over (Indexed i) ((,) Any) s t a b -> (i -> a -> b) -> s -> m t #

iforMOf :: (Indexed i a (WrappedMonad m b) -> s -> WrappedMonad m t) -> s -> (i -> a -> m b) -> m t #

iforOf :: (Indexed i a (f b) -> s -> f t) -> s -> (i -> a -> f b) -> f t #

ignored :: Applicative f => pafb -> s -> f s #

iloci :: forall i a c s b p f. (Indexable i p, Applicative f) => p a (f b) -> Bazaar (Indexed i) a c s -> f (Bazaar (Indexed i) b c s) #

imapAccumLOf :: Over (Indexed i) (State acc) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #

imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #

imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t #

ipartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a a -> Over p f s t [a] [a] #

ipartsOf' :: forall i p f s t a. (Indexable [i] p, Functor f) => Over (Indexed i) (Bazaar' (Indexed i) a) s t a a -> Over p f s t [a] [a] #

itraverseOf :: (Indexed i a (f b) -> s -> f t) -> (i -> a -> f b) -> s -> f t #

iunsafePartsOf :: (Indexable [i] p, Functor f) => Traversing (Indexed i) f s t a b -> Over p f s t [a] [b] #

iunsafePartsOf' :: forall i s t a b. Over (Indexed i) (Bazaar (Indexed i) a b) s t a b -> IndexedLens [i] s t [a] [b] #

loci :: forall a c s b f. Applicative f => (a -> f b) -> Bazaar (->) a c s -> f (Bazaar (->) b c s) #

mapAccumLOf :: LensLike (State acc) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #

mapAccumROf :: LensLike (Backwards (State acc)) s t a b -> (acc -> a -> (acc, b)) -> acc -> s -> (acc, t) #

mapMOf :: LensLike (WrappedMonad m) s t a b -> (a -> m b) -> s -> m t #

partsOf :: Functor f => Traversing (->) f s t a a -> LensLike f s t [a] [a] #

partsOf' :: ATraversal s t a a -> Lens s t [a] [a] #

scanl1Of :: LensLike (State (Maybe a)) s t a a -> (a -> a -> a) -> s -> t #

scanr1Of :: LensLike (Backwards (State (Maybe a))) s t a a -> (a -> a -> a) -> s -> t #

sequenceAOf :: LensLike f s t (f b) b -> s -> f t #

sequenceByOf :: Traversal s t (f b) b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> s -> f t #

sequenceOf :: LensLike (WrappedMonad m) s t (m b) b -> s -> m t #

taking :: (Conjoined p, Applicative f) => Int -> Traversing p f s t a a -> Over p f s t a a #

transposeOf :: LensLike ZipList s t [a] a -> s -> [t] #

traversal :: ((a -> f b) -> s -> f t) -> LensLike f s t a b #

traverseByOf :: Traversal s t a b -> (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> s -> f t #

traverseOf :: LensLike f s t a b -> (a -> f b) -> s -> f t #

traversed :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int (f a) (f b) a b #

traversed1 :: forall (f :: Type -> Type) a b. Traversable1 f => IndexedTraversal1 Int (f a) (f b) a b #

traversed64 :: forall (f :: Type -> Type) a b. Traversable f => IndexedTraversal Int64 (f a) (f b) a b #

unsafePartsOf :: Functor f => Traversing (->) f s t a b -> LensLike f s t [a] [b] #

unsafePartsOf' :: ATraversal s t a b -> Lens s t [a] [b] #

unsafeSingular :: (HasCallStack, Conjoined p, Functor f) => Traversing p f s t a b -> Over p f s t a b #

_1' :: Field1 s t a b => Lens s t a b #

_10' :: Field10 s t a b => Lens s t a b #

_11' :: Field11 s t a b => Lens s t a b #

_12' :: Field12 s t a b => Lens s t a b #

_13' :: Field13 s t a b => Lens s t a b #

_14' :: Field14 s t a b => Lens s t a b #

_15' :: Field15 s t a b => Lens s t a b #

_16' :: Field16 s t a b => Lens s t a b #

_17' :: Field17 s t a b => Lens s t a b #

_18' :: Field18 s t a b => Lens s t a b #

_19' :: Field19 s t a b => Lens s t a b #

_2' :: Field2 s t a b => Lens s t a b #

_3' :: Field3 s t a b => Lens s t a b #

_4' :: Field4 s t a b => Lens s t a b #

_5' :: Field5 s t a b => Lens s t a b #

_6' :: Field6 s t a b => Lens s t a b #

_7' :: Field7 s t a b => Lens s t a b #

_8' :: Field8 s t a b => Lens s t a b #

_9' :: Field9 s t a b => Lens s t a b #

class Wrapped s where #

Minimal complete definition

Nothing

Associated Types

type Unwrapped s #

type Unwrapped s = GUnwrapped (Rep s)

Methods

_Wrapped' :: Iso' s (Unwrapped s) #

Instances

Instances details
Wrapped NoMethodError 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped NoMethodError 
Instance details

Defined in Control.Lens.Wrapped

Wrapped PatternMatchFail 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped PatternMatchFail 
Instance details

Defined in Control.Lens.Wrapped

Wrapped RecConError 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped RecConError 
Instance details

Defined in Control.Lens.Wrapped

Wrapped RecSelError 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped RecSelError 
Instance details

Defined in Control.Lens.Wrapped

Wrapped RecUpdError 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped RecUpdError 
Instance details

Defined in Control.Lens.Wrapped

Wrapped TypeError 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped TypeError 
Instance details

Defined in Control.Lens.Wrapped

Wrapped All 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped All 
Instance details

Defined in Control.Lens.Wrapped

Wrapped Any 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped Any 
Instance details

Defined in Control.Lens.Wrapped

Wrapped Errno 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped Errno 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CBool 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CBool 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CChar 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CChar 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CClock 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CClock 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CDouble 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CDouble 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CFloat 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CFloat 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CInt 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CInt 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CIntMax 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CIntMax 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CIntPtr 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CIntPtr 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CLLong 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CLLong 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CLong 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CLong 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CPtrdiff 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CPtrdiff 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CSChar 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CSChar 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CSUSeconds 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CSUSeconds 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CShort 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CShort 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CSigAtomic 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CSigAtomic 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CSize 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CSize 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CTime 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CTime 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CUChar 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CUChar 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CUInt 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CUInt 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CUIntMax 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CUIntMax 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CUIntPtr 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CUIntPtr 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CULLong 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CULLong 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CULong 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CULong 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CUSeconds 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CUSeconds 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CUShort 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CUShort 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CWchar 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CWchar 
Instance details

Defined in Control.Lens.Wrapped

Wrapped ErrorCall 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped ErrorCall 
Instance details

Defined in Control.Lens.Wrapped

Wrapped AssertionFailed 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped AssertionFailed 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CompactionFailed 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CompactionFailed 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CBlkCnt 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CBlkCnt 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CBlkSize 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CBlkSize 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CCc 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CCc 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CClockId 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CClockId 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CDev 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CDev 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CFsBlkCnt 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CFsBlkCnt 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CFsFilCnt 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CFsFilCnt 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CGid 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CGid 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CId 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CId 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CIno 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CIno 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CKey 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CKey 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CMode 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CMode 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CNlink 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CNlink 
Instance details

Defined in Control.Lens.Wrapped

Wrapped COff 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped COff 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CPid 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CPid 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CRLim 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CRLim 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CSpeed 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CSpeed 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CSsize 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CSsize 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CTcflag 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CTcflag 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CTimer 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CTimer 
Instance details

Defined in Control.Lens.Wrapped

Wrapped CUid 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped CUid 
Instance details

Defined in Control.Lens.Wrapped

Wrapped Fd 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped Fd 
Instance details

Defined in Control.Lens.Wrapped

Wrapped IntSet 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped IntSet 
Instance details

Defined in Control.Lens.Wrapped

Wrapped Name 
Instance details

Defined in Diagrams.Core.Names

Associated Types

type Unwrapped Name 
Instance details

Defined in Diagrams.Core.Names

Wrapped SegCount 
Instance details

Defined in Diagrams.Segment

Associated Types

type Unwrapped SegCount 
Instance details

Defined in Diagrams.Segment

Wrapped (Active a) 
Instance details

Defined in Data.Active

Associated Types

type Unwrapped (Active a) 
Instance details

Defined in Data.Active

type Unwrapped (Active a) = MaybeApply Dynamic a

Methods

_Wrapped' :: Iso' (Active a) (Unwrapped (Active a)) #

Wrapped (Duration a) 
Instance details

Defined in Data.Active

Associated Types

type Unwrapped (Duration a) 
Instance details

Defined in Data.Active

type Unwrapped (Duration a) = a
Wrapped (Time a) 
Instance details

Defined in Data.Active

Associated Types

type Unwrapped (Time a) 
Instance details

Defined in Data.Active

type Unwrapped (Time a) = a

Methods

_Wrapped' :: Iso' (Time a) (Unwrapped (Time a)) #

Wrapped (ZipList a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ZipList a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ZipList a) = [a]

Methods

_Wrapped' :: Iso' (ZipList a) (Unwrapped (ZipList a)) #

Wrapped (Comparison a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Comparison a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Comparison a) = a -> a -> Ordering
Wrapped (Equivalence a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Equivalence a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Equivalence a) = a -> a -> Bool
Wrapped (Predicate a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Predicate a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Predicate a) = a -> Bool
Wrapped (Identity a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Identity a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Identity a) = a
Wrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (First a) = Maybe a

Methods

_Wrapped' :: Iso' (First a) (Unwrapped (First a)) #

Wrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Last a) = Maybe a

Methods

_Wrapped' :: Iso' (Last a) (Unwrapped (Last a)) #

Wrapped (Down a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Down a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Down a) = a

Methods

_Wrapped' :: Iso' (Down a) (Unwrapped (Down a)) #

Wrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (First a) = a

Methods

_Wrapped' :: Iso' (First a) (Unwrapped (First a)) #

Wrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Last a) = a

Methods

_Wrapped' :: Iso' (Last a) (Unwrapped (Last a)) #

Wrapped (Max a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Max a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Max a) = a

Methods

_Wrapped' :: Iso' (Max a) (Unwrapped (Max a)) #

Wrapped (Min a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Min a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Min a) = a

Methods

_Wrapped' :: Iso' (Min a) (Unwrapped (Min a)) #

Wrapped (WrappedMonoid a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedMonoid a) 
Instance details

Defined in Control.Lens.Wrapped

Wrapped (Dual a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Dual a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Dual a) = a

Methods

_Wrapped' :: Iso' (Dual a) (Unwrapped (Dual a)) #

Wrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Endo a) = a -> a

Methods

_Wrapped' :: Iso' (Endo a) (Unwrapped (Endo a)) #

Wrapped (Product a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Product a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Product a) = a

Methods

_Wrapped' :: Iso' (Product a) (Unwrapped (Product a)) #

Wrapped (Sum a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Sum a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Sum a) = a

Methods

_Wrapped' :: Iso' (Sum a) (Unwrapped (Sum a)) #

Wrapped (NonEmpty a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (NonEmpty a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (NonEmpty a) = (a, [a])
Wrapped (Par1 p) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Par1 p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Par1 p) = p

Methods

_Wrapped' :: Iso' (Par1 p) (Unwrapped (Par1 p)) #

Wrapped (IntMap a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (IntMap a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (IntMap a) = [(Int, a)]

Methods

_Wrapped' :: Iso' (IntMap a) (Unwrapped (IntMap a)) #

Wrapped (Seq a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Seq a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Seq a) = [a]

Methods

_Wrapped' :: Iso' (Seq a) (Unwrapped (Seq a)) #

Ord a => Wrapped (Set a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Set a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Set a) = [a]

Methods

_Wrapped' :: Iso' (Set a) (Unwrapped (Set a)) #

Wrapped (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Associated Types

type Unwrapped (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type Unwrapped (TransInv t) = t
Wrapped (ArcLength n) 
Instance details

Defined in Diagrams.Segment

Associated Types

type Unwrapped (ArcLength n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (ArcLength n) = (Sum (Interval n), n -> Sum (Interval n))
Wrapped (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

Associated Types

type Unwrapped (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

type Unwrapped (Clip n) = [Path V2 n]

Methods

_Wrapped' :: Iso' (Clip n) (Unwrapped (Clip n)) #

(Hashable a, Eq a) => Wrapped (HashSet a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (HashSet a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (HashSet a) = [a]

Methods

_Wrapped' :: Iso' (HashSet a) (Unwrapped (HashSet a)) #

Wrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]

Methods

_Wrapped' :: Iso' (Vector a) (Unwrapped (Vector a)) #

Prim a => Wrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]

Methods

_Wrapped' :: Iso' (Vector a) (Unwrapped (Vector a)) #

Storable a => Wrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]

Methods

_Wrapped' :: Iso' (Vector a) (Unwrapped (Vector a)) #

Wrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]

Methods

_Wrapped' :: Iso' (Vector a) (Unwrapped (Vector a)) #

Unbox a => Wrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]

Methods

_Wrapped' :: Iso' (Vector a) (Unwrapped (Vector a)) #

Wrapped (WrappedMonad m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedMonad m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedMonad m a) = m a
Wrapped (ArrowMonad m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ArrowMonad m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ArrowMonad m a) = m () a

Methods

_Wrapped' :: Iso' (ArrowMonad m a) (Unwrapped (ArrowMonad m a)) #

Wrapped (Op a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Op a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Op a b) = b -> a

Methods

_Wrapped' :: Iso' (Op a b) (Unwrapped (Op a b)) #

Ord k => Wrapped (Map k a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Map k a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Map k a) = [(k, a)]

Methods

_Wrapped' :: Iso' (Map k a) (Unwrapped (Map k a)) #

Wrapped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Associated Types

type Unwrapped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type Unwrapped (Envelope v n) = Maybe (v n -> Max n)

Methods

_Wrapped' :: Iso' (Envelope v n) (Unwrapped (Envelope v n)) #

Wrapped (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Associated Types

type Unwrapped (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type Unwrapped (Style v n) = HashMap TypeRep (Attribute v n)

Methods

_Wrapped' :: Iso' (Style v n) (Unwrapped (Style v n)) #

Wrapped (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Associated Types

type Unwrapped (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type Unwrapped (Trace v n) = Point v n -> v n -> SortedList n

Methods

_Wrapped' :: Iso' (Trace v n) (Unwrapped (Trace v n)) #

Wrapped (Path v n) 
Instance details

Defined in Diagrams.Path

Associated Types

type Unwrapped (Path v n) 
Instance details

Defined in Diagrams.Path

type Unwrapped (Path v n) = [Located (Trail v n)]

Methods

_Wrapped' :: Iso' (Path v n) (Unwrapped (Path v n)) #

Wrapped (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

Associated Types

type Unwrapped (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (TotalOffset v n) = v n
Wrapped (SegTree v n) 
Instance details

Defined in Diagrams.Trail

Associated Types

type Unwrapped (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (SegTree v n) = FingerTree (SegMeasure v n) (Segment Closed v n)

Methods

_Wrapped' :: Iso' (SegTree v n) (Unwrapped (SegTree v n)) #

Wrapped (Trail v n) 
Instance details

Defined in Diagrams.Trail

Associated Types

type Unwrapped (Trail v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail v n) = Either (Trail' Line v n) (Trail' Loop v n)

Methods

_Wrapped' :: Iso' (Trail v n) (Unwrapped (Trail v n)) #

Wrapped (CatchT m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (CatchT m a) 
Instance details

Defined in Control.Lens.Wrapped

Methods

_Wrapped' :: Iso' (CatchT m a) (Unwrapped (CatchT m a)) #

Wrapped (Alt f a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Alt f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Alt f a) = [AltF f a]

Methods

_Wrapped' :: Iso' (Alt f a) (Unwrapped (Alt f a)) #

Wrapped (CoiterT w a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (CoiterT w a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (CoiterT w a) = w (a, CoiterT w a)

Methods

_Wrapped' :: Iso' (CoiterT w a) (Unwrapped (CoiterT w a)) #

Wrapped (IterT m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (IterT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (IterT m a) = m (Either a (IterT m a))

Methods

_Wrapped' :: Iso' (IterT m a) (Unwrapped (IterT m a)) #

Wrapped (Point f a) 
Instance details

Defined in Linear.Affine

Associated Types

type Unwrapped (Point f a) 
Instance details

Defined in Linear.Affine

type Unwrapped (Point f a) = f a

Methods

_Wrapped' :: Iso' (Point f a) (Unwrapped (Point f a)) #

Wrapped (MaybeApply f a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (MaybeApply f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (MaybeApply f a) = Either (f a) a

Methods

_Wrapped' :: Iso' (MaybeApply f a) (Unwrapped (MaybeApply f a)) #

Wrapped (WrappedApplicative f a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedApplicative f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedApplicative f a) = f a

Methods

_Wrapped' :: Iso' (WrappedApplicative f a) (Unwrapped (WrappedApplicative f a)) #

Wrapped (MaybeT m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (MaybeT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (MaybeT m a) = m (Maybe a)

Methods

_Wrapped' :: Iso' (MaybeT m a) (Unwrapped (MaybeT m a)) #

(Hashable k, Eq k) => Wrapped (HashMap k a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (HashMap k a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (HashMap k a) = [(k, a)]

Methods

_Wrapped' :: Iso' (HashMap k a) (Unwrapped (HashMap k a)) #

Wrapped (WrappedArrow a b c) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedArrow a b c) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedArrow a b c) = a b c

Methods

_Wrapped' :: Iso' (WrappedArrow a b c) (Unwrapped (WrappedArrow a b c)) #

Wrapped (Kleisli m a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Kleisli m a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Kleisli m a b) = a -> m b

Methods

_Wrapped' :: Iso' (Kleisli m a b) (Unwrapped (Kleisli m a b)) #

Wrapped (Const a x) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Const a x) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Const a x) = a

Methods

_Wrapped' :: Iso' (Const a x) (Unwrapped (Const a x)) #

Wrapped (Ap f a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Ap f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Ap f a) = f a

Methods

_Wrapped' :: Iso' (Ap f a) (Unwrapped (Ap f a)) #

Wrapped (Alt f a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Alt f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Alt f a) = f a

Methods

_Wrapped' :: Iso' (Alt f a) (Unwrapped (Alt f a)) #

Wrapped (Rec1 f p) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Rec1 f p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Rec1 f p) = f p

Methods

_Wrapped' :: Iso' (Rec1 f p) (Unwrapped (Rec1 f p)) #

Wrapped (Fix p a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Fix p a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Fix p a) = p (Fix p a) a

Methods

_Wrapped' :: Iso' (Fix p a) (Unwrapped (Fix p a)) #

Wrapped (Join p a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Join p a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Join p a) = p a a

Methods

_Wrapped' :: Iso' (Join p a) (Unwrapped (Join p a)) #

Wrapped (TracedT m w a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (TracedT m w a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (TracedT m w a) = w (m -> a)

Methods

_Wrapped' :: Iso' (TracedT m w a) (Unwrapped (TracedT m w a)) #

Wrapped (Compose f g a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Compose f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Compose f g a) = f (g a)

Methods

_Wrapped' :: Iso' (Compose f g a) (Unwrapped (Compose f g a)) #

Wrapped (ComposeCF f g a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ComposeCF f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ComposeCF f g a) = f (g a)

Methods

_Wrapped' :: Iso' (ComposeCF f g a) (Unwrapped (ComposeCF f g a)) #

Wrapped (ComposeFC f g a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ComposeFC f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ComposeFC f g a) = f (g a)

Methods

_Wrapped' :: Iso' (ComposeFC f g a) (Unwrapped (ComposeFC f g a)) #

Wrapped (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Associated Types

type Unwrapped (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type Unwrapped (Query v n m) = Point v n -> m

Methods

_Wrapped' :: Iso' (Query v n m) (Unwrapped (Query v n m)) #

Wrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Associated Types

type Unwrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail' Line v n) = SegTree v n

Methods

_Wrapped' :: Iso' (Trail' Line v n) (Unwrapped (Trail' Line v n)) #

Wrapped (ApT f g a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ApT f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ApT f g a) = g (ApF f g a)

Methods

_Wrapped' :: Iso' (ApT f g a) (Unwrapped (ApT f g a)) #

Wrapped (CofreeT f w a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (CofreeT f w a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (CofreeT f w a) = w (CofreeF f a (CofreeT f w a))

Methods

_Wrapped' :: Iso' (CofreeT f w a) (Unwrapped (CofreeT f w a)) #

Wrapped (FreeT f m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (FreeT f m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (FreeT f m a) = m (FreeF f a (FreeT f m a))

Methods

_Wrapped' :: Iso' (FreeT f m a) (Unwrapped (FreeT f m a)) #

Wrapped (Static f a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Static f a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Static f a b) = f (a -> b)

Methods

_Wrapped' :: Iso' (Static f a b) (Unwrapped (Static f a b)) #

Wrapped (Tagged s a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Tagged s a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Tagged s a) = a

Methods

_Wrapped' :: Iso' (Tagged s a) (Unwrapped (Tagged s a)) #

Wrapped (Backwards f a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Backwards f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Backwards f a) = f a

Methods

_Wrapped' :: Iso' (Backwards f a) (Unwrapped (Backwards f a)) #

Wrapped (ExceptT e m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ExceptT e m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ExceptT e m a) = m (Either e a)

Methods

_Wrapped' :: Iso' (ExceptT e m a) (Unwrapped (ExceptT e m a)) #

Wrapped (IdentityT m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (IdentityT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (IdentityT m a) = m a

Methods

_Wrapped' :: Iso' (IdentityT m a) (Unwrapped (IdentityT m a)) #

Wrapped (ReaderT r m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ReaderT r m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ReaderT r m a) = r -> m a

Methods

_Wrapped' :: Iso' (ReaderT r m a) (Unwrapped (ReaderT r m a)) #

Wrapped (StateT s m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (StateT s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (StateT s m a) = s -> m (a, s)

Methods

_Wrapped' :: Iso' (StateT s m a) (Unwrapped (StateT s m a)) #

Wrapped (StateT s m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (StateT s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (StateT s m a) = s -> m (a, s)

Methods

_Wrapped' :: Iso' (StateT s m a) (Unwrapped (StateT s m a)) #

Wrapped (WriterT w m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WriterT w m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WriterT w m a) = m (a, w)

Methods

_Wrapped' :: Iso' (WriterT w m a) (Unwrapped (WriterT w m a)) #

Wrapped (WriterT w m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WriterT w m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WriterT w m a) = m (a, w)

Methods

_Wrapped' :: Iso' (WriterT w m a) (Unwrapped (WriterT w m a)) #

Wrapped (Constant a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Constant a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Constant a b) = a

Methods

_Wrapped' :: Iso' (Constant a b) (Unwrapped (Constant a b)) #

Wrapped (Reverse f a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Reverse f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Reverse f a) = f a

Methods

_Wrapped' :: Iso' (Reverse f a) (Unwrapped (Reverse f a)) #

Wrapped (K1 i c p) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (K1 i c p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (K1 i c p) = c

Methods

_Wrapped' :: Iso' (K1 i c p) (Unwrapped (K1 i c p)) #

Wrapped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Associated Types

type Unwrapped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (QDiagram b v n m) = DUALTree (DownAnnots v n) (UpAnnots b v n m) Annotation (QDiaLeaf b v n m)

Methods

_Wrapped' :: Iso' (QDiagram b v n m) (Unwrapped (QDiagram b v n m)) #

Wrapped (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Associated Types

type Unwrapped (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (SubMap b v n m) = Map Name [Subdiagram b v n m]

Methods

_Wrapped' :: Iso' (SubMap b v n m) (Unwrapped (SubMap b v n m)) #

Wrapped (Costar f d c) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Costar f d c) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Costar f d c) = f d -> c

Methods

_Wrapped' :: Iso' (Costar f d c) (Unwrapped (Costar f d c)) #

Wrapped (Forget r a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Forget r a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Forget r a b) = a -> r

Methods

_Wrapped' :: Iso' (Forget r a b) (Unwrapped (Forget r a b)) #

Wrapped (Star f d c) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Star f d c) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Star f d c) = d -> f c

Methods

_Wrapped' :: Iso' (Star f d c) (Unwrapped (Star f d c)) #

Wrapped (ContT r m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (ContT r m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ContT r m a) = (a -> m r) -> m r

Methods

_Wrapped' :: Iso' (ContT r m a) (Unwrapped (ContT r m a)) #

Wrapped (Compose f g a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Compose f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Compose f g a) = f (g a)

Methods

_Wrapped' :: Iso' (Compose f g a) (Unwrapped (Compose f g a)) #

Wrapped ((f :.: g) p) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped ((f :.: g) p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped ((f :.: g) p) = f (g p)

Methods

_Wrapped' :: Iso' ((f :.: g) p) (Unwrapped ((f :.: g) p)) #

Wrapped (M1 i c f p) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (M1 i c f p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (M1 i c f p) = f p

Methods

_Wrapped' :: Iso' (M1 i c f p) (Unwrapped (M1 i c f p)) #

Wrapped (Clown f a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Clown f a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Clown f a b) = f a

Methods

_Wrapped' :: Iso' (Clown f a b) (Unwrapped (Clown f a b)) #

Wrapped (Flip p a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Flip p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Flip p a b) = p b a

Methods

_Wrapped' :: Iso' (Flip p a b) (Unwrapped (Flip p a b)) #

Wrapped (Joker g a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Joker g a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Joker g a b) = g b

Methods

_Wrapped' :: Iso' (Joker g a b) (Unwrapped (Joker g a b)) #

Wrapped (WrappedBifunctor p a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedBifunctor p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedBifunctor p a b) = p a b

Methods

_Wrapped' :: Iso' (WrappedBifunctor p a b) (Unwrapped (WrappedBifunctor p a b)) #

Wrapped (WrappedArrow p a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedArrow p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedArrow p a b) = p a b

Methods

_Wrapped' :: Iso' (WrappedArrow p a b) (Unwrapped (WrappedArrow p a b)) #

Wrapped (Semi m a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Semi m a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Semi m a b) = m

Methods

_Wrapped' :: Iso' (Semi m a b) (Unwrapped (Semi m a b)) #

Wrapped (WrappedCategory k3 a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (WrappedCategory k3 a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedCategory k3 a b) = k3 a b

Methods

_Wrapped' :: Iso' (WrappedCategory k3 a b) (Unwrapped (WrappedCategory k3 a b)) #

Wrapped (Dual k3 a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Dual k3 a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Dual k3 a b) = k3 b a

Methods

_Wrapped' :: Iso' (Dual k3 a b) (Unwrapped (Dual k3 a b)) #

Wrapped (RWST r w s m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (RWST r w s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (RWST r w s m a) = r -> s -> m (a, s, w)

Methods

_Wrapped' :: Iso' (RWST r w s m a) (Unwrapped (RWST r w s m a)) #

Wrapped (RWST r w s m a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (RWST r w s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (RWST r w s m a) = r -> s -> m (a, s, w)

Methods

_Wrapped' :: Iso' (RWST r w s m a) (Unwrapped (RWST r w s m a)) #

Wrapped (Tannen f p a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Tannen f p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Tannen f p a b) = f (p a b)

Methods

_Wrapped' :: Iso' (Tannen f p a b) (Unwrapped (Tannen f p a b)) #

Wrapped (Cayley f p a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Cayley f p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Cayley f p a b) = f (p a b)

Methods

_Wrapped' :: Iso' (Cayley f p a b) (Unwrapped (Cayley f p a b)) #

Wrapped (Biff p f g a b) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Biff p f g a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Biff p f g a b) = p (f a) (g b)

Methods

_Wrapped' :: Iso' (Biff p f g a b) (Unwrapped (Biff p f g a b)) #

type family Unwrapped s #

Instances

Instances details
type Unwrapped NoMethodError 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped PatternMatchFail 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped RecConError 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped RecSelError 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped RecUpdError 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped TypeError 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped All 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped Any 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped Errno 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CBool 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CChar 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CClock 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CDouble 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CFloat 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CInt 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CIntMax 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CIntPtr 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CLLong 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CLong 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CPtrdiff 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CSChar 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CSUSeconds 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CShort 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CSigAtomic 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CSize 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CTime 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CUChar 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CUInt 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CUIntMax 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CUIntPtr 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CULLong 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CULong 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CUSeconds 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CUShort 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CWchar 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped ErrorCall 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped AssertionFailed 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CompactionFailed 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CBlkCnt 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CBlkSize 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CCc 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CClockId 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CDev 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CFsBlkCnt 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CFsFilCnt 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CGid 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CId 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CIno 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CKey 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CMode 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CNlink 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped COff 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CPid 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CRLim 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CSpeed 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CSsize 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CTcflag 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CTimer 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped CUid 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped Fd 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped IntSet 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped Name 
Instance details

Defined in Diagrams.Core.Names

type Unwrapped SegCount 
Instance details

Defined in Diagrams.Segment

type Unwrapped (Active a) 
Instance details

Defined in Data.Active

type Unwrapped (Active a) = MaybeApply Dynamic a
type Unwrapped (Duration a) 
Instance details

Defined in Data.Active

type Unwrapped (Duration a) = a
type Unwrapped (Time a) 
Instance details

Defined in Data.Active

type Unwrapped (Time a) = a
type Unwrapped (ZipList a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ZipList a) = [a]
type Unwrapped (Comparison a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Comparison a) = a -> a -> Ordering
type Unwrapped (Equivalence a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Equivalence a) = a -> a -> Bool
type Unwrapped (Predicate a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Predicate a) = a -> Bool
type Unwrapped (Identity a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Identity a) = a
type Unwrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (First a) = Maybe a
type Unwrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Last a) = Maybe a
type Unwrapped (Down a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Down a) = a
type Unwrapped (First a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (First a) = a
type Unwrapped (Last a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Last a) = a
type Unwrapped (Max a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Max a) = a
type Unwrapped (Min a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Min a) = a
type Unwrapped (WrappedMonoid a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Dual a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Dual a) = a
type Unwrapped (Endo a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Endo a) = a -> a
type Unwrapped (Product a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Product a) = a
type Unwrapped (Sum a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Sum a) = a
type Unwrapped (NonEmpty a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (NonEmpty a) = (a, [a])
type Unwrapped (Par1 p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Par1 p) = p
type Unwrapped (IntMap a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (IntMap a) = [(Int, a)]
type Unwrapped (Seq a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Seq a) = [a]
type Unwrapped (Set a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Set a) = [a]
type Unwrapped (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type Unwrapped (TransInv t) = t
type Unwrapped (ArcLength n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (ArcLength n) = (Sum (Interval n), n -> Sum (Interval n))
type Unwrapped (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

type Unwrapped (Clip n) = [Path V2 n]
type Unwrapped (HashSet a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (HashSet a) = [a]
type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]
type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]
type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]
type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]
type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]
type Unwrapped (WrappedMonad m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedMonad m a) = m a
type Unwrapped (ArrowMonad m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ArrowMonad m a) = m () a
type Unwrapped (Op a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Op a b) = b -> a
type Unwrapped (Map k a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Map k a) = [(k, a)]
type Unwrapped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type Unwrapped (Envelope v n) = Maybe (v n -> Max n)
type Unwrapped (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type Unwrapped (Style v n) = HashMap TypeRep (Attribute v n)
type Unwrapped (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type Unwrapped (Trace v n) = Point v n -> v n -> SortedList n
type Unwrapped (Path v n) 
Instance details

Defined in Diagrams.Path

type Unwrapped (Path v n) = [Located (Trail v n)]
type Unwrapped (TotalOffset v n) 
Instance details

Defined in Diagrams.Segment

type Unwrapped (TotalOffset v n) = v n
type Unwrapped (SegTree v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (SegTree v n) = FingerTree (SegMeasure v n) (Segment Closed v n)
type Unwrapped (Trail v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail v n) = Either (Trail' Line v n) (Trail' Loop v n)
type Unwrapped (CatchT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Alt f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Alt f a) = [AltF f a]
type Unwrapped (CoiterT w a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (CoiterT w a) = w (a, CoiterT w a)
type Unwrapped (IterT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (IterT m a) = m (Either a (IterT m a))
type Unwrapped (Point f a) 
Instance details

Defined in Linear.Affine

type Unwrapped (Point f a) = f a
type Unwrapped (MaybeApply f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (MaybeApply f a) = Either (f a) a
type Unwrapped (WrappedApplicative f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedApplicative f a) = f a
type Unwrapped (MaybeT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (MaybeT m a) = m (Maybe a)
type Unwrapped (HashMap k a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (HashMap k a) = [(k, a)]
type Unwrapped (WrappedArrow a b c) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedArrow a b c) = a b c
type Unwrapped (Kleisli m a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Kleisli m a b) = a -> m b
type Unwrapped (Const a x) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Const a x) = a
type Unwrapped (Ap f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Ap f a) = f a
type Unwrapped (Alt f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Alt f a) = f a
type Unwrapped (Rec1 f p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Rec1 f p) = f p
type Unwrapped (Fix p a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Fix p a) = p (Fix p a) a
type Unwrapped (Join p a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Join p a) = p a a
type Unwrapped (TracedT m w a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (TracedT m w a) = w (m -> a)
type Unwrapped (Compose f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Compose f g a) = f (g a)
type Unwrapped (ComposeCF f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ComposeCF f g a) = f (g a)
type Unwrapped (ComposeFC f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ComposeFC f g a) = f (g a)
type Unwrapped (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type Unwrapped (Query v n m) = Point v n -> m
type Unwrapped (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

type Unwrapped (Trail' Line v n) = SegTree v n
type Unwrapped (ApT f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ApT f g a) = g (ApF f g a)
type Unwrapped (CofreeT f w a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (CofreeT f w a) = w (CofreeF f a (CofreeT f w a))
type Unwrapped (FreeT f m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (FreeT f m a) = m (FreeF f a (FreeT f m a))
type Unwrapped (Static f a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Static f a b) = f (a -> b)
type Unwrapped (Tagged s a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Tagged s a) = a
type Unwrapped (Backwards f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Backwards f a) = f a
type Unwrapped (ExceptT e m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ExceptT e m a) = m (Either e a)
type Unwrapped (IdentityT m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (IdentityT m a) = m a
type Unwrapped (ReaderT r m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ReaderT r m a) = r -> m a
type Unwrapped (StateT s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (StateT s m a) = s -> m (a, s)
type Unwrapped (StateT s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (StateT s m a) = s -> m (a, s)
type Unwrapped (WriterT w m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WriterT w m a) = m (a, w)
type Unwrapped (WriterT w m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WriterT w m a) = m (a, w)
type Unwrapped (Constant a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Constant a b) = a
type Unwrapped (Reverse f a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Reverse f a) = f a
type Unwrapped (K1 i c p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (K1 i c p) = c
type Unwrapped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (QDiagram b v n m) = DUALTree (DownAnnots v n) (UpAnnots b v n m) Annotation (QDiaLeaf b v n m)
type Unwrapped (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (SubMap b v n m) = Map Name [Subdiagram b v n m]
type Unwrapped (Costar f d c) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Costar f d c) = f d -> c
type Unwrapped (Forget r a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Forget r a b) = a -> r
type Unwrapped (Star f d c) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Star f d c) = d -> f c
type Unwrapped (ContT r m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (ContT r m a) = (a -> m r) -> m r
type Unwrapped (Compose f g a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Compose f g a) = f (g a)
type Unwrapped ((f :.: g) p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped ((f :.: g) p) = f (g p)
type Unwrapped (M1 i c f p) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (M1 i c f p) = f p
type Unwrapped (Clown f a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Clown f a b) = f a
type Unwrapped (Flip p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Flip p a b) = p b a
type Unwrapped (Joker g a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Joker g a b) = g b
type Unwrapped (WrappedBifunctor p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedBifunctor p a b) = p a b
type Unwrapped (WrappedArrow p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedArrow p a b) = p a b
type Unwrapped (Semi m a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Semi m a b) = m
type Unwrapped (WrappedCategory k3 a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (WrappedCategory k3 a b) = k3 a b
type Unwrapped (Dual k3 a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Dual k3 a b) = k3 b a
type Unwrapped (RWST r w s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (RWST r w s m a) = r -> s -> m (a, s, w)
type Unwrapped (RWST r w s m a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (RWST r w s m a) = r -> s -> m (a, s, w)
type Unwrapped (Tannen f p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Tannen f p a b) = f (p a b)
type Unwrapped (Cayley f p a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Cayley f p a b) = f (p a b)
type Unwrapped (Biff p f g a b) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Biff p f g a b) = p (f a) (g b)

pattern Unwrapped :: Rewrapped t t => t -> Unwrapped t #

pattern Wrapped :: Rewrapped s s => Unwrapped s -> s #

_GWrapped' :: forall s (d :: Meta) (c :: Meta) (s' :: Meta) a. (Generic s, D1 d (C1 c (S1 s' (Rec0 a))) ~ Rep s, Unwrapped s ~ GUnwrapped (Rep s)) => Iso' s (Unwrapped s) #

_Unwrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso (Unwrapped t) (Unwrapped s) t s #

_Unwrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' (Unwrapped s) s #

_Wrapped :: Rewrapping s t => Iso s t (Unwrapped s) (Unwrapped t) #

_Wrapping :: Rewrapping s t => (Unwrapped s -> s) -> Iso s t (Unwrapped s) (Unwrapped t) #

_Wrapping' :: Wrapped s => (Unwrapped s -> s) -> Iso' s (Unwrapped s) #

ala :: (Functor f, Rewrapping s t) => (Unwrapped s -> s) -> ((Unwrapped t -> t) -> f s) -> f (Unwrapped s) #

alaf :: (Functor f, Functor g, Rewrapping s t) => (Unwrapped s -> s) -> (f t -> g s) -> f (Unwrapped t) -> g (Unwrapped s) #

op :: Wrapped s => (Unwrapped s -> s) -> s -> Unwrapped s #

_Point :: forall f1 a g b p f2. (Profunctor p, Functor f2) => p (f1 a) (f2 (g b)) -> p (Point f1 a) (f2 (Point g b)) #

distanceA :: (Floating a, Foldable (Diff p), Affine p) => p a -> p a -> a #

lensP :: forall f1 a g b f2. Functor f2 => (f1 a -> f2 (g b)) -> Point f1 a -> f2 (Point g b) #

origin :: forall (f :: Type -> Type) a. (Additive f, Num a) => Point f a #

qdA :: (Affine p, Foldable (Diff p), Num a) => p a -> p a -> a #

relative :: forall (f :: Type -> Type) a. (Additive f, Num a) => Point f a -> Iso' (Point f a) (f a) #

unP :: Point f a -> f a #

normalize :: (Floating a, Metric f, Epsilon a) => f a -> f a #

project :: (Metric v, Fractional a) => v a -> v a -> v a #

perp :: Num a => V2 a -> V2 a #

(*^) :: (Functor f, Num a) => a -> f a -> f a #

(^*) :: (Functor f, Num a) => f a -> a -> f a #

(^/) :: (Functor f, Fractional a) => f a -> a -> f a #

basis :: (Additive t, Traversable t, Num a) => [t a] #

basisFor :: (Traversable t, Num a) => t b -> [t a] #

negated :: (Functor f, Num a) => f a -> f a #

scaled :: (Traversable t, Num a) => t a -> t (t a) #

sumV :: (Foldable f, Additive v, Num a) => f (v a) -> v a #

foldBy :: Foldable t => (a -> a -> a) -> a -> t a -> a #

foldMapBy :: Foldable t => (r -> r -> r) -> r -> (a -> r) -> t a -> r #

sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a) #

traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b) #

data Active a #

Instances

Instances details
Applicative Active 
Instance details

Defined in Data.Active

Methods

pure :: a -> Active a #

(<*>) :: Active (a -> b) -> Active a -> Active b #

liftA2 :: (a -> b -> c) -> Active a -> Active b -> Active c #

(*>) :: Active a -> Active b -> Active b #

(<*) :: Active a -> Active b -> Active a #

Functor Active 
Instance details

Defined in Data.Active

Methods

fmap :: (a -> b) -> Active a -> Active b #

(<$) :: a -> Active b -> Active a #

Apply Active 
Instance details

Defined in Data.Active

Methods

(<.>) :: Active (a -> b) -> Active a -> Active b

(.>) :: Active a -> Active b -> Active b

(<.) :: Active a -> Active b -> Active a

liftF2 :: (a -> b -> c) -> Active a -> Active b -> Active c

(Monoid a, Semigroup a) => Monoid (Active a) 
Instance details

Defined in Data.Active

Methods

mempty :: Active a #

mappend :: Active a -> Active a -> Active a #

mconcat :: [Active a] -> Active a #

Semigroup a => Semigroup (Active a) 
Instance details

Defined in Data.Active

Methods

(<>) :: Active a -> Active a -> Active a #

sconcat :: NonEmpty (Active a) -> Active a #

stimes :: Integral b => b -> Active a -> Active a #

Wrapped (Active a) 
Instance details

Defined in Data.Active

Associated Types

type Unwrapped (Active a) 
Instance details

Defined in Data.Active

type Unwrapped (Active a) = MaybeApply Dynamic a

Methods

_Wrapped' :: Iso' (Active a) (Unwrapped (Active a)) #

Rewrapped (Active a) (Active b) 
Instance details

Defined in Data.Active

ToResult (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

Associated Types

type Args (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (Animation b v n) = ()
type ResultOf (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (Animation b v n) = Animation b v n

Methods

toResult :: Animation b v n -> Args (Animation b v n) -> ResultOf (Animation b v n)

type N (Active a) 
Instance details

Defined in Diagrams.Animation.Active

type N (Active a) = N a
type V (Active a) 
Instance details

Defined in Diagrams.Animation.Active

type V (Active a) = V a
type Unwrapped (Active a) 
Instance details

Defined in Data.Active

type Unwrapped (Active a) = MaybeApply Dynamic a
type Args (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type Args (Animation b v n) = ()
type ResultOf (Animation b v n) 
Instance details

Defined in Diagrams.Backend.CmdLine

type ResultOf (Animation b v n) = Animation b v n

data Duration n #

Instances

Instances details
Applicative Duration 
Instance details

Defined in Data.Active

Methods

pure :: a -> Duration a #

(<*>) :: Duration (a -> b) -> Duration a -> Duration b #

liftA2 :: (a -> b -> c) -> Duration a -> Duration b -> Duration c #

(*>) :: Duration a -> Duration b -> Duration b #

(<*) :: Duration a -> Duration b -> Duration a #

Functor Duration 
Instance details

Defined in Data.Active

Methods

fmap :: (a -> b) -> Duration a -> Duration b #

(<$) :: a -> Duration b -> Duration a #

Additive Duration 
Instance details

Defined in Data.Active

Methods

zero :: Num a => Duration a #

(^+^) :: Num a => Duration a -> Duration a -> Duration a #

(^-^) :: Num a => Duration a -> Duration a -> Duration a #

lerp :: Num a => a -> Duration a -> Duration a -> Duration a #

liftU2 :: (a -> a -> a) -> Duration a -> Duration a -> Duration a #

liftI2 :: (a -> b -> c) -> Duration a -> Duration b -> Duration c #

Num n => Monoid (Duration n) 
Instance details

Defined in Data.Active

Methods

mempty :: Duration n #

mappend :: Duration n -> Duration n -> Duration n #

mconcat :: [Duration n] -> Duration n #

Num n => Semigroup (Duration n) 
Instance details

Defined in Data.Active

Methods

(<>) :: Duration n -> Duration n -> Duration n #

sconcat :: NonEmpty (Duration n) -> Duration n #

stimes :: Integral b => b -> Duration n -> Duration n #

Enum n => Enum (Duration n) 
Instance details

Defined in Data.Active

Num n => Num (Duration n) 
Instance details

Defined in Data.Active

Read n => Read (Duration n) 
Instance details

Defined in Data.Active

Fractional n => Fractional (Duration n) 
Instance details

Defined in Data.Active

Real n => Real (Duration n) 
Instance details

Defined in Data.Active

Methods

toRational :: Duration n -> Rational #

RealFrac n => RealFrac (Duration n) 
Instance details

Defined in Data.Active

Methods

properFraction :: Integral b => Duration n -> (b, Duration n) #

truncate :: Integral b => Duration n -> b #

round :: Integral b => Duration n -> b #

ceiling :: Integral b => Duration n -> b #

floor :: Integral b => Duration n -> b #

Show n => Show (Duration n) 
Instance details

Defined in Data.Active

Methods

showsPrec :: Int -> Duration n -> ShowS #

show :: Duration n -> String #

showList :: [Duration n] -> ShowS #

Eq n => Eq (Duration n) 
Instance details

Defined in Data.Active

Methods

(==) :: Duration n -> Duration n -> Bool #

(/=) :: Duration n -> Duration n -> Bool #

Ord n => Ord (Duration n) 
Instance details

Defined in Data.Active

Methods

compare :: Duration n -> Duration n -> Ordering #

(<) :: Duration n -> Duration n -> Bool #

(<=) :: Duration n -> Duration n -> Bool #

(>) :: Duration n -> Duration n -> Bool #

(>=) :: Duration n -> Duration n -> Bool #

max :: Duration n -> Duration n -> Duration n #

min :: Duration n -> Duration n -> Duration n #

Wrapped (Duration a) 
Instance details

Defined in Data.Active

Associated Types

type Unwrapped (Duration a) 
Instance details

Defined in Data.Active

type Unwrapped (Duration a) = a
Rewrapped (Duration a) (Duration b) 
Instance details

Defined in Data.Active

type Unwrapped (Duration a) 
Instance details

Defined in Data.Active

type Unwrapped (Duration a) = a

data Era n #

Instances

Instances details
Ord n => Semigroup (Era n) 
Instance details

Defined in Data.Active

Methods

(<>) :: Era n -> Era n -> Era n #

sconcat :: NonEmpty (Era n) -> Era n #

stimes :: Integral b => b -> Era n -> Era n #

Show n => Show (Era n) 
Instance details

Defined in Data.Active

Methods

showsPrec :: Int -> Era n -> ShowS #

show :: Era n -> String #

showList :: [Era n] -> ShowS #

data Time n #

Instances

Instances details
Functor Time 
Instance details

Defined in Data.Active

Methods

fmap :: (a -> b) -> Time a -> Time b #

(<$) :: a -> Time b -> Time a #

Affine Time 
Instance details

Defined in Data.Active

Associated Types

type Diff Time 
Instance details

Defined in Data.Active

Methods

(.-.) :: Num a => Time a -> Time a -> Diff Time a #

(.+^) :: Num a => Time a -> Diff Time a -> Time a #

(.-^) :: Num a => Time a -> Diff Time a -> Time a #

Enum n => Enum (Time n) 
Instance details

Defined in Data.Active

Methods

succ :: Time n -> Time n #

pred :: Time n -> Time n #

toEnum :: Int -> Time n #

fromEnum :: Time n -> Int #

enumFrom :: Time n -> [Time n] #

enumFromThen :: Time n -> Time n -> [Time n] #

enumFromTo :: Time n -> Time n -> [Time n] #

enumFromThenTo :: Time n -> Time n -> Time n -> [Time n] #

Num n => Num (Time n) 
Instance details

Defined in Data.Active

Methods

(+) :: Time n -> Time n -> Time n #

(-) :: Time n -> Time n -> Time n #

(*) :: Time n -> Time n -> Time n #

negate :: Time n -> Time n #

abs :: Time n -> Time n #

signum :: Time n -> Time n #

fromInteger :: Integer -> Time n #

Read n => Read (Time n) 
Instance details

Defined in Data.Active

Fractional n => Fractional (Time n) 
Instance details

Defined in Data.Active

Methods

(/) :: Time n -> Time n -> Time n #

recip :: Time n -> Time n #

fromRational :: Rational -> Time n #

Real n => Real (Time n) 
Instance details

Defined in Data.Active

Methods

toRational :: Time n -> Rational #

RealFrac n => RealFrac (Time n) 
Instance details

Defined in Data.Active

Methods

properFraction :: Integral b => Time n -> (b, Time n) #

truncate :: Integral b => Time n -> b #

round :: Integral b => Time n -> b #

ceiling :: Integral b => Time n -> b #

floor :: Integral b => Time n -> b #

Show n => Show (Time n) 
Instance details

Defined in Data.Active

Methods

showsPrec :: Int -> Time n -> ShowS #

show :: Time n -> String #

showList :: [Time n] -> ShowS #

Eq n => Eq (Time n) 
Instance details

Defined in Data.Active

Methods

(==) :: Time n -> Time n -> Bool #

(/=) :: Time n -> Time n -> Bool #

Ord n => Ord (Time n) 
Instance details

Defined in Data.Active

Methods

compare :: Time n -> Time n -> Ordering #

(<) :: Time n -> Time n -> Bool #

(<=) :: Time n -> Time n -> Bool #

(>) :: Time n -> Time n -> Bool #

(>=) :: Time n -> Time n -> Bool #

max :: Time n -> Time n -> Time n #

min :: Time n -> Time n -> Time n #

Wrapped (Time a) 
Instance details

Defined in Data.Active

Associated Types

type Unwrapped (Time a) 
Instance details

Defined in Data.Active

type Unwrapped (Time a) = a

Methods

_Wrapped' :: Iso' (Time a) (Unwrapped (Time a)) #

Rewrapped (Time a) (Time b) 
Instance details

Defined in Data.Active

type Diff Time 
Instance details

Defined in Data.Active

type Unwrapped (Time a) 
Instance details

Defined in Data.Active

type Unwrapped (Time a) = a

data AlphaColour a #

Instances

Instances details
AffineSpace AlphaColour 
Instance details

Defined in Data.Colour.Internal

Methods

affineCombo :: Num a => [(a, AlphaColour a)] -> AlphaColour a -> AlphaColour a

ColourOps AlphaColour 
Instance details

Defined in Data.Colour.Internal

Methods

over :: Num a => AlphaColour a -> AlphaColour a -> AlphaColour a

darken :: Num a => a -> AlphaColour a -> AlphaColour a #

Num a => Monoid (AlphaColour a) 
Instance details

Defined in Data.Colour.Internal

Num a => Semigroup (AlphaColour a) 
Instance details

Defined in Data.Colour.Internal

a ~ Double => Color (AlphaColour a) 
Instance details

Defined in Diagrams.Attributes

Parseable (AlphaColour Double) 
Instance details

Defined in Diagrams.Backend.CmdLine

Methods

parser :: Parser (AlphaColour Double)

Eq a => Eq (AlphaColour a) 
Instance details

Defined in Data.Colour.Internal

data Colour a #

Instances

Instances details
AffineSpace Colour 
Instance details

Defined in Data.Colour.Internal

Methods

affineCombo :: Num a => [(a, Colour a)] -> Colour a -> Colour a

ColourOps Colour 
Instance details

Defined in Data.Colour.Internal

Methods

over :: Num a => AlphaColour a -> Colour a -> Colour a

darken :: Num a => a -> Colour a -> Colour a #

Num a => Monoid (Colour a) 
Instance details

Defined in Data.Colour.Internal

Methods

mempty :: Colour a #

mappend :: Colour a -> Colour a -> Colour a #

mconcat :: [Colour a] -> Colour a #

Num a => Semigroup (Colour a) 
Instance details

Defined in Data.Colour.Internal

Methods

(<>) :: Colour a -> Colour a -> Colour a #

sconcat :: NonEmpty (Colour a) -> Colour a #

stimes :: Integral b => b -> Colour a -> Colour a #

a ~ Double => Color (Colour a) 
Instance details

Defined in Diagrams.Attributes

Parseable (Colour Double) 
Instance details

Defined in Diagrams.Backend.CmdLine

Methods

parser :: Parser (Colour Double)

Eq a => Eq (Colour a) 
Instance details

Defined in Data.Colour.Internal

Methods

(==) :: Colour a -> Colour a -> Bool #

(/=) :: Colour a -> Colour a -> Bool #

(Ord a, Floating a) => FromColor (Colour a) 
Instance details

Defined in Skylighting.Types

Methods

fromColor :: Color -> Colour a

(RealFrac a, Floating a) => ToColor (Colour a) 
Instance details

Defined in Skylighting.Types

Methods

toColor :: Colour a -> Maybe Color

class ColourOps (f :: Type -> Type) where #

Minimal complete definition

over, darken

Methods

darken :: Num a => a -> f a -> f a #

Instances

Instances details
ColourOps AlphaColour 
Instance details

Defined in Data.Colour.Internal

Methods

over :: Num a => AlphaColour a -> AlphaColour a -> AlphaColour a

darken :: Num a => a -> AlphaColour a -> AlphaColour a #

ColourOps Colour 
Instance details

Defined in Data.Colour.Internal

Methods

over :: Num a => AlphaColour a -> Colour a -> Colour a

darken :: Num a => a -> Colour a -> Colour a #

data RGB a #

Constructors

RGB 

Fields

Instances

Instances details
Applicative RGB 
Instance details

Defined in Data.Colour.RGB

Methods

pure :: a -> RGB a #

(<*>) :: RGB (a -> b) -> RGB a -> RGB b #

liftA2 :: (a -> b -> c) -> RGB a -> RGB b -> RGB c #

(*>) :: RGB a -> RGB b -> RGB b #

(<*) :: RGB a -> RGB b -> RGB a #

Functor RGB 
Instance details

Defined in Data.Colour.RGB

Methods

fmap :: (a -> b) -> RGB a -> RGB b #

(<$) :: a -> RGB b -> RGB a #

Read a => Read (RGB a) 
Instance details

Defined in Data.Colour.RGB

Show a => Show (RGB a) 
Instance details

Defined in Data.Colour.RGB

Methods

showsPrec :: Int -> RGB a -> ShowS #

show :: RGB a -> String #

showList :: [RGB a] -> ShowS #

Eq a => Eq (RGB a) 
Instance details

Defined in Data.Colour.RGB

Methods

(==) :: RGB a -> RGB a -> Bool #

(/=) :: RGB a -> RGB a -> Bool #

newtype Envelope (v :: Type -> Type) n #

Constructors

Envelope (Maybe (v n -> Max n)) 

Instances

Instances details
Ord n => Monoid (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

mempty :: Envelope v n #

mappend :: Envelope v n -> Envelope v n -> Envelope v n #

mconcat :: [Envelope v n] -> Envelope v n #

Ord n => Semigroup (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

(<>) :: Envelope v n -> Envelope v n -> Envelope v n #

sconcat :: NonEmpty (Envelope v n) -> Envelope v n #

stimes :: Integral b => b -> Envelope v n -> Envelope v n #

Show (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

showsPrec :: Int -> Envelope v n -> ShowS #

show :: Envelope v n -> String #

showList :: [Envelope v n] -> ShowS #

(Metric v, OrderedField n) => Enveloped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: Envelope v n -> Envelope (V (Envelope v n)) (N (Envelope v n)) #

(Metric v, Fractional n) => HasOrigin (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

moveOriginTo :: Point (V (Envelope v n)) (N (Envelope v n)) -> Envelope v n -> Envelope v n #

(Metric v, OrderedField n) => Juxtaposable (Envelope v n) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (Envelope v n) -> Envelope v n -> Envelope v n -> Envelope v n #

(Metric v, Floating n) => Transformable (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

transform :: Transformation (V (Envelope v n)) (N (Envelope v n)) -> Envelope v n -> Envelope v n #

(Metric v, OrderedField n) => Alignable (Envelope v n) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => (v0 n0 -> Envelope v n -> Point v0 n0) -> v0 n0 -> n0 -> Envelope v n -> Envelope v n #

defaultBoundary :: (V (Envelope v n) ~ v0, N (Envelope v n) ~ n0) => v0 n0 -> Envelope v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Envelope v n), Fractional n0, HasOrigin (Envelope v n)) => v0 n0 -> n0 -> Envelope v n -> Envelope v n #

Wrapped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Associated Types

type Unwrapped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type Unwrapped (Envelope v n) = Maybe (v n -> Max n)

Methods

_Wrapped' :: Iso' (Envelope v n) (Unwrapped (Envelope v n)) #

Rewrapped (Envelope v n) (Envelope v' n') 
Instance details

Defined in Diagrams.Core.Envelope

type N (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type N (Envelope v n) = n
type V (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type V (Envelope v n) = v
type Unwrapped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

type Unwrapped (Envelope v n) = Maybe (v n -> Max n)

class (Metric (V a), OrderedField (N a)) => Enveloped a where #

Methods

getEnvelope :: a -> Envelope (V a) (N a) #

Instances

Instances details
Enveloped b => Enveloped (Set b) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: Set b -> Envelope (V (Set b)) (N (Set b)) #

Enveloped t => Enveloped (TransInv t) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: TransInv t -> Envelope (V (TransInv t)) (N (TransInv t)) #

Enveloped a => Enveloped (Located a) 
Instance details

Defined in Diagrams.Located

Methods

getEnvelope :: Located a -> Envelope (V (Located a)) (N (Located a)) #

OrderedField n => Enveloped (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: Box n -> Envelope (V (Box n)) (N (Box n)) #

RealFloat n => Enveloped (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: CSG n -> Envelope (V (CSG n)) (N (CSG n)) #

OrderedField n => Enveloped (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: Ellipsoid n -> Envelope (V (Ellipsoid n)) (N (Ellipsoid n)) #

(OrderedField n, RealFloat n) => Enveloped (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getEnvelope :: Frustum n -> Envelope (V (Frustum n)) (N (Frustum n)) #

Enveloped b => Enveloped [b] 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: [b] -> Envelope (V [b]) (N [b]) #

Enveloped b => Enveloped (Map k b) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: Map k b -> Envelope (V (Map k b)) (N (Map k b)) #

(Metric v, OrderedField n) => Enveloped (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: Envelope v n -> Envelope (V (Envelope v n)) (N (Envelope v n)) #

(Metric v, Traversable v, OrderedField n) => Enveloped (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getEnvelope :: BoundingBox v n -> Envelope (V (BoundingBox v n)) (N (BoundingBox v n)) #

(Metric v, OrderedField n) => Enveloped (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

getEnvelope :: Path v n -> Envelope (V (Path v n)) (N (Path v n)) #

(Metric v, OrderedField n) => Enveloped (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

getEnvelope :: FixedSegment v n -> Envelope (V (FixedSegment v n)) (N (FixedSegment v n)) #

(Metric v, OrderedField n) => Enveloped (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

getEnvelope :: Trail v n -> Envelope (V (Trail v n)) (N (Trail v n)) #

(OrderedField n, Metric v) => Enveloped (Point v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: Point v n -> Envelope (V (Point v n)) (N (Point v n)) #

(Enveloped a, Enveloped b, V a ~ V b, N a ~ N b) => Enveloped (a, b) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: (a, b) -> Envelope (V (a, b)) (N (a, b)) #

(Metric v, OrderedField n) => Enveloped (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

getEnvelope :: Segment Closed v n -> Envelope (V (Segment Closed v n)) (N (Segment Closed v n)) #

(Metric v, OrderedField n) => Enveloped (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

getEnvelope :: Trail' l v n -> Envelope (V (Trail' l v n)) (N (Trail' l v n)) #

(Metric v, OrderedField n, Monoid' m) => Enveloped (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getEnvelope :: QDiagram b v n m -> Envelope (V (QDiagram b v n m)) (N (QDiagram b v n m)) #

(OrderedField n, Metric v, Monoid' m) => Enveloped (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getEnvelope :: Subdiagram b v n m -> Envelope (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) #

class HasOrigin t where #

Methods

moveOriginTo :: Point (V t) (N t) -> t -> t #

Instances

Instances details
(HasOrigin t, Ord t) => HasOrigin (Set t) 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V (Set t)) (N (Set t)) -> Set t -> Set t #

HasOrigin (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

moveOriginTo :: Point (V (TransInv t)) (N (TransInv t)) -> TransInv t -> TransInv t #

(Num (N a), Additive (V a)) => HasOrigin (Located a) 
Instance details

Defined in Diagrams.Located

Methods

moveOriginTo :: Point (V (Located a)) (N (Located a)) -> Located a -> Located a #

(V t ~ v, N t ~ n, Additive v, Num n, HasOrigin t) => HasOrigin (ScaleInv t) 
Instance details

Defined in Diagrams.Transform.ScaleInv

Methods

moveOriginTo :: Point (V (ScaleInv t)) (N (ScaleInv t)) -> ScaleInv t -> ScaleInv t #

Floating n => HasOrigin (Text n) 
Instance details

Defined in Diagrams.TwoD.Text

Methods

moveOriginTo :: Point (V (Text n)) (N (Text n)) -> Text n -> Text n #

HasOrigin t => HasOrigin [t] 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V [t]) (N [t]) -> [t] -> [t] #

HasOrigin t => HasOrigin (Map k t) 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V (Map k t)) (N (Map k t)) -> Map k t -> Map k t #

(Metric v, Fractional n) => HasOrigin (Envelope v n) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

moveOriginTo :: Point (V (Envelope v n)) (N (Envelope v n)) -> Envelope v n -> Envelope v n #

HasOrigin t => HasOrigin (Measured n t) 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V (Measured n t)) (N (Measured n t)) -> Measured n t -> Measured n t #

(Additive v, Num n) => HasOrigin (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

moveOriginTo :: Point (V (Trace v n)) (N (Trace v n)) -> Trace v n -> Trace v n #

(Additive v, Num n) => HasOrigin (Transformation v n) 
Instance details

Defined in Diagrams.Core.Transform

(Additive v, Num n) => HasOrigin (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

moveOriginTo :: Point (V (BoundingBox v n)) (N (BoundingBox v n)) -> BoundingBox v n -> BoundingBox v n #

(Additive v, Num n) => HasOrigin (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

moveOriginTo :: Point (V (Path v n)) (N (Path v n)) -> Path v n -> Path v n #

(Additive v, Num n) => HasOrigin (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

moveOriginTo :: Point (V (FixedSegment v n)) (N (FixedSegment v n)) -> FixedSegment v n -> FixedSegment v n #

Fractional n => HasOrigin (DImage n a) 
Instance details

Defined in Diagrams.TwoD.Image

Methods

moveOriginTo :: Point (V (DImage n a)) (N (DImage n a)) -> DImage n a -> DImage n a #

(Additive v, Num n) => HasOrigin (Point v n) 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V (Point v n)) (N (Point v n)) -> Point v n -> Point v n #

(HasOrigin t, HasOrigin s, SameSpace s t) => HasOrigin (s, t) 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V (s, t)) (N (s, t)) -> (s, t) -> (s, t) #

(Additive v, Num n) => HasOrigin (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Methods

moveOriginTo :: Point (V (Query v n m)) (N (Query v n m)) -> Query v n m -> Query v n m #

(Metric v, OrderedField n, Semigroup m) => HasOrigin (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

moveOriginTo :: Point (V (QDiagram b v n m)) (N (QDiagram b v n m)) -> QDiagram b v n m -> QDiagram b v n m #

(OrderedField n, Metric v) => HasOrigin (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

moveOriginTo :: Point (V (SubMap b v n m)) (N (SubMap b v n m)) -> SubMap b v n m -> SubMap b v n m #

(Metric v, OrderedField n) => HasOrigin (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

moveOriginTo :: Point (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m #

class Juxtaposable a where #

Methods

juxtapose :: Vn a -> a -> a -> a #

Instances

Instances details
(Enveloped b, HasOrigin b, Ord b) => Juxtaposable (Set b) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (Set b) -> Set b -> Set b -> Set b #

Enveloped a => Juxtaposable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

juxtapose :: Vn (Located a) -> Located a -> Located a -> Located a #

(Enveloped b, HasOrigin b) => Juxtaposable [b] 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn [b] -> [b] -> [b] -> [b] #

(Enveloped b, HasOrigin b) => Juxtaposable (Map k b) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (Map k b) -> Map k b -> Map k b -> Map k b #

(Metric v, OrderedField n) => Juxtaposable (Envelope v n) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (Envelope v n) -> Envelope v n -> Envelope v n -> Envelope v n #

Juxtaposable a => Juxtaposable (Measured n a) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (Measured n a) -> Measured n a -> Measured n a -> Measured n a #

(Metric v, OrderedField n) => Juxtaposable (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

juxtapose :: Vn (Path v n) -> Path v n -> Path v n -> Path v n #

(Enveloped a, HasOrigin a, Enveloped b, HasOrigin b, V a ~ V b, N a ~ N b) => Juxtaposable (a, b) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (a, b) -> (a, b) -> (a, b) -> (a, b) #

Juxtaposable a => Juxtaposable (b -> a) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (b -> a) -> (b -> a) -> (b -> a) -> b -> a #

(Metric v, OrderedField n, Monoid' m) => Juxtaposable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

juxtapose :: Vn (QDiagram b v n m) -> QDiagram b v n m -> QDiagram b v n m -> QDiagram b v n m #

type Measure n = Measured n n #

data Measured n a #

Instances

Instances details
Profunctor Measured 
Instance details

Defined in Diagrams.Core.Measure

Methods

dimap :: (a -> b) -> (c -> d) -> Measured b c -> Measured a d #

lmap :: (a -> b) -> Measured b c -> Measured a c #

rmap :: (b -> c) -> Measured a b -> Measured a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Measured a b -> Measured a c

(.#) :: forall a b c q. Coercible b a => Measured b c -> q a b -> Measured a c

Representable (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Associated Types

type Rep (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

type Rep (Measured n) = (n, n, n)

Methods

tabulate :: (Rep (Measured n) -> a) -> Measured n a

index :: Measured n a -> Rep (Measured n) -> a

Applicative (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

pure :: a -> Measured n a #

(<*>) :: Measured n (a -> b) -> Measured n a -> Measured n b #

liftA2 :: (a -> b -> c) -> Measured n a -> Measured n b -> Measured n c #

(*>) :: Measured n a -> Measured n b -> Measured n b #

(<*) :: Measured n a -> Measured n b -> Measured n a #

Functor (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

fmap :: (a -> b) -> Measured n a -> Measured n b #

(<$) :: a -> Measured n b -> Measured n a #

Monad (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

(>>=) :: Measured n a -> (a -> Measured n b) -> Measured n b #

(>>) :: Measured n a -> Measured n b -> Measured n b #

return :: a -> Measured n a #

OrderedField n => Default (LineWidthM n) 
Instance details

Defined in Diagrams.Attributes

Methods

def :: LineWidthM n #

Num n => Default (FontSizeM n) 
Instance details

Defined in Diagrams.TwoD.Text

Methods

def :: FontSizeM n #

Distributive (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

distribute :: Functor f => f (Measured n a) -> Measured n (f a)

collect :: Functor f => (a -> Measured n b) -> f a -> Measured n (f b)

distributeM :: Monad m => m (Measured n a) -> Measured n (m a)

collectM :: Monad m => (a -> Measured n b) -> m a -> Measured n (m b)

Additive (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

zero :: Num a => Measured n a #

(^+^) :: Num a => Measured n a -> Measured n a -> Measured n a #

(^-^) :: Num a => Measured n a -> Measured n a -> Measured n a #

lerp :: Num a => a -> Measured n a -> Measured n a -> Measured n a #

liftU2 :: (a -> a -> a) -> Measured n a -> Measured n a -> Measured n a #

liftI2 :: (a -> b -> c) -> Measured n a -> Measured n b -> Measured n c #

Monoid a => Monoid (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

Methods

mempty :: Measured n a #

mappend :: Measured n a -> Measured n a -> Measured n a #

mconcat :: [Measured n a] -> Measured n a #

Semigroup a => Semigroup (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

Methods

(<>) :: Measured n a -> Measured n a -> Measured n a #

sconcat :: NonEmpty (Measured n a) -> Measured n a #

stimes :: Integral b => b -> Measured n a -> Measured n a #

Floating a => Floating (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

Methods

pi :: Measured n a #

exp :: Measured n a -> Measured n a #

log :: Measured n a -> Measured n a #

sqrt :: Measured n a -> Measured n a #

(**) :: Measured n a -> Measured n a -> Measured n a #

logBase :: Measured n a -> Measured n a -> Measured n a #

sin :: Measured n a -> Measured n a #

cos :: Measured n a -> Measured n a #

tan :: Measured n a -> Measured n a #

asin :: Measured n a -> Measured n a #

acos :: Measured n a -> Measured n a #

atan :: Measured n a -> Measured n a #

sinh :: Measured n a -> Measured n a #

cosh :: Measured n a -> Measured n a #

tanh :: Measured n a -> Measured n a #

asinh :: Measured n a -> Measured n a #

acosh :: Measured n a -> Measured n a #

atanh :: Measured n a -> Measured n a #

log1p :: Measured n a -> Measured n a #

expm1 :: Measured n a -> Measured n a #

log1pexp :: Measured n a -> Measured n a #

log1mexp :: Measured n a -> Measured n a #

Num a => Num (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

Methods

(+) :: Measured n a -> Measured n a -> Measured n a #

(-) :: Measured n a -> Measured n a -> Measured n a #

(*) :: Measured n a -> Measured n a -> Measured n a #

negate :: Measured n a -> Measured n a #

abs :: Measured n a -> Measured n a #

signum :: Measured n a -> Measured n a #

fromInteger :: Integer -> Measured n a #

Fractional a => Fractional (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

Methods

(/) :: Measured n a -> Measured n a -> Measured n a #

recip :: Measured n a -> Measured n a #

fromRational :: Rational -> Measured n a #

HasOrigin t => HasOrigin (Measured n t) 
Instance details

Defined in Diagrams.Core.HasOrigin

Methods

moveOriginTo :: Point (V (Measured n t)) (N (Measured n t)) -> Measured n t -> Measured n t #

Juxtaposable a => Juxtaposable (Measured n a) 
Instance details

Defined in Diagrams.Core.Juxtapose

Methods

juxtapose :: Vn (Measured n a) -> Measured n a -> Measured n a -> Measured n a #

Qualifiable a => Qualifiable (Measured n a) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> Measured n a -> Measured n a #

HasStyle b => HasStyle (Measured n b) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (Measured n b)) (N (Measured n b)) -> Measured n b -> Measured n b #

(InSpace v n t, Transformable t, HasLinearMap v, Floating n) => Transformable (Measured n t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (Measured n t)) (N (Measured n t)) -> Measured n t -> Measured n t #

MonadReader (n, n, n) (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

Methods

ask :: Measured n (n, n, n) #

local :: ((n, n, n) -> (n, n, n)) -> Measured n a -> Measured n a #

reader :: ((n, n, n) -> a) -> Measured n a #

type Rep (Measured n) 
Instance details

Defined in Diagrams.Core.Measure

type Rep (Measured n) = (n, n, n)
type N (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

type N (Measured n a) = N a
type V (Measured n a) 
Instance details

Defined in Diagrams.Core.Measure

type V (Measured n a) = V a

data AName #

Instances

Instances details
Show AName 
Instance details

Defined in Diagrams.Core.Names

Methods

showsPrec :: Int -> AName -> ShowS #

show :: AName -> String #

showList :: [AName] -> ShowS #

IsName AName 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: AName -> Name #

Eq AName 
Instance details

Defined in Diagrams.Core.Names

Methods

(==) :: AName -> AName -> Bool #

(/=) :: AName -> AName -> Bool #

Ord AName 
Instance details

Defined in Diagrams.Core.Names

Methods

compare :: AName -> AName -> Ordering #

(<) :: AName -> AName -> Bool #

(<=) :: AName -> AName -> Bool #

(>) :: AName -> AName -> Bool #

(>=) :: AName -> AName -> Bool #

max :: AName -> AName -> AName #

min :: AName -> AName -> AName #

Each Name Name AName AName 
Instance details

Defined in Diagrams.Core.Names

class (Typeable a, Ord a, Show a) => IsName a where #

Minimal complete definition

Nothing

Methods

toName :: a -> Name #

Instances

Instances details
IsName AName 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: AName -> Name #

IsName Name 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Name -> Name #

IsName Integer 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Integer -> Name #

IsName () 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: () -> Name #

IsName Bool 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Bool -> Name #

IsName Char 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Char -> Name #

IsName Double 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Double -> Name #

IsName Float 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Float -> Name #

IsName Int 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Int -> Name #

IsName a => IsName (Maybe a) 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: Maybe a -> Name #

IsName a => IsName [a] 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: [a] -> Name #

(IsName a, IsName b) => IsName (a, b) 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: (a, b) -> Name #

(IsName a, IsName b, IsName c) => IsName (a, b, c) 
Instance details

Defined in Diagrams.Core.Names

Methods

toName :: (a, b, c) -> Name #

class Qualifiable q where #

Methods

(.>>) :: IsName a => a -> q -> q #

Instances

Instances details
Qualifiable Name 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a => a -> Name -> Name #

(Ord a, Qualifiable a) => Qualifiable (Set a) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> Set a -> Set a #

Qualifiable a => Qualifiable (TransInv a) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> TransInv a -> TransInv a #

Qualifiable a => Qualifiable (Located a) 
Instance details

Defined in Diagrams.Located

Methods

(.>>) :: IsName a0 => a0 -> Located a -> Located a #

Qualifiable a => Qualifiable [a] 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> [a] -> [a] #

Qualifiable a => Qualifiable (Map k a) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> Map k a -> Map k a #

Qualifiable a => Qualifiable (Measured n a) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> Measured n a -> Measured n a #

(Qualifiable a, Qualifiable b) => Qualifiable (a, b) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> (a, b) -> (a, b) #

Qualifiable a => Qualifiable (b -> a) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> (b -> a) -> b -> a #

(Qualifiable a, Qualifiable b, Qualifiable c) => Qualifiable (a, b, c) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> (a, b, c) -> (a, b, c) #

(Metric v, OrderedField n, Semigroup m) => Qualifiable (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(.>>) :: IsName a => a -> QDiagram b v n m -> QDiagram b v n m #

Qualifiable (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(.>>) :: IsName a => a -> SubMap b v n m -> SubMap b v n m #

newtype Query (v :: Type -> Type) n m #

Constructors

Query 

Fields

Instances

Instances details
Functor v => Closed (Query v) 
Instance details

Defined in Diagrams.Core.Query

Methods

closed :: Query v a b -> Query v (x -> a) (x -> b)

Functor v => Corepresentable (Query v) 
Instance details

Defined in Diagrams.Core.Query

Associated Types

type Corep (Query v) 
Instance details

Defined in Diagrams.Core.Query

type Corep (Query v) = Point v

Methods

cotabulate :: (Corep (Query v) d -> c) -> Query v d c

Functor v => Costrong (Query v) 
Instance details

Defined in Diagrams.Core.Query

Methods

unfirst :: Query v (a, d) (b, d) -> Query v a b

unsecond :: Query v (d, a) (d, b) -> Query v a b

Functor v => Profunctor (Query v) 
Instance details

Defined in Diagrams.Core.Query

Methods

dimap :: (a -> b) -> (c -> d) -> Query v b c -> Query v a d #

lmap :: (a -> b) -> Query v b c -> Query v a c #

rmap :: (b -> c) -> Query v a b -> Query v a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Query v a b -> Query v a c

(.#) :: forall a b c q. Coercible b a => Query v b c -> q a b -> Query v a c

Functor v => Cosieve (Query v) (Point v) 
Instance details

Defined in Diagrams.Core.Query

Methods

cosieve :: Query v a b -> Point v a -> b

Representable (Query v n) 
Instance details

Defined in Diagrams.Core.Query

Associated Types

type Rep (Query v n) 
Instance details

Defined in Diagrams.Core.Query

type Rep (Query v n) = Point v n

Methods

tabulate :: (Rep (Query v n) -> a) -> Query v n a

index :: Query v n a -> Rep (Query v n) -> a

Applicative (Query v n) 
Instance details

Defined in Diagrams.Core.Query

Methods

pure :: a -> Query v n a #

(<*>) :: Query v n (a -> b) -> Query v n a -> Query v n b #

liftA2 :: (a -> b -> c) -> Query v n a -> Query v n b -> Query v n c #

(*>) :: Query v n a -> Query v n b -> Query v n b #

(<*) :: Query v n a -> Query v n b -> Query v n a #

Functor (Query v n) 
Instance details

Defined in Diagrams.Core.Query

Methods

fmap :: (a -> b) -> Query v n a -> Query v n b #

(<$) :: a -> Query v n b -> Query v n a #

Monad (Query v n) 
Instance details

Defined in Diagrams.Core.Query

Methods

(>>=) :: Query v n a -> (a -> Query v n b) -> Query v n b #

(>>) :: Query v n a -> Query v n b -> Query v n b #

return :: a -> Query v n a #

Distributive (Query v n) 
Instance details

Defined in Diagrams.Core.Query

Methods

distribute :: Functor f => f (Query v n a) -> Query v n (f a)

collect :: Functor f => (a -> Query v n b) -> f a -> Query v n (f b)

distributeM :: Monad m => m (Query v n a) -> Query v n (m a)

collectM :: Monad m => (a -> Query v n b) -> m a -> Query v n (m b)

Monoid m => Monoid (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Methods

mempty :: Query v n m #

mappend :: Query v n m -> Query v n m -> Query v n m #

mconcat :: [Query v n m] -> Query v n m #

Semigroup m => Semigroup (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Methods

(<>) :: Query v n m -> Query v n m -> Query v n m #

sconcat :: NonEmpty (Query v n m) -> Query v n m #

stimes :: Integral b => b -> Query v n m -> Query v n m #

(Additive v, Num n) => HasOrigin (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Methods

moveOriginTo :: Point (V (Query v n m)) (N (Query v n m)) -> Query v n m -> Query v n m #

(Additive v, Num n) => Transformable (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Methods

transform :: Transformation (V (Query v n m)) (N (Query v n m)) -> Query v n m -> Query v n m #

Wrapped (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

Associated Types

type Unwrapped (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type Unwrapped (Query v n m) = Point v n -> m

Methods

_Wrapped' :: Iso' (Query v n m) (Unwrapped (Query v n m)) #

HasQuery (Query v n m) m 
Instance details

Defined in Diagrams.Query

Methods

getQuery :: Query v n m -> Query (V (Query v n m)) (N (Query v n m)) m #

Rewrapped (Query v a m) (Query v' a' m') 
Instance details

Defined in Diagrams.Core.Query

type Corep (Query v) 
Instance details

Defined in Diagrams.Core.Query

type Corep (Query v) = Point v
type Rep (Query v n) 
Instance details

Defined in Diagrams.Core.Query

type Rep (Query v n) = Point v n
type N (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type N (Query v n m) = n
type V (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type V (Query v n m) = v
type Unwrapped (Query v n m) 
Instance details

Defined in Diagrams.Core.Query

type Unwrapped (Query v n m) = Point v n -> m

class (Typeable a, Semigroup a) => AttributeClass a #

Instances

Instances details
AttributeClass FillOpacity 
Instance details

Defined in Diagrams.Attributes

AttributeClass LineCap 
Instance details

Defined in Diagrams.Attributes

AttributeClass LineJoin 
Instance details

Defined in Diagrams.Attributes

AttributeClass LineMiterLimit 
Instance details

Defined in Diagrams.Attributes

AttributeClass Opacity 
Instance details

Defined in Diagrams.Attributes

AttributeClass StrokeOpacity 
Instance details

Defined in Diagrams.Attributes

AttributeClass Ambient 
Instance details

Defined in Diagrams.ThreeD.Attributes

AttributeClass Diffuse 
Instance details

Defined in Diagrams.ThreeD.Attributes

AttributeClass Highlight 
Instance details

Defined in Diagrams.ThreeD.Attributes

AttributeClass SurfaceColor 
Instance details

Defined in Diagrams.ThreeD.Attributes

AttributeClass FillRule 
Instance details

Defined in Diagrams.TwoD.Path

AttributeClass Font 
Instance details

Defined in Diagrams.TwoD.Text

AttributeClass FontSlant 
Instance details

Defined in Diagrams.TwoD.Text

AttributeClass FontWeight 
Instance details

Defined in Diagrams.TwoD.Text

Typeable n => AttributeClass (Dashing n) 
Instance details

Defined in Diagrams.Attributes

Typeable n => AttributeClass (LineWidth n) 
Instance details

Defined in Diagrams.Attributes

Typeable n => AttributeClass (FillTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Typeable n => AttributeClass (LineTexture n) 
Instance details

Defined in Diagrams.TwoD.Attributes

Typeable n => AttributeClass (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

Typeable n => AttributeClass (FontSize n) 
Instance details

Defined in Diagrams.TwoD.Text

class HasStyle a where #

Methods

applyStyle :: Style (V a) (N a) -> a -> a #

Instances

Instances details
(HasStyle a, Ord a) => HasStyle (Set a) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (Set a)) (N (Set a)) -> Set a -> Set a #

HasStyle a => HasStyle [a] 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V [a]) (N [a]) -> [a] -> [a] #

HasStyle a => HasStyle (Map k a) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (Map k a)) (N (Map k a)) -> Map k a -> Map k a #

HasStyle b => HasStyle (Measured n b) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (Measured n b)) (N (Measured n b)) -> Measured n b -> Measured n b #

Typeable n => HasStyle (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (Style v n)) (N (Style v n)) -> Style v n -> Style v n #

(HasStyle a, HasStyle b, V a ~ V b, N a ~ N b) => HasStyle (a, b) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (a, b)) (N (a, b)) -> (a, b) -> (a, b) #

HasStyle b => HasStyle (a -> b) 
Instance details

Defined in Diagrams.Core.Style

Methods

applyStyle :: Style (V (a -> b)) (N (a -> b)) -> (a -> b) -> a -> b #

(Metric v, OrderedField n, Semigroup m) => HasStyle (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

applyStyle :: Style (V (QDiagram b v n m)) (N (QDiagram b v n m)) -> QDiagram b v n m -> QDiagram b v n m #

data SortedList a #

Instances

Instances details
Ord a => Monoid (SortedList a) 
Instance details

Defined in Diagrams.Core.Trace

Ord a => Semigroup (SortedList a) 
Instance details

Defined in Diagrams.Core.Trace

newtype Trace (v :: Type -> Type) n #

Constructors

Trace 

Fields

Instances

Instances details
Ord n => Monoid (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

mempty :: Trace v n #

mappend :: Trace v n -> Trace v n -> Trace v n #

mconcat :: [Trace v n] -> Trace v n #

Ord n => Semigroup (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

(<>) :: Trace v n -> Trace v n -> Trace v n #

sconcat :: NonEmpty (Trace v n) -> Trace v n #

stimes :: Integral b => b -> Trace v n -> Trace v n #

Show (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

showsPrec :: Int -> Trace v n -> ShowS #

show :: Trace v n -> String #

showList :: [Trace v n] -> ShowS #

(Additive v, Num n) => HasOrigin (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

moveOriginTo :: Point (V (Trace v n)) (N (Trace v n)) -> Trace v n -> Trace v n #

(Additive v, Ord n) => Traced (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: Trace v n -> Trace (V (Trace v n)) (N (Trace v n)) #

(Additive v, Num n) => Transformable (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

transform :: Transformation (V (Trace v n)) (N (Trace v n)) -> Trace v n -> Trace v n #

(Metric v, OrderedField n) => Alignable (Trace v n) 
Instance details

Defined in Diagrams.Align

Methods

alignBy' :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => (v0 n0 -> Trace v n -> Point v0 n0) -> v0 n0 -> n0 -> Trace v n -> Trace v n #

defaultBoundary :: (V (Trace v n) ~ v0, N (Trace v n) ~ n0) => v0 n0 -> Trace v n -> Point v0 n0 #

alignBy :: (InSpace v0 n0 (Trace v n), Fractional n0, HasOrigin (Trace v n)) => v0 n0 -> n0 -> Trace v n -> Trace v n #

Wrapped (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Associated Types

type Unwrapped (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type Unwrapped (Trace v n) = Point v n -> v n -> SortedList n

Methods

_Wrapped' :: Iso' (Trace v n) (Unwrapped (Trace v n)) #

Rewrapped (Trace v n) (Trace v' n') 
Instance details

Defined in Diagrams.Core.Trace

type N (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type N (Trace v n) = n
type V (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type V (Trace v n) = v
type Unwrapped (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

type Unwrapped (Trace v n) = Point v n -> v n -> SortedList n

class (Additive (V a), Ord (N a)) => Traced a where #

Methods

getTrace :: a -> Trace (V a) (N a) #

Instances

Instances details
Traced b => Traced (Set b) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: Set b -> Trace (V (Set b)) (N (Set b)) #

Traced t => Traced (TransInv t) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: TransInv t -> Trace (V (TransInv t)) (N (TransInv t)) #

(Traced a, Num (N a)) => Traced (Located a) 
Instance details

Defined in Diagrams.Located

Methods

getTrace :: Located a -> Trace (V (Located a)) (N (Located a)) #

(Fractional n, Ord n) => Traced (Box n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: Box n -> Trace (V (Box n)) (N (Box n)) #

(RealFloat n, Ord n) => Traced (CSG n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: CSG n -> Trace (V (CSG n)) (N (CSG n)) #

OrderedField n => Traced (Ellipsoid n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: Ellipsoid n -> Trace (V (Ellipsoid n)) (N (Ellipsoid n)) #

(RealFloat n, Ord n) => Traced (Frustum n) 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

getTrace :: Frustum n -> Trace (V (Frustum n)) (N (Frustum n)) #

Traced b => Traced [b] 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: [b] -> Trace (V [b]) (N [b]) #

Traced b => Traced (Map k b) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: Map k b -> Trace (V (Map k b)) (N (Map k b)) #

(Additive v, Ord n) => Traced (Trace v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: Trace v n -> Trace (V (Trace v n)) (N (Trace v n)) #

RealFloat n => Traced (BoundingBox V2 n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getTrace :: BoundingBox V2 n -> Trace (V (BoundingBox V2 n)) (N (BoundingBox V2 n)) #

TypeableFloat n => Traced (BoundingBox V3 n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getTrace :: BoundingBox V3 n -> Trace (V (BoundingBox V3 n)) (N (BoundingBox V3 n)) #

(Additive v, Ord n) => Traced (Point v n) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: Point v n -> Trace (V (Point v n)) (N (Point v n)) #

(Traced a, Traced b, SameSpace a b) => Traced (a, b) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: (a, b) -> Trace (V (a, b)) (N (a, b)) #

(Metric v, OrderedField n, Semigroup m) => Traced (QDiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getTrace :: QDiagram b v n m -> Trace (V (QDiagram b v n m)) (N (QDiagram b v n m)) #

(OrderedField n, Metric v, Semigroup m) => Traced (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getTrace :: Subdiagram b v n m -> Trace (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) #

data u :-: v #

Instances

Instances details
Monoid (v :-: v) 
Instance details

Defined in Diagrams.Core.Transform

Methods

mempty :: v :-: v #

mappend :: (v :-: v) -> (v :-: v) -> v :-: v #

mconcat :: [v :-: v] -> v :-: v #

Semigroup (a :-: a) 
Instance details

Defined in Diagrams.Core.Transform

Methods

(<>) :: (a :-: a) -> (a :-: a) -> a :-: a #

sconcat :: NonEmpty (a :-: a) -> a :-: a #

stimes :: Integral b => b -> (a :-: a) -> a :-: a #

type HasBasis (v :: Type -> Type) = (Additive v, Representable v, Rep v ~ E v) #

type HasLinearMap (v :: Type -> Type) = (HasBasis v, Traversable v) #

newtype TransInv t #

Constructors

TransInv t 

Instances

Instances details
Monoid t => Monoid (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

mempty :: TransInv t #

mappend :: TransInv t -> TransInv t -> TransInv t #

mconcat :: [TransInv t] -> TransInv t #

Semigroup t => Semigroup (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

(<>) :: TransInv t -> TransInv t -> TransInv t #

sconcat :: NonEmpty (TransInv t) -> TransInv t #

stimes :: Integral b => b -> TransInv t -> TransInv t #

Show t => Show (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

showsPrec :: Int -> TransInv t -> ShowS #

show :: TransInv t -> String #

showList :: [TransInv t] -> ShowS #

Enveloped t => Enveloped (TransInv t) 
Instance details

Defined in Diagrams.Core.Envelope

Methods

getEnvelope :: TransInv t -> Envelope (V (TransInv t)) (N (TransInv t)) #

HasOrigin (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

moveOriginTo :: Point (V (TransInv t)) (N (TransInv t)) -> TransInv t -> TransInv t #

Qualifiable a => Qualifiable (TransInv a) 
Instance details

Defined in Diagrams.Core.Names

Methods

(.>>) :: IsName a0 => a0 -> TransInv a -> TransInv a #

Traced t => Traced (TransInv t) 
Instance details

Defined in Diagrams.Core.Trace

Methods

getTrace :: TransInv t -> Trace (V (TransInv t)) (N (TransInv t)) #

(Num (N t), Additive (V t), Transformable t) => Transformable (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

transform :: Transformation (V (TransInv t)) (N (TransInv t)) -> TransInv t -> TransInv t #

TrailLike t => TrailLike (TransInv t) 
Instance details

Defined in Diagrams.TrailLike

Methods

trailLike :: Located (Trail (V (TransInv t)) (N (TransInv t))) -> TransInv t #

Eq t => Eq (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

(==) :: TransInv t -> TransInv t -> Bool #

(/=) :: TransInv t -> TransInv t -> Bool #

Ord t => Ord (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Methods

compare :: TransInv t -> TransInv t -> Ordering #

(<) :: TransInv t -> TransInv t -> Bool #

(<=) :: TransInv t -> TransInv t -> Bool #

(>) :: TransInv t -> TransInv t -> Bool #

(>=) :: TransInv t -> TransInv t -> Bool #

max :: TransInv t -> TransInv t -> TransInv t #

min :: TransInv t -> TransInv t -> TransInv t #

Wrapped (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

Associated Types

type Unwrapped (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type Unwrapped (TransInv t) = t
Rewrapped (TransInv t) (TransInv t') 
Instance details

Defined in Diagrams.Core.Transform

type N (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type N (TransInv t) = N t
type V (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type V (TransInv t) = V t
type Unwrapped (TransInv t) 
Instance details

Defined in Diagrams.Core.Transform

type Unwrapped (TransInv t) = t

data NullBackend #

Instances

Instances details
Backend NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

Associated Types

data Render NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

type Result NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

type Result NullBackend v n = ()
data Options NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

Fractional n => Renderable (Box n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

render :: NullBackend -> Box n -> Render NullBackend (V (Box n)) (N (Box n)) #

Fractional n => Renderable (Ellipsoid n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Fractional n => Renderable (Frustum n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Shapes

Methods

render :: NullBackend -> Frustum n -> Render NullBackend (V (Frustum n)) (N (Frustum n)) #

Floating n => Renderable (Text n) NullBackend 
Instance details

Defined in Diagrams.TwoD.Text

Methods

render :: NullBackend -> Text n -> Render NullBackend (V (Text n)) (N (Text n)) #

(HasLinearMap v, Metric v, OrderedField n) => Renderable (Path v n) NullBackend 
Instance details

Defined in Diagrams.Path

Methods

render :: NullBackend -> Path v n -> Render NullBackend (V (Path v n)) (N (Path v n)) #

Num n => Renderable (Camera l n) NullBackend 
Instance details

Defined in Diagrams.ThreeD.Camera

Methods

render :: NullBackend -> Camera l n -> Render NullBackend (V (Camera l n)) (N (Camera l n)) #

Fractional n => Renderable (DImage n a) NullBackend 
Instance details

Defined in Diagrams.TwoD.Image

Methods

render :: NullBackend -> DImage n a -> Render NullBackend (V (DImage n a)) (N (DImage n a)) #

Monoid (Render NullBackend v n) 
Instance details

Defined in Diagrams.Core.Types

Semigroup (Render NullBackend v n) 
Instance details

Defined in Diagrams.Core.Types

Renderable (Segment c v n) NullBackend 
Instance details

Defined in Diagrams.Segment

Methods

render :: NullBackend -> Segment c v n -> Render NullBackend (V (Segment c v n)) (N (Segment c v n)) #

(HasLinearMap v, Metric v, OrderedField n) => Renderable (Trail' o v n) NullBackend 
Instance details

Defined in Diagrams.Trail

Methods

render :: NullBackend -> Trail' o v n -> Render NullBackend (V (Trail' o v n)) (N (Trail' o v n)) #

data Options NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

data Render NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

type Result NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

type Result NullBackend v n = ()

newtype SubMap b (v :: Type -> Type) n m #

Constructors

SubMap (Map Name [Subdiagram b v n m]) 

Instances

Instances details
Action Name (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

act :: Name -> SubMap b v n m -> SubMap b v n m

Functor (SubMap b v n) 
Instance details

Defined in Diagrams.Core.Types

Methods

fmap :: (a -> b0) -> SubMap b v n a -> SubMap b v n b0 #

(<$) :: a -> SubMap b v n b0 -> SubMap b v n a #

Monoid (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

mempty :: SubMap b v n m #

mappend :: SubMap b v n m -> SubMap b v n m -> SubMap b v n m #

mconcat :: [SubMap b v n m] -> SubMap b v n m #

Semigroup (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(<>) :: SubMap b v n m -> SubMap b v n m -> SubMap b v n m #

sconcat :: NonEmpty (SubMap b v n m) -> SubMap b v n m #

stimes :: Integral b0 => b0 -> SubMap b v n m -> SubMap b v n m #

(OrderedField n, Metric v) => HasOrigin (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

moveOriginTo :: Point (V (SubMap b v n m)) (N (SubMap b v n m)) -> SubMap b v n m -> SubMap b v n m #

Qualifiable (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

(.>>) :: IsName a => a -> SubMap b v n m -> SubMap b v n m #

Transformable (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (SubMap b v n m)) (N (SubMap b v n m)) -> SubMap b v n m -> SubMap b v n m #

Wrapped (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

Associated Types

type Unwrapped (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (SubMap b v n m) = Map Name [Subdiagram b v n m]

Methods

_Wrapped' :: Iso' (SubMap b v n m) (Unwrapped (SubMap b v n m)) #

Rewrapped (SubMap b v n m) (SubMap b' v' n' m') 
Instance details

Defined in Diagrams.Core.Types

type N (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type N (SubMap b v n m) = n
type V (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type V (SubMap b v n m) = v
type Unwrapped (SubMap b v n m) 
Instance details

Defined in Diagrams.Core.Types

type Unwrapped (SubMap b v n m) = Map Name [Subdiagram b v n m]

data Subdiagram b (v :: Type -> Type) n m #

Constructors

Subdiagram (QDiagram b v n m) (DownAnnots v n) 

Instances

Instances details
Functor (Subdiagram b v n) 
Instance details

Defined in Diagrams.Core.Types

Methods

fmap :: (a -> b0) -> Subdiagram b v n a -> Subdiagram b v n b0 #

(<$) :: a -> Subdiagram b v n b0 -> Subdiagram b v n a #

(OrderedField n, Metric v, Monoid' m) => Enveloped (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getEnvelope :: Subdiagram b v n m -> Envelope (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) #

(Metric v, OrderedField n) => HasOrigin (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

moveOriginTo :: Point (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m #

(OrderedField n, Metric v, Semigroup m) => Traced (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

getTrace :: Subdiagram b v n m -> Trace (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) #

Transformable (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

Methods

transform :: Transformation (V (Subdiagram b v n m)) (N (Subdiagram b v n m)) -> Subdiagram b v n m -> Subdiagram b v n m #

type N (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type N (Subdiagram b v n m) = n
type V (Subdiagram b v n m) 
Instance details

Defined in Diagrams.Core.Types

type V (Subdiagram b v n m) = v

type InSpace (v :: Type -> Type) n a = (V a ~ v, N a ~ n, Additive v, Num n) #

type SameSpace a b = (V a ~ V b, N a ~ N b) #

type Vn a = V a (N a) #

class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where #

Minimal complete definition

Nothing

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> f a -> b #

Instances

Instances details
FoldableWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Identity a -> m #

ifoldMap' :: Monoid m => (() -> a -> m) -> Identity a -> m #

ifoldr :: (() -> a -> b -> b) -> b -> Identity a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Identity a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Identity a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Identity a -> b #

FoldableWithIndex () Par1 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Par1 a -> m #

ifoldMap' :: Monoid m => (() -> a -> m) -> Par1 a -> m #

ifoldr :: (() -> a -> b -> b) -> b -> Par1 a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Par1 a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Par1 a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Par1 a -> b #

FoldableWithIndex () Maybe 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Maybe a -> m #

ifoldMap' :: Monoid m => (() -> a -> m) -> Maybe a -> m #

ifoldr :: (() -> a -> b -> b) -> b -> Maybe a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Maybe a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Maybe a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Maybe a -> b #

FoldableWithIndex Int ZipList 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> ZipList a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> ZipList a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> ZipList a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> ZipList a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> ZipList a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> ZipList a -> b #

FoldableWithIndex Int NonEmpty 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> NonEmpty a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> NonEmpty a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> NonEmpty a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> NonEmpty a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> NonEmpty a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> NonEmpty a -> b #

FoldableWithIndex Int IntMap 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> IntMap a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> IntMap a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> IntMap a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> IntMap a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> IntMap a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> IntMap a -> b #

FoldableWithIndex Int Seq 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> Seq a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> Seq a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> Seq a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> Seq a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> Seq a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> Seq a -> b #

FoldableWithIndex Int [] 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> [a] -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> [a] -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> [a] -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> [a] -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> [a] -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> [a] -> b #

FoldableWithIndex Void (Proxy :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> Proxy a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> Proxy a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> Proxy a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> Proxy a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> Proxy a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> Proxy a -> b #

FoldableWithIndex Void (U1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> U1 a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> U1 a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> U1 a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> U1 a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> U1 a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> U1 a -> b #

FoldableWithIndex Void (V1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> V1 a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> V1 a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> V1 a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> V1 a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> V1 a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> V1 a -> b #

Ix i => FoldableWithIndex i (Array i) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Array i a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Array i a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Array i a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Array i a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Array i a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Array i a -> b #

FoldableWithIndex i (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Level i a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Level i a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Level i a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Level i a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Level i a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Level i a -> b #

FoldableWithIndex k (Map k) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (k -> a -> m) -> Map k a -> m #

ifoldMap' :: Monoid m => (k -> a -> m) -> Map k a -> m #

ifoldr :: (k -> a -> b -> b) -> b -> Map k a -> b #

ifoldl :: (k -> b -> a -> b) -> b -> Map k a -> b #

ifoldr' :: (k -> a -> b -> b) -> b -> Map k a -> b #

ifoldl' :: (k -> b -> a -> b) -> b -> Map k a -> b #

FoldableWithIndex k ((,) k) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (k -> a -> m) -> (k, a) -> m #

ifoldMap' :: Monoid m => (k -> a -> m) -> (k, a) -> m #

ifoldr :: (k -> a -> b -> b) -> b -> (k, a) -> b #

ifoldl :: (k -> b -> a -> b) -> b -> (k, a) -> b #

ifoldr' :: (k -> a -> b -> b) -> b -> (k, a) -> b #

ifoldl' :: (k -> b -> a -> b) -> b -> (k, a) -> b #

FoldableWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> Const e a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> Const e a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> Const e a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> Const e a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> Const e a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> Const e a -> b #

FoldableWithIndex Void (Constant e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> Constant e a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> Constant e a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> Constant e a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> Constant e a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> Constant e a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> Constant e a -> b #

FoldableWithIndex Int (V n) 
Instance details

Defined in Linear.V

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> V n a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> V n a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> V n a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> V n a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> V n a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> V n a -> b #

FoldableWithIndex i f => FoldableWithIndex i (Rec1 f) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Rec1 f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Rec1 f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Rec1 f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Rec1 f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Rec1 f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Rec1 f a -> b #

FoldableWithIndex i f => FoldableWithIndex i (Backwards f) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Backwards f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Backwards f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Backwards f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Backwards f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Backwards f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Backwards f a -> b #

FoldableWithIndex i m => FoldableWithIndex i (IdentityT m) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 #

ifoldMap' :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 #

ifoldr :: (i -> a -> b -> b) -> b -> IdentityT m a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> IdentityT m a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> IdentityT m a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> IdentityT m a -> b #

FoldableWithIndex i f => FoldableWithIndex i (Reverse f) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Reverse f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Reverse f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Reverse f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Reverse f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Reverse f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Reverse f a -> b #

FoldableWithIndex Void (K1 i c :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> K1 i c a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> K1 i c a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> K1 i c a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> K1 i c a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> K1 i c a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> K1 i c a -> b #

FoldableWithIndex i (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Magma i t b a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Magma i t b a -> m #

ifoldr :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 #

ifoldl :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 #

ifoldr' :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 #

ifoldl' :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 #

FoldableWithIndex (E Plucker) Plucker 
Instance details

Defined in Linear.Plucker

Methods

ifoldMap :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m #

ifoldMap' :: Monoid m => (E Plucker -> a -> m) -> Plucker a -> m #

ifoldr :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b #

ifoldl :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b #

ifoldr' :: (E Plucker -> a -> b -> b) -> b -> Plucker a -> b #

ifoldl' :: (E Plucker -> b -> a -> b) -> b -> Plucker a -> b #

FoldableWithIndex (E Quaternion) Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

ifoldMap :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m #

ifoldMap' :: Monoid m => (E Quaternion -> a -> m) -> Quaternion a -> m #

ifoldr :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b #

ifoldl :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b #

ifoldr' :: (E Quaternion -> a -> b -> b) -> b -> Quaternion a -> b #

ifoldl' :: (E Quaternion -> b -> a -> b) -> b -> Quaternion a -> b #

FoldableWithIndex (E V0) V0 
Instance details

Defined in Linear.V0

Methods

ifoldMap :: Monoid m => (E V0 -> a -> m) -> V0 a -> m #

ifoldMap' :: Monoid m => (E V0 -> a -> m) -> V0 a -> m #

ifoldr :: (E V0 -> a -> b -> b) -> b -> V0 a -> b #

ifoldl :: (E V0 -> b -> a -> b) -> b -> V0 a -> b #

ifoldr' :: (E V0 -> a -> b -> b) -> b -> V0 a -> b #

ifoldl' :: (E V0 -> b -> a -> b) -> b -> V0 a -> b #

FoldableWithIndex (E V1) V1 
Instance details

Defined in Linear.V1

Methods

ifoldMap :: Monoid m => (E V1 -> a -> m) -> V1 a -> m #

ifoldMap' :: Monoid m => (E V1 -> a -> m) -> V1 a -> m #

ifoldr :: (E V1 -> a -> b -> b) -> b -> V1 a -> b #

ifoldl :: (E V1 -> b -> a -> b) -> b -> V1 a -> b #

ifoldr' :: (E V1 -> a -> b -> b) -> b -> V1 a -> b #

ifoldl' :: (E V1 -> b -> a -> b) -> b -> V1 a -> b #

FoldableWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

ifoldMap :: Monoid m => (E V2 -> a -> m) -> V2 a -> m #

ifoldMap' :: Monoid m => (E V2 -> a -> m) -> V2 a -> m #

ifoldr :: (E V2 -> a -> b -> b) -> b -> V2 a -> b #

ifoldl :: (E V2 -> b -> a -> b) -> b -> V2 a -> b #

ifoldr' :: (E V2 -> a -> b -> b) -> b -> V2 a -> b #

ifoldl' :: (E V2 -> b -> a -> b) -> b -> V2 a -> b #

FoldableWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

ifoldMap :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifoldMap' :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifoldr :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

ifoldr' :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl' :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

FoldableWithIndex (E V4) V4 
Instance details

Defined in Linear.V4

Methods

ifoldMap :: Monoid m => (E V4 -> a -> m) -> V4 a -> m #

ifoldMap' :: Monoid m => (E V4 -> a -> m) -> V4 a -> m #

ifoldr :: (E V4 -> a -> b -> b) -> b -> V4 a -> b #

ifoldl :: (E V4 -> b -> a -> b) -> b -> V4 a -> b #

ifoldr' :: (E V4 -> a -> b -> b) -> b -> V4 a -> b #

ifoldl' :: (E V4 -> b -> a -> b) -> b -> V4 a -> b #

FoldableWithIndex [Int] Tree 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ([Int] -> a -> m) -> Tree a -> m #

ifoldMap' :: Monoid m => ([Int] -> a -> m) -> Tree a -> m #

ifoldr :: ([Int] -> a -> b -> b) -> b -> Tree a -> b #

ifoldl :: ([Int] -> b -> a -> b) -> b -> Tree a -> b #

ifoldr' :: ([Int] -> a -> b -> b) -> b -> Tree a -> b #

ifoldl' :: ([Int] -> b -> a -> b) -> b -> Tree a -> b #

FoldableWithIndex i f => FoldableWithIndex [i] (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

ifoldMap :: Monoid m => ([i] -> a -> m) -> Cofree f a -> m #

ifoldMap' :: Monoid m => ([i] -> a -> m) -> Cofree f a -> m #

ifoldr :: ([i] -> a -> b -> b) -> b -> Cofree f a -> b #

ifoldl :: ([i] -> b -> a -> b) -> b -> Cofree f a -> b #

ifoldr' :: ([i] -> a -> b -> b) -> b -> Cofree f a -> b #

ifoldl' :: ([i] -> b -> a -> b) -> b -> Cofree f a -> b #

FoldableWithIndex i f => FoldableWithIndex [i] (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

ifoldMap :: Monoid m => ([i] -> a -> m) -> Free f a -> m #

ifoldMap' :: Monoid m => ([i] -> a -> m) -> Free f a -> m #

ifoldr :: ([i] -> a -> b -> b) -> b -> Free f a -> b #

ifoldl :: ([i] -> b -> a -> b) -> b -> Free f a -> b #

ifoldr' :: ([i] -> a -> b -> b) -> b -> Free f a -> b #

ifoldl' :: ([i] -> b -> a -> b) -> b -> Free f a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Sum f g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :*: g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :+: g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (Compose f g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m #

ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m #

ifoldr :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b #

ifoldl :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b #

ifoldr' :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b #

ifoldl' :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (f :.: g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m #

ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m #

ifoldr :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b #

ifoldl :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b #

ifoldr' :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b #

ifoldl' :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b #

class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where #

Minimal complete definition

Nothing

Methods

imap :: (i -> a -> b) -> f a -> f b #

Instances

Instances details
FunctorWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Identity a -> Identity b #

FunctorWithIndex () Par1 
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Par1 a -> Par1 b #

FunctorWithIndex () Maybe 
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Maybe a -> Maybe b #

FunctorWithIndex Int ZipList 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> ZipList a -> ZipList b #

FunctorWithIndex Int NonEmpty 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> NonEmpty a -> NonEmpty b #

FunctorWithIndex Int IntMap 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> IntMap a -> IntMap b #

FunctorWithIndex Int Seq 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> Seq a -> Seq b #

FunctorWithIndex Int [] 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> [a] -> [b] #

FunctorWithIndex Void (Proxy :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> Proxy a -> Proxy b #

FunctorWithIndex Void (U1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> U1 a -> U1 b #

FunctorWithIndex Void (V1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> V1 a -> V1 b #

Ix i => FunctorWithIndex i (Array i) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Array i a -> Array i b #

FunctorWithIndex i (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

imap :: (i -> a -> b) -> Level i a -> Level i b #

FunctorWithIndex k (Map k) 
Instance details

Defined in WithIndex

Methods

imap :: (k -> a -> b) -> Map k a -> Map k b #

FunctorWithIndex k ((,) k) 
Instance details

Defined in WithIndex

Methods

imap :: (k -> a -> b) -> (k, a) -> (k, b) #

FunctorWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> Const e a -> Const e b #

FunctorWithIndex Void (Constant e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> Constant e a -> Constant e b #

FunctorWithIndex Int (V n) 
Instance details

Defined in Linear.V

Methods

imap :: (Int -> a -> b) -> V n a -> V n b #

FunctorWithIndex i f => FunctorWithIndex i (Rec1 f) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Rec1 f a -> Rec1 f b #

FunctorWithIndex i f => FunctorWithIndex i (Backwards f) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Backwards f a -> Backwards f b #

FunctorWithIndex i m => FunctorWithIndex i (IdentityT m) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> IdentityT m a -> IdentityT m b #

FunctorWithIndex i f => FunctorWithIndex i (Reverse f) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Reverse f a -> Reverse f b #

FunctorWithIndex Void (K1 i c :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> K1 i c a -> K1 i c b #

FunctorWithIndex i (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

imap :: (i -> a -> b0) -> Magma i t b a -> Magma i t b b0 #

FunctorWithIndex r ((->) r) 
Instance details

Defined in WithIndex

Methods

imap :: (r -> a -> b) -> (r -> a) -> r -> b #

FunctorWithIndex (E Plucker) Plucker 
Instance details

Defined in Linear.Plucker

Methods

imap :: (E Plucker -> a -> b) -> Plucker a -> Plucker b #

FunctorWithIndex (E Quaternion) Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

imap :: (E Quaternion -> a -> b) -> Quaternion a -> Quaternion b #

FunctorWithIndex (E V0) V0 
Instance details

Defined in Linear.V0

Methods

imap :: (E V0 -> a -> b) -> V0 a -> V0 b #

FunctorWithIndex (E V1) V1 
Instance details

Defined in Linear.V1

Methods

imap :: (E V1 -> a -> b) -> V1 a -> V1 b #

FunctorWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

imap :: (E V2 -> a -> b) -> V2 a -> V2 b #

FunctorWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

imap :: (E V3 -> a -> b) -> V3 a -> V3 b #

FunctorWithIndex (E V4) V4 
Instance details

Defined in Linear.V4

Methods

imap :: (E V4 -> a -> b) -> V4 a -> V4 b #

FunctorWithIndex [Int] Tree 
Instance details

Defined in WithIndex

Methods

imap :: ([Int] -> a -> b) -> Tree a -> Tree b #

FunctorWithIndex i f => FunctorWithIndex [i] (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

imap :: ([i] -> a -> b) -> Cofree f a -> Cofree f b #

FunctorWithIndex i f => FunctorWithIndex [i] (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

imap :: ([i] -> a -> b) -> Free f a -> Free f b #

FunctorWithIndex i m => FunctorWithIndex (e, i) (ReaderT e m) 
Instance details

Defined in WithIndex

Methods

imap :: ((e, i) -> a -> b) -> ReaderT e m a -> ReaderT e m b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Product f g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> Product f g a -> Product f g b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Sum f g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> Sum f g a -> Sum f g b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :*: g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> (f :*: g) a -> (f :*: g) b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :+: g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> (f :+: g) a -> (f :+: g) b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (Compose f g) 
Instance details

Defined in WithIndex

Methods

imap :: ((i, j) -> a -> b) -> Compose f g a -> Compose f g b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (f :.: g) 
Instance details

Defined in WithIndex

Methods

imap :: ((i, j) -> a -> b) -> (f :.: g) a -> (f :.: g) b #

class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where #

Minimal complete definition

Nothing

Methods

itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) #

Instances

Instances details
TraversableWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Identity a -> f (Identity b) #

TraversableWithIndex () Par1 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Par1 a -> f (Par1 b) #

TraversableWithIndex () Maybe 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Maybe a -> f (Maybe b) #

TraversableWithIndex Int ZipList 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> ZipList a -> f (ZipList b) #

TraversableWithIndex Int NonEmpty 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> NonEmpty a -> f (NonEmpty b) #

TraversableWithIndex Int IntMap 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> IntMap a -> f (IntMap b) #

TraversableWithIndex Int Seq 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> Seq a -> f (Seq b) #

TraversableWithIndex Int [] 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> [a] -> f [b] #

TraversableWithIndex Void (Proxy :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> Proxy a -> f (Proxy b) #

TraversableWithIndex Void (U1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> U1 a -> f (U1 b) #

TraversableWithIndex Void (V1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> V1 a -> f (V1 b) #

Ix i => TraversableWithIndex i (Array i) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (i -> a -> f b) -> Array i a -> f (Array i b) #

TraversableWithIndex i (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

itraverse :: Applicative f => (i -> a -> f b) -> Level i a -> f (Level i b) #

TraversableWithIndex k (Map k) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (k -> a -> f b) -> Map k a -> f (Map k b) #

TraversableWithIndex k ((,) k) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (k -> a -> f b) -> (k, a) -> f (k, b) #

TraversableWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> Const e a -> f (Const e b) #

TraversableWithIndex Void (Constant e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> Constant e a -> f (Constant e b) #

TraversableWithIndex Int (V n) 
Instance details

Defined in Linear.V

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> V n a -> f (V n b) #

TraversableWithIndex i f => TraversableWithIndex i (Rec1 f) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

TraversableWithIndex i f => TraversableWithIndex i (Backwards f) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Backwards f a -> f0 (Backwards f b) #

TraversableWithIndex i m => TraversableWithIndex i (IdentityT m) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (i -> a -> f b) -> IdentityT m a -> f (IdentityT m b) #

TraversableWithIndex i f => TraversableWithIndex i (Reverse f) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Reverse f a -> f0 (Reverse f b) #

TraversableWithIndex Void (K1 i c :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> K1 i c a -> f (K1 i c b) #

TraversableWithIndex i (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

itraverse :: Applicative f => (i -> a -> f b0) -> Magma i t b a -> f (Magma i t b b0) #

TraversableWithIndex (E Plucker) Plucker 
Instance details

Defined in Linear.Plucker

Methods

itraverse :: Applicative f => (E Plucker -> a -> f b) -> Plucker a -> f (Plucker b) #

TraversableWithIndex (E Quaternion) Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

itraverse :: Applicative f => (E Quaternion -> a -> f b) -> Quaternion a -> f (Quaternion b) #

TraversableWithIndex (E V0) V0 
Instance details

Defined in Linear.V0

Methods

itraverse :: Applicative f => (E V0 -> a -> f b) -> V0 a -> f (V0 b) #

TraversableWithIndex (E V1) V1 
Instance details

Defined in Linear.V1

Methods

itraverse :: Applicative f => (E V1 -> a -> f b) -> V1 a -> f (V1 b) #

TraversableWithIndex (E V2) V2 
Instance details

Defined in Linear.V2

Methods

itraverse :: Applicative f => (E V2 -> a -> f b) -> V2 a -> f (V2 b) #

TraversableWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

itraverse :: Applicative f => (E V3 -> a -> f b) -> V3 a -> f (V3 b) #

TraversableWithIndex (E V4) V4 
Instance details

Defined in Linear.V4

Methods

itraverse :: Applicative f => (E V4 -> a -> f b) -> V4 a -> f (V4 b) #

TraversableWithIndex [Int] Tree 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ([Int] -> a -> f b) -> Tree a -> f (Tree b) #

TraversableWithIndex i f => TraversableWithIndex [i] (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

itraverse :: Applicative f0 => ([i] -> a -> f0 b) -> Cofree f a -> f0 (Cofree f b) #

TraversableWithIndex i f => TraversableWithIndex [i] (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

itraverse :: Applicative f0 => ([i] -> a -> f0 b) -> Free f a -> f0 (Free f b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Product f g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Product f g a -> f0 (Product f g b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Sum f g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :*: g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :+: g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (Compose f g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ((i, j) -> a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (f :.: g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ((i, j) -> a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

class Ixed m => At m #

Minimal complete definition

at

Instances

Instances details
At IntSet 
Instance details

Defined in Control.Lens.At

At (IntMap a) 
Instance details

Defined in Control.Lens.At

Methods

at :: Index (IntMap a) -> Lens' (IntMap a) (Maybe (IxValue (IntMap a)))

Ord k => At (Set k) 
Instance details

Defined in Control.Lens.At

Methods

at :: Index (Set k) -> Lens' (Set k) (Maybe (IxValue (Set k)))

(Eq k, Hashable k) => At (HashSet k) 
Instance details

Defined in Control.Lens.At

Methods

at :: Index (HashSet k) -> Lens' (HashSet k) (Maybe (IxValue (HashSet k)))

At (Maybe a) 
Instance details

Defined in Control.Lens.At

Methods

at :: Index (Maybe a) -> Lens' (Maybe a) (Maybe (IxValue (Maybe a)))

Ord k => At (Map k a) 
Instance details

Defined in Control.Lens.At

Methods

at :: Index (Map k a) -> Lens' (Map k a) (Maybe (IxValue (Map k a)))

At (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

at :: Index (Style v n) -> Lens' (Style v n) (Maybe (IxValue (Style v n)))

(Eq k, Hashable k) => At (HashMap k a) 
Instance details

Defined in Control.Lens.At

Methods

at :: Index (HashMap k a) -> Lens' (HashMap k a) (Maybe (IxValue (HashMap k a)))

class Contains m #

Minimal complete definition

contains

Instances

Instances details
Contains IntSet 
Instance details

Defined in Control.Lens.At

Ord a => Contains (Set a) 
Instance details

Defined in Control.Lens.At

Methods

contains :: Index (Set a) -> Lens' (Set a) Bool

(Eq a, Hashable a) => Contains (HashSet a) 
Instance details

Defined in Control.Lens.At

Methods

contains :: Index (HashSet a) -> Lens' (HashSet a) Bool

type family Index s #

Instances

Instances details
type Index ByteString 
Instance details

Defined in Control.Lens.At

type Index ByteString 
Instance details

Defined in Control.Lens.At

type Index IntSet 
Instance details

Defined in Control.Lens.At

type Index Text 
Instance details

Defined in Control.Lens.At

type Index Text = Int
type Index Text 
Instance details

Defined in Control.Lens.At

type Index (Complex a) 
Instance details

Defined in Control.Lens.At

type Index (Complex a) = Int
type Index (Identity a) 
Instance details

Defined in Control.Lens.At

type Index (Identity a) = ()
type Index (NonEmpty a) 
Instance details

Defined in Control.Lens.At

type Index (NonEmpty a) = Int
type Index (IntMap a) 
Instance details

Defined in Control.Lens.At

type Index (IntMap a) = Int
type Index (Seq a) 
Instance details

Defined in Control.Lens.At

type Index (Seq a) = Int
type Index (Set a) 
Instance details

Defined in Control.Lens.At

type Index (Set a) = a
type Index (Tree a) 
Instance details

Defined in Control.Lens.At

type Index (Tree a) = [Int]
type Index (Plucker a) 
Instance details

Defined in Linear.Plucker

type Index (Plucker a) = E Plucker
type Index (Quaternion a) 
Instance details

Defined in Linear.Quaternion

type Index (Quaternion a) = E Quaternion
type Index (V0 a) 
Instance details

Defined in Linear.V0

type Index (V0 a) = E V0
type Index (V1 a) 
Instance details

Defined in Linear.V1

type Index (V1 a) = E V1
type Index (V2 a) 
Instance details

Defined in Linear.V2

type Index (V2 a) = E V2
type Index (V3 a) 
Instance details

Defined in Linear.V3

type Index (V3 a) = E V3
type Index (V4 a) 
Instance details

Defined in Linear.V4

type Index (V4 a) = E V4
type Index (HashSet a) 
Instance details

Defined in Control.Lens.At

type Index (HashSet a) = a
type Index (Vector a) 
Instance details

Defined in Control.Lens.At

type Index (Vector a) = Int
type Index (Vector a) 
Instance details

Defined in Control.Lens.At

type Index (Vector a) = Int
type Index (Vector a) 
Instance details

Defined in Control.Lens.At

type Index (Vector a) = Int
type Index (Vector a) 
Instance details

Defined in Control.Lens.At

type Index (Vector a) = Int
type Index (Vector a) 
Instance details

Defined in Control.Lens.At

type Index (Vector a) = Int
type Index (Maybe a) 
Instance details

Defined in Control.Lens.At

type Index (Maybe a) = ()
type Index [a] 
Instance details

Defined in Control.Lens.At

type Index [a] = Int
type Index (UArray i e) 
Instance details

Defined in Control.Lens.At

type Index (UArray i e) = i
type Index (Array i e) 
Instance details

Defined in Control.Lens.At

type Index (Array i e) = i
type Index (Map k a) 
Instance details

Defined in Control.Lens.At

type Index (Map k a) = k
type Index (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type Index (Style v n) = TypeRep
type Index (Point f a) 
Instance details

Defined in Linear.Affine

type Index (Point f a) = Index (f a)
type Index (HashMap k a) 
Instance details

Defined in Control.Lens.At

type Index (HashMap k a) = k
type Index (a, b) 
Instance details

Defined in Control.Lens.At

type Index (a, b) = Int
type Index (e -> a) 
Instance details

Defined in Control.Lens.At

type Index (e -> a) = e
type Index (V n a) 
Instance details

Defined in Linear.V

type Index (V n a) = Int
type Index (a, b, c) 
Instance details

Defined in Control.Lens.At

type Index (a, b, c) = Int
type Index (a, b, c, d) 
Instance details

Defined in Control.Lens.At

type Index (a, b, c, d) = Int
type Index (a, b, c, d, e) 
Instance details

Defined in Control.Lens.At

type Index (a, b, c, d, e) = Int
type Index (a, b, c, d, e, f) 
Instance details

Defined in Control.Lens.At

type Index (a, b, c, d, e, f) = Int
type Index (a, b, c, d, e, f, g) 
Instance details

Defined in Control.Lens.At

type Index (a, b, c, d, e, f, g) = Int
type Index (a, b, c, d, e, f, g, h) 
Instance details

Defined in Control.Lens.At

type Index (a, b, c, d, e, f, g, h) = Int
type Index (a, b, c, d, e, f, g, h, i) 
Instance details

Defined in Control.Lens.At

type Index (a, b, c, d, e, f, g, h, i) = Int

type family IxValue m #

Instances

Instances details
type IxValue ByteString 
Instance details

Defined in Control.Lens.At

type IxValue ByteString 
Instance details

Defined in Control.Lens.At

type IxValue IntSet 
Instance details

Defined in Control.Lens.At

type IxValue IntSet = ()
type IxValue Text 
Instance details

Defined in Control.Lens.At

type IxValue Text 
Instance details

Defined in Control.Lens.At

type IxValue (Identity a) 
Instance details

Defined in Control.Lens.At

type IxValue (Identity a) = a
type IxValue (NonEmpty a) 
Instance details

Defined in Control.Lens.At

type IxValue (NonEmpty a) = a
type IxValue (IntMap a) 
Instance details

Defined in Control.Lens.At

type IxValue (IntMap a) = a
type IxValue (Seq a) 
Instance details

Defined in Control.Lens.At

type IxValue (Seq a) = a
type IxValue (Set k) 
Instance details

Defined in Control.Lens.At

type IxValue (Set k) = ()
type IxValue (Tree a) 
Instance details

Defined in Control.Lens.At

type IxValue (Tree a) = a
type IxValue (Plucker a) 
Instance details

Defined in Linear.Plucker

type IxValue (Plucker a) = a
type IxValue (Quaternion a) 
Instance details

Defined in Linear.Quaternion

type IxValue (Quaternion a) = a
type IxValue (V0 a) 
Instance details

Defined in Linear.V0

type IxValue (V0 a) = a
type IxValue (V1 a) 
Instance details

Defined in Linear.V1

type IxValue (V1 a) = a
type IxValue (V2 a) 
Instance details

Defined in Linear.V2

type IxValue (V2 a) = a
type IxValue (V3 a) 
Instance details

Defined in Linear.V3

type IxValue (V3 a) = a
type IxValue (V4 a) 
Instance details

Defined in Linear.V4

type IxValue (V4 a) = a
type IxValue (HashSet k) 
Instance details

Defined in Control.Lens.At

type IxValue (HashSet k) = ()
type IxValue (Vector a) 
Instance details

Defined in Control.Lens.At

type IxValue (Vector a) = a
type IxValue (Vector a) 
Instance details

Defined in Control.Lens.At

type IxValue (Vector a) = a
type IxValue (Vector a) 
Instance details

Defined in Control.Lens.At

type IxValue (Vector a) = a
type IxValue (Vector a) 
Instance details

Defined in Control.Lens.At

type IxValue (Vector a) = a
type IxValue (Vector a) 
Instance details

Defined in Control.Lens.At

type IxValue (Vector a) = a
type IxValue (Maybe a) 
Instance details

Defined in Control.Lens.At

type IxValue (Maybe a) = a
type IxValue [a] 
Instance details

Defined in Control.Lens.At

type IxValue [a] = a
type IxValue (UArray i e) 
Instance details

Defined in Control.Lens.At

type IxValue (UArray i e) = e
type IxValue (Array i e) 
Instance details

Defined in Control.Lens.At

type IxValue (Array i e) = e
type IxValue (Map k a) 
Instance details

Defined in Control.Lens.At

type IxValue (Map k a) = a
type IxValue (Style v n) 
Instance details

Defined in Diagrams.Core.Style

type IxValue (Style v n) = Attribute v n
type IxValue (Point f a) 
Instance details

Defined in Linear.Affine

type IxValue (Point f a) = IxValue (f a)
type IxValue (HashMap k a) 
Instance details

Defined in Control.Lens.At

type IxValue (HashMap k a) = a
type IxValue (a, a2) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2) = a
type IxValue (e -> a) 
Instance details

Defined in Control.Lens.At

type IxValue (e -> a) = a
type IxValue (V n a) 
Instance details

Defined in Linear.V

type IxValue (V n a) = a
type IxValue (a, a2, a3) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2, a3) = a
type IxValue (a, a2, a3, a4) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2, a3, a4) = a
type IxValue (a, a2, a3, a4, a5) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2, a3, a4, a5) = a
type IxValue (a, a2, a3, a4, a5, a6) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2, a3, a4, a5, a6) = a
type IxValue (a, a2, a3, a4, a5, a6, a7) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2, a3, a4, a5, a6, a7) = a
type IxValue (a, a2, a3, a4, a5, a6, a7, a8) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2, a3, a4, a5, a6, a7, a8) = a
type IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9) 
Instance details

Defined in Control.Lens.At

type IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9) = a

class Ixed m where #

Minimal complete definition

Nothing

Methods

ix :: Index m -> Traversal' m (IxValue m) #

Instances

Instances details
Ixed ByteString 
Instance details

Defined in Control.Lens.At

Ixed ByteString 
Instance details

Defined in Control.Lens.At

Ixed IntSet 
Instance details

Defined in Control.Lens.At

Ixed Text 
Instance details

Defined in Control.Lens.At

Ixed Text 
Instance details

Defined in Control.Lens.At

Ixed (Identity a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Identity a) -> Traversal' (Identity a) (IxValue (Identity a)) #

Ixed (NonEmpty a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (NonEmpty a) -> Traversal' (NonEmpty a) (IxValue (NonEmpty a)) #

Ixed (IntMap a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (IntMap a) -> Traversal' (IntMap a) (IxValue (IntMap a)) #

Ixed (Seq a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Seq a) -> Traversal' (Seq a) (IxValue (Seq a)) #

Ord k => Ixed (Set k) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Set k) -> Traversal' (Set k) (IxValue (Set k)) #

Ixed (Tree a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Tree a) -> Traversal' (Tree a) (IxValue (Tree a)) #

Ixed (Plucker a) 
Instance details

Defined in Linear.Plucker

Methods

ix :: Index (Plucker a) -> Traversal' (Plucker a) (IxValue (Plucker a)) #

Ixed (Quaternion a) 
Instance details

Defined in Linear.Quaternion

Methods

ix :: Index (Quaternion a) -> Traversal' (Quaternion a) (IxValue (Quaternion a)) #

Ixed (V0 a) 
Instance details

Defined in Linear.V0

Methods

ix :: Index (V0 a) -> Traversal' (V0 a) (IxValue (V0 a)) #

Ixed (V1 a) 
Instance details

Defined in Linear.V1

Methods

ix :: Index (V1 a) -> Traversal' (V1 a) (IxValue (V1 a)) #

Ixed (V2 a) 
Instance details

Defined in Linear.V2

Methods

ix :: Index (V2 a) -> Traversal' (V2 a) (IxValue (V2 a)) #

Ixed (V3 a) 
Instance details

Defined in Linear.V3

Methods

ix :: Index (V3 a) -> Traversal' (V3 a) (IxValue (V3 a)) #

Ixed (V4 a) 
Instance details

Defined in Linear.V4

Methods

ix :: Index (V4 a) -> Traversal' (V4 a) (IxValue (V4 a)) #

(Eq k, Hashable k) => Ixed (HashSet k) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (HashSet k) -> Traversal' (HashSet k) (IxValue (HashSet k)) #

Ixed (Vector a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) #

Prim a => Ixed (Vector a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) #

Storable a => Ixed (Vector a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) #

Ixed (Vector a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) #

Unbox a => Ixed (Vector a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) #

Ixed (Maybe a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Maybe a) -> Traversal' (Maybe a) (IxValue (Maybe a)) #

Ixed [a] 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index [a] -> Traversal' [a] (IxValue [a]) #

(IArray UArray e, Ix i) => Ixed (UArray i e) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (UArray i e) -> Traversal' (UArray i e) (IxValue (UArray i e)) #

Ix i => Ixed (Array i e) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Array i e) -> Traversal' (Array i e) (IxValue (Array i e)) #

Ord k => Ixed (Map k a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Map k a) -> Traversal' (Map k a) (IxValue (Map k a)) #

Ixed (Style v n) 
Instance details

Defined in Diagrams.Core.Style

Methods

ix :: Index (Style v n) -> Traversal' (Style v n) (IxValue (Style v n)) #

Ixed (f a) => Ixed (Point f a) 
Instance details

Defined in Linear.Affine

Methods

ix :: Index (Point f a) -> Traversal' (Point f a) (IxValue (Point f a)) #

(Eq k, Hashable k) => Ixed (HashMap k a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (HashMap k a) -> Traversal' (HashMap k a) (IxValue (HashMap k a)) #

a ~ a2 => Ixed (a, a2) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2) -> Traversal' (a, a2) (IxValue (a, a2)) #

Eq e => Ixed (e -> a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (e -> a) -> Traversal' (e -> a) (IxValue (e -> a)) #

Ixed (V n a) 
Instance details

Defined in Linear.V

Methods

ix :: Index (V n a) -> Traversal' (V n a) (IxValue (V n a)) #

(a ~ a2, a ~ a3) => Ixed (a, a2, a3) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2, a3) -> Traversal' (a, a2, a3) (IxValue (a, a2, a3)) #

(a ~ a2, a ~ a3, a ~ a4) => Ixed (a, a2, a3, a4) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2, a3, a4) -> Traversal' (a, a2, a3, a4) (IxValue (a, a2, a3, a4)) #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5) => Ixed (a, a2, a3, a4, a5) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2, a3, a4, a5) -> Traversal' (a, a2, a3, a4, a5) (IxValue (a, a2, a3, a4, a5)) #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6) => Ixed (a, a2, a3, a4, a5, a6) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2, a3, a4, a5, a6) -> Traversal' (a, a2, a3, a4, a5, a6) (IxValue (a, a2, a3, a4, a5, a6)) #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7) => Ixed (a, a2, a3, a4, a5, a6, a7) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2, a3, a4, a5, a6, a7) -> Traversal' (a, a2, a3, a4, a5, a6, a7) (IxValue (a, a2, a3, a4, a5, a6, a7)) #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8) => Ixed (a, a2, a3, a4, a5, a6, a7, a8) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2, a3, a4, a5, a6, a7, a8) -> Traversal' (a, a2, a3, a4, a5, a6, a7, a8) (IxValue (a, a2, a3, a4, a5, a6, a7, a8)) #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, a ~ a9) => Ixed (a, a2, a3, a4, a5, a6, a7, a8, a9) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (a, a2, a3, a4, a5, a6, a7, a8, a9) -> Traversal' (a, a2, a3, a4, a5, a6, a7, a8, a9) (IxValue (a, a2, a3, a4, a5, a6, a7, a8, a9)) #

class Cons s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Methods

_Cons :: Prism s t (a, s) (b, t) #

Instances

Instances details
Cons ByteString ByteString Word8 Word8 
Instance details

Defined in Control.Lens.Cons

Cons ByteString ByteString Word8 Word8 
Instance details

Defined in Control.Lens.Cons

Cons Text Text Char Char 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism Text Text (Char, Text) (Char, Text) #

Cons Text Text Char Char 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism Text Text (Char, Text) (Char, Text) #

Cons (ZipList a) (ZipList b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (ZipList a) (ZipList b) (a, ZipList a) (b, ZipList b) #

Cons (Seq a) (Seq b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (Seq a) (Seq b) (a, Seq a) (b, Seq b) #

Cons (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (Vector a) (Vector b) (a, Vector a) (b, Vector b) #

(Prim a, Prim b) => Cons (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (Vector a) (Vector b) (a, Vector a) (b, Vector b) #

(Storable a, Storable b) => Cons (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (Vector a) (Vector b) (a, Vector a) (b, Vector b) #

Cons (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (Vector a) (Vector b) (a, Vector a) (b, Vector b) #

(Unbox a, Unbox b) => Cons (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (Vector a) (Vector b) (a, Vector a) (b, Vector b) #

Cons [a] [b] a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism [a] [b] (a, [a]) (b, [b]) #

Cons (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Cons :: Prism (Path v n) (Path v' n') (Located (Trail v n), Path v n) (Located (Trail v' n'), Path v' n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (SegTree v n) (SegTree u n') (Segment Closed v n, SegTree v n) (Segment Closed u n', SegTree u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Cons (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Cons :: Prism (Trail' Line v n) (Trail' Line u n') (Segment Closed v n, Trail' Line v n) (Segment Closed u n', Trail' Line u n') #

class Snoc s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Methods

_Snoc :: Prism s t (s, a) (t, b) #

Instances

Instances details
Snoc ByteString ByteString Word8 Word8 
Instance details

Defined in Control.Lens.Cons

Snoc ByteString ByteString Word8 Word8 
Instance details

Defined in Control.Lens.Cons

Snoc Text Text Char Char 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism Text Text (Text, Char) (Text, Char) #

Snoc Text Text Char Char 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism Text Text (Text, Char) (Text, Char) #

Snoc (ZipList a) (ZipList b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism (ZipList a) (ZipList b) (ZipList a, a) (ZipList b, b) #

Snoc (Seq a) (Seq b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism (Seq a) (Seq b) (Seq a, a) (Seq b, b) #

Snoc (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism (Vector a) (Vector b) (Vector a, a) (Vector b, b) #

(Prim a, Prim b) => Snoc (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism (Vector a) (Vector b) (Vector a, a) (Vector b, b) #

(Storable a, Storable b) => Snoc (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism (Vector a) (Vector b) (Vector a, a) (Vector b, b) #

(Unbox a, Unbox b) => Snoc (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism (Vector a) (Vector b) (Vector a, a) (Vector b, b) #

Snoc [a] [b] a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism [a] [b] ([a], a) ([b], b) #

Snoc (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

_Snoc :: Prism (Path v n) (Path v' n') (Path v n, Located (Trail v n)) (Path v' n', Located (Trail v' n')) #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (SegTree v n) (SegTree u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (SegTree v n) (SegTree u n') (SegTree v n, Segment Closed v n) (SegTree u n', Segment Closed u n') #

(Metric v, OrderedField n, Metric u, OrderedField n') => Snoc (Trail' Line v n) (Trail' Line u n') (Segment Closed v n) (Segment Closed u n') 
Instance details

Defined in Diagrams.Trail

Methods

_Snoc :: Prism (Trail' Line v n) (Trail' Line u n') (Trail' Line v n, Segment Closed v n) (Trail' Line u n', Segment Closed u n') #

class Each s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

each :: Traversal s t a b #

Instances

Instances details
(a ~ Word8, b ~ Word8) => Each ByteString ByteString a b 
Instance details

Defined in Control.Lens.Each

(a ~ Word8, b ~ Word8) => Each ByteString ByteString a b 
Instance details

Defined in Control.Lens.Each

Each Name Name AName AName 
Instance details

Defined in Diagrams.Core.Names

(a ~ Char, b ~ Char) => Each Text Text a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal Text Text a b #

(a ~ Char, b ~ Char) => Each Text Text a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal Text Text a b #

Each (Complex a) (Complex b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Complex a) (Complex b) a b #

Each (Identity a) (Identity b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Identity a) (Identity b) a b #

Each (NonEmpty a) (NonEmpty b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (NonEmpty a) (NonEmpty b) a b #

Each (IntMap a) (IntMap b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (IntMap a) (IntMap b) a b #

Each (Seq a) (Seq b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Seq a) (Seq b) a b #

Each (Tree a) (Tree b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Tree a) (Tree b) a b #

Each (Plucker a) (Plucker b) a b 
Instance details

Defined in Linear.Plucker

Methods

each :: Traversal (Plucker a) (Plucker b) a b #

Each (Quaternion a) (Quaternion b) a b 
Instance details

Defined in Linear.Quaternion

Methods

each :: Traversal (Quaternion a) (Quaternion b) a b #

Each (V0 a) (V0 b) a b 
Instance details

Defined in Linear.V0

Methods

each :: Traversal (V0 a) (V0 b) a b #

Each (V1 a) (V1 b) a b 
Instance details

Defined in Linear.V1

Methods

each :: Traversal (V1 a) (V1 b) a b #

Each (V2 a) (V2 b) a b 
Instance details

Defined in Linear.V2

Methods

each :: Traversal (V2 a) (V2 b) a b #

Each (V3 a) (V3 b) a b 
Instance details

Defined in Linear.V3

Methods

each :: Traversal (V3 a) (V3 b) a b #

Each (V4 a) (V4 b) a b 
Instance details

Defined in Linear.V4

Methods

each :: Traversal (V4 a) (V4 b) a b #

Each (Maybe a) (Maybe b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Maybe a) (Maybe b) a b #

Each (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Vector a) (Vector b) a b #

(Prim a, Prim b) => Each (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Vector a) (Vector b) a b #

(Storable a, Storable b) => Each (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Vector a) (Vector b) a b #

Each (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Vector a) (Vector b) a b #

(Unbox a, Unbox b) => Each (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Vector a) (Vector b) a b #

Each (Maybe a) (Maybe b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Maybe a) (Maybe b) a b #

Each [a] [b] a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal [a] [b] a b #

(Ix i, IArray UArray a, IArray UArray b, i ~ j) => Each (UArray i a) (UArray j b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (UArray i a) (UArray j b) a b #

(a ~ a', b ~ b') => Each (Either a a') (Either b b') a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Either a a') (Either b b') a b #

(Ix i, i ~ j) => Each (Array i a) (Array j b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Array i a) (Array j b) a b #

c ~ d => Each (Map c a) (Map d b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Map c a) (Map d b) a b #

Traversable f => Each (Point f a) (Point f b) a b 
Instance details

Defined in Linear.Affine

Methods

each :: Traversal (Point f a) (Point f b) a b #

(a ~ a', b ~ b') => Each (Either a a') (Either b b') a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Either a a') (Either b b') a b #

(a ~ a', b ~ b') => Each (These a a') (These b b') a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (These a a') (These b b') a b #

(a ~ a', b ~ b') => Each (Pair a a') (Pair b b') a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Pair a a') (Pair b b') a b #

(a ~ a', b ~ b') => Each (These a a') (These b b') a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (These a a') (These b b') a b #

c ~ d => Each (HashMap c a) (HashMap d b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (HashMap c a) (HashMap d b) a b #

(a ~ a', b ~ b') => Each (a, a') (b, b') a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a') (b, b') a b #

Each (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) 
Instance details

Defined in Diagrams.Path

Methods

each :: Traversal (Path v n) (Path v' n') (Located (Trail v n)) (Located (Trail v' n')) #

Each (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') 
Instance details

Defined in Diagrams.Core.Style

Methods

each :: Traversal (Style v n) (Style v' n') (Attribute v n) (Attribute v' n') #

(Additive v', Foldable v', Ord n') => Each (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') 
Instance details

Defined in Diagrams.BoundingBox

Methods

each :: Traversal (BoundingBox v n) (BoundingBox v' n') (Point v n) (Point v' n') #

Each (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') 
Instance details

Defined in Diagrams.Segment

Methods

each :: Traversal (FixedSegment v n) (FixedSegment v' n') (Point v n) (Point v' n') #

Each (V n a) (V n b) a b 
Instance details

Defined in Linear.V

Methods

each :: Traversal (V n a) (V n b) a b #

(a ~ a2, a ~ a3, b ~ b2, b ~ b3) => Each (a, a2, a3) (b, b2, b3) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a2, a3) (b, b2, b3) a b #

Each (Offset c v n) (Offset c v' n') (v n) (v' n') 
Instance details

Defined in Diagrams.Segment

Methods

each :: Traversal (Offset c v n) (Offset c v' n') (v n) (v' n') #

Each (Segment c v n) (Segment c v' n') (v n) (v' n') 
Instance details

Defined in Diagrams.Segment

Methods

each :: Traversal (Segment c v n) (Segment c v' n') (v n) (v' n') #

(a ~ a2, a ~ a3, a ~ a4, b ~ b2, b ~ b3, b ~ b4) => Each (a, a2, a3, a4) (b, b2, b3, b4) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a2, a3, a4) (b, b2, b3, b4) a b #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, b ~ b2, b ~ b3, b ~ b4, b ~ b5) => Each (a, a2, a3, a4, a5) (b, b2, b3, b4, b5) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a2, a3, a4, a5) (b, b2, b3, b4, b5) a b #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6) => Each (a, a2, a3, a4, a5, a6) (b, b2, b3, b4, b5, b6) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a2, a3, a4, a5, a6) (b, b2, b3, b4, b5, b6) a b #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7) => Each (a, a2, a3, a4, a5, a6, a7) (b, b2, b3, b4, b5, b6, b7) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a2, a3, a4, a5, a6, a7) (b, b2, b3, b4, b5, b6, b7) a b #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7, b ~ b8) => Each (a, a2, a3, a4, a5, a6, a7, a8) (b, b2, b3, b4, b5, b6, b7, b8) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a2, a3, a4, a5, a6, a7, a8) (b, b2, b3, b4, b5, b6, b7, b8) a b #

(a ~ a2, a ~ a3, a ~ a4, a ~ a5, a ~ a6, a ~ a7, a ~ a8, a ~ a9, b ~ b2, b ~ b3, b ~ b4, b ~ b5, b ~ b6, b ~ b7, b ~ b8, b ~ b9) => Each (a, a2, a3, a4, a5, a6, a7, a8, a9) (b, b2, b3, b4, b5, b6, b7, b8, b9) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (a, a2, a3, a4, a5, a6, a7, a8, a9) (b, b2, b3, b4, b5, b6, b7, b8, b9) a b #

class AsEmpty a where #

Minimal complete definition

Nothing

Methods

_Empty :: Prism' a () #

Instances

Instances details
AsEmpty All 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' All () #

AsEmpty Any 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' Any () #

AsEmpty Event 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' Event () #

AsEmpty ByteString 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' ByteString () #

AsEmpty ByteString 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' ByteString () #

AsEmpty IntSet 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' IntSet () #

AsEmpty Ordering 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' Ordering () #

AsEmpty Text 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' Text () #

AsEmpty Text 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' Text () #

AsEmpty () 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' () () #

AsEmpty (ZipList a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (ZipList a) () #

AsEmpty (First a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (First a) () #

AsEmpty (Last a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Last a) () #

AsEmpty a => AsEmpty (Dual a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Dual a) () #

(Eq a, Num a) => AsEmpty (Product a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Product a) () #

(Eq a, Num a) => AsEmpty (Sum a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Sum a) () #

AsEmpty (IntMap a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (IntMap a) () #

AsEmpty (Seq a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Seq a) () #

AsEmpty (Set a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Set a) () #

AsEmpty (Clip n) 
Instance details

Defined in Diagrams.TwoD.Path

Methods

_Empty :: Prism' (Clip n) () #

AsEmpty (HashSet a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (HashSet a) () #

AsEmpty (Vector a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Vector a) () #

Prim a => AsEmpty (Vector a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Vector a) () #

Storable a => AsEmpty (Vector a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Vector a) () #

AsEmpty (Vector a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Vector a) () #

Unbox a => AsEmpty (Vector a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Vector a) () #

AsEmpty (Maybe a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Maybe a) () #

AsEmpty [a] 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' [a] () #

AsEmpty (Map k a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Map k a) () #

AsEmpty (BoundingBox v n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

_Empty :: Prism' (BoundingBox v n) () #

AsEmpty (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

_Empty :: Prism' (Path v n) () #

(Metric v, OrderedField n) => AsEmpty (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

_Empty :: Prism' (Trail v n) () #

AsEmpty (HashMap k a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (HashMap k a) () #

(AsEmpty a, AsEmpty b) => AsEmpty (a, b) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (a, b) () #

(Metric v, OrderedField n) => AsEmpty (Trail' Line v n) 
Instance details

Defined in Diagrams.Trail

Methods

_Empty :: Prism' (Trail' Line v n) () #

(AsEmpty a, AsEmpty b, AsEmpty c) => AsEmpty (a, b, c) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (a, b, c) () #

type AnEquality (s :: k) (t :: k1) (a :: k) (b :: k2) = Identical a (Proxy b) a (Proxy b) -> Identical a (Proxy b) s (Proxy t) #

type AnEquality' (s :: k) (a :: k) = AnEquality s s a a #

data Identical (a :: k) (b :: k1) (s :: k) (t :: k1) where #

Constructors

Identical :: forall {k} {k1} (a :: k) (b :: k1). Identical a b a b 

type Accessing (p :: Type -> Type -> Type) m s a = p a (Const m a) -> s -> Const m s #

type Getting r s a = (a -> Const r a) -> s -> Const r s #

type IndexedGetting i m s a = Indexed i a (Const m a) -> s -> Const m s #

newtype Bazaar (p :: Type -> Type -> Type) a b t #

Constructors

Bazaar 

Fields

Instances

Instances details
Profunctor p => Bizarre p (Bazaar p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

bazaar :: Applicative f => p a (f b) -> Bazaar p a b t -> f t

Corepresentable p => Sellable p (Bazaar p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

sell :: p a (Bazaar p a b b)

Conjoined p => IndexedComonad (Bazaar p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

iextract :: Bazaar p a a t -> t

iduplicate :: Bazaar p a c t -> Bazaar p a b (Bazaar p b c t)

iextend :: (Bazaar p b c t -> r) -> Bazaar p a c t -> Bazaar p a b r

IndexedFunctor (Bazaar p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

ifmap :: (s -> t) -> Bazaar p a b s -> Bazaar p a b t

Applicative (Bazaar p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

pure :: a0 -> Bazaar p a b a0 #

(<*>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0 #

liftA2 :: (a0 -> b0 -> c) -> Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b c #

(*>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0 #

(<*) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0 #

Functor (Bazaar p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

fmap :: (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0 #

(<$) :: a0 -> Bazaar p a b b0 -> Bazaar p a b a0 #

(a ~ b, Conjoined p) => Comonad (Bazaar p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

extract :: Bazaar p a b a0 -> a0

duplicate :: Bazaar p a b a0 -> Bazaar p a b (Bazaar p a b a0)

extend :: (Bazaar p a b a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0

(a ~ b, Conjoined p) => ComonadApply (Bazaar p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

(<@>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0

(@>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0

(<@) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0

Apply (Bazaar p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

(<.>) :: Bazaar p a b (a0 -> b0) -> Bazaar p a b a0 -> Bazaar p a b b0

(.>) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b b0

(<.) :: Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b a0

liftF2 :: (a0 -> b0 -> c) -> Bazaar p a b a0 -> Bazaar p a b b0 -> Bazaar p a b c

type Bazaar' (p :: Type -> Type -> Type) a = Bazaar p a a #

newtype Bazaar1 (p :: Type -> Type -> Type) a b t #

Constructors

Bazaar1 

Fields

Instances

Instances details
Profunctor p => Bizarre1 p (Bazaar1 p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

bazaar1 :: Apply f => p a (f b) -> Bazaar1 p a b t -> f t

Corepresentable p => Sellable p (Bazaar1 p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

sell :: p a (Bazaar1 p a b b)

Conjoined p => IndexedComonad (Bazaar1 p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

iextract :: Bazaar1 p a a t -> t

iduplicate :: Bazaar1 p a c t -> Bazaar1 p a b (Bazaar1 p b c t)

iextend :: (Bazaar1 p b c t -> r) -> Bazaar1 p a c t -> Bazaar1 p a b r

IndexedFunctor (Bazaar1 p) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

ifmap :: (s -> t) -> Bazaar1 p a b s -> Bazaar1 p a b t

Functor (Bazaar1 p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

fmap :: (a0 -> b0) -> Bazaar1 p a b a0 -> Bazaar1 p a b b0 #

(<$) :: a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b a0 #

(a ~ b, Conjoined p) => Comonad (Bazaar1 p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

extract :: Bazaar1 p a b a0 -> a0

duplicate :: Bazaar1 p a b a0 -> Bazaar1 p a b (Bazaar1 p a b a0)

extend :: (Bazaar1 p a b a0 -> b0) -> Bazaar1 p a b a0 -> Bazaar1 p a b b0

(a ~ b, Conjoined p) => ComonadApply (Bazaar1 p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

(<@>) :: Bazaar1 p a b (a0 -> b0) -> Bazaar1 p a b a0 -> Bazaar1 p a b b0

(@>) :: Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b b0

(<@) :: Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b a0

Apply (Bazaar1 p a b) 
Instance details

Defined in Control.Lens.Internal.Bazaar

Methods

(<.>) :: Bazaar1 p a b (a0 -> b0) -> Bazaar1 p a b a0 -> Bazaar1 p a b b0

(.>) :: Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b b0

(<.) :: Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b a0

liftF2 :: (a0 -> b0 -> c) -> Bazaar1 p a b a0 -> Bazaar1 p a b b0 -> Bazaar1 p a b c

type Bazaar1' (p :: Type -> Type -> Type) a = Bazaar1 p a a #

data Context a b t #

Constructors

Context (b -> t) a 

Instances

Instances details
IndexedComonad Context 
Instance details

Defined in Control.Lens.Internal.Context

Methods

iextract :: Context a a t -> t

iduplicate :: Context a c t -> Context a b (Context b c t)

iextend :: (Context b c t -> r) -> Context a c t -> Context a b r

IndexedComonadStore Context 
Instance details

Defined in Control.Lens.Internal.Context

Methods

ipos :: Context a c t -> a

ipeek :: c -> Context a c t -> t

ipeeks :: (a -> c) -> Context a c t -> t

iseek :: b -> Context a c t -> Context b c t

iseeks :: (a -> b) -> Context a c t -> Context b c t

iexperiment :: Functor f => (b -> f c) -> Context b c t -> f t

context :: Context a b t -> Context a b t

IndexedFunctor Context 
Instance details

Defined in Control.Lens.Internal.Context

Methods

ifmap :: (s -> t) -> Context a b s -> Context a b t

a ~ b => ComonadStore a (Context a b) 
Instance details

Defined in Control.Lens.Internal.Context

Methods

pos :: Context a b a0 -> a

peek :: a -> Context a b a0 -> a0

peeks :: (a -> a) -> Context a b a0 -> a0

seek :: a -> Context a b a0 -> Context a b a0

seeks :: (a -> a) -> Context a b a0 -> Context a b a0

experiment :: Functor f => (a -> f a) -> Context a b a0 -> f a0

Functor (Context a b) 
Instance details

Defined in Control.Lens.Internal.Context

Methods

fmap :: (a0 -> b0) -> Context a b a0 -> Context a b b0 #

(<$) :: a0 -> Context a b b0 -> Context a b a0 #

a ~ b => Comonad (Context a b) 
Instance details

Defined in Control.Lens.Internal.Context

Methods

extract :: Context a b a0 -> a0

duplicate :: Context a b a0 -> Context a b (Context a b a0)

extend :: (Context a b a0 -> b0) -> Context a b a0 -> Context a b b0

Sellable (->) Context 
Instance details

Defined in Control.Lens.Internal.Context

Methods

sell :: a -> Context a b b

type Context' a = Context a a #

data DefName #

Instances

Instances details
Show DefName 
Instance details

Defined in Control.Lens.Internal.FieldTH

Eq DefName 
Instance details

Defined in Control.Lens.Internal.FieldTH

Methods

(==) :: DefName -> DefName -> Bool #

(/=) :: DefName -> DefName -> Bool #

Ord DefName 
Instance details

Defined in Control.Lens.Internal.FieldTH

type FieldNamer = Name -> [Name] -> Name -> [DefName] #

data Leftmost a #

Instances

Instances details
Monoid (Leftmost a) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

mempty :: Leftmost a #

mappend :: Leftmost a -> Leftmost a -> Leftmost a #

mconcat :: [Leftmost a] -> Leftmost a #

Semigroup (Leftmost a) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Leftmost a -> Leftmost a -> Leftmost a #

sconcat :: NonEmpty (Leftmost a) -> Leftmost a #

stimes :: Integral b => b -> Leftmost a -> Leftmost a #

data Rightmost a #

Instances

Instances details
Monoid (Rightmost a) 
Instance details

Defined in Control.Lens.Internal.Fold

Semigroup (Rightmost a) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Rightmost a -> Rightmost a -> Rightmost a #

sconcat :: NonEmpty (Rightmost a) -> Rightmost a #

stimes :: Integral b => b -> Rightmost a -> Rightmost a #

data Sequenced a (m :: Type -> Type) #

Instances

Instances details
Monad m => Monoid (Sequenced a m) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

mempty :: Sequenced a m #

mappend :: Sequenced a m -> Sequenced a m -> Sequenced a m #

mconcat :: [Sequenced a m] -> Sequenced a m #

Monad m => Semigroup (Sequenced a m) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Sequenced a m -> Sequenced a m -> Sequenced a m #

sconcat :: NonEmpty (Sequenced a m) -> Sequenced a m #

stimes :: Integral b => b -> Sequenced a m -> Sequenced a m #

data Traversed a (f :: Type -> Type) #

Instances

Instances details
Applicative f => Monoid (Traversed a f) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

mempty :: Traversed a f #

mappend :: Traversed a f -> Traversed a f -> Traversed a f #

mconcat :: [Traversed a f] -> Traversed a f #

Applicative f => Semigroup (Traversed a f) 
Instance details

Defined in Control.Lens.Internal.Fold

Methods

(<>) :: Traversed a f -> Traversed a f -> Traversed a f #

sconcat :: NonEmpty (Traversed a f) -> Traversed a f #

stimes :: Integral b => b -> Traversed a f -> Traversed a f #

class (Choice p, Corepresentable p, Comonad (Corep p), Traversable (Corep p), Strong p, Representable p, Monad (Rep p), MonadFix (Rep p), Distributive (Rep p), Costrong p, ArrowLoop p, ArrowApply p, ArrowChoice p, Closed p) => Conjoined (p :: Type -> Type -> Type) where #

Minimal complete definition

Nothing

Methods

distrib :: Functor f => p a b -> p (f a) (f b) #

conjoined :: (p ~ (->) => q (a -> b) r) -> q (p a b) r -> q (p a b) r #

Instances

Instances details
Conjoined ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

distrib :: Functor f => ReifiedGetter a b -> ReifiedGetter (f a) (f b) #

conjoined :: (ReifiedGetter ~ (->) => q (a -> b) r) -> q (ReifiedGetter a b) r -> q (ReifiedGetter a b) r #

Conjoined (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

distrib :: Functor f => Indexed i a b -> Indexed i (f a) (f b) #

conjoined :: (Indexed i ~ (->) => q (a -> b) r) -> q (Indexed i a b) r -> q (Indexed i a b) r #

Conjoined (->) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

distrib :: Functor f => (a -> b) -> f a -> f b #

conjoined :: ((->) ~ (->) => q (a -> b) r) -> q (a -> b) r -> q (a -> b) r #

class Conjoined p => Indexable i (p :: Type -> Type -> Type) #

Minimal complete definition

indexed

Instances

Instances details
i ~ j => Indexable i (Indexed j) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

indexed :: Indexed j a b -> i -> a -> b

Indexable i (->) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

indexed :: (a -> b) -> i -> a -> b

newtype Indexed i a b #

Constructors

Indexed 

Fields

Instances

Instances details
Category (Indexed i :: Type -> Type -> Type) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

id :: Indexed i a a #

(.) :: Indexed i b c -> Indexed i a b -> Indexed i a c #

i ~ j => Indexable i (Indexed j) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

indexed :: Indexed j a b -> i -> a -> b

Arrow (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

arr :: (b -> c) -> Indexed i b c #

first :: Indexed i b c -> Indexed i (b, d) (c, d) #

second :: Indexed i b c -> Indexed i (d, b) (d, c) #

(***) :: Indexed i b c -> Indexed i b' c' -> Indexed i (b, b') (c, c') #

(&&&) :: Indexed i b c -> Indexed i b c' -> Indexed i b (c, c') #

ArrowApply (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

app :: Indexed i (Indexed i b c, b) c #

ArrowChoice (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

left :: Indexed i b c -> Indexed i (Either b d) (Either c d) #

right :: Indexed i b c -> Indexed i (Either d b) (Either d c) #

(+++) :: Indexed i b c -> Indexed i b' c' -> Indexed i (Either b b') (Either c c') #

(|||) :: Indexed i b d -> Indexed i c d -> Indexed i (Either b c) d #

ArrowLoop (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

loop :: Indexed i (b, d) (c, d) -> Indexed i b c #

Conjoined (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

distrib :: Functor f => Indexed i a b -> Indexed i (f a) (f b) #

conjoined :: (Indexed i ~ (->) => q (a -> b) r) -> q (Indexed i a b) r -> q (Indexed i a b) r #

Choice (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

left' :: Indexed i a b -> Indexed i (Either a c) (Either b c) #

right' :: Indexed i a b -> Indexed i (Either c a) (Either c b) #

Closed (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

closed :: Indexed i a b -> Indexed i (x -> a) (x -> b)

Corepresentable (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Associated Types

type Corep (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

type Corep (Indexed i) = (,) i

Methods

cotabulate :: (Corep (Indexed i) d -> c) -> Indexed i d c

Representable (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Associated Types

type Rep (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

type Rep (Indexed i) = (->) i

Methods

tabulate :: (d -> Rep (Indexed i) c) -> Indexed i d c

Costrong (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

unfirst :: Indexed i (a, d) (b, d) -> Indexed i a b

unsecond :: Indexed i (d, a) (d, b) -> Indexed i a b

Strong (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

first' :: Indexed i a b -> Indexed i (a, c) (b, c)

second' :: Indexed i a b -> Indexed i (c, a) (c, b)

Profunctor (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

dimap :: (a -> b) -> (c -> d) -> Indexed i b c -> Indexed i a d #

lmap :: (a -> b) -> Indexed i b c -> Indexed i a c #

rmap :: (b -> c) -> Indexed i a b -> Indexed i a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Indexed i a b -> Indexed i a c

(.#) :: forall a b c q. Coercible b a => Indexed i b c -> q a b -> Indexed i a c

Bizarre (Indexed Int) Mafic 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

bazaar :: Applicative f => Indexed Int a (f b) -> Mafic a b t -> f t

Bizarre (Indexed i) (Molten i) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

bazaar :: Applicative f => Indexed i a (f b) -> Molten i a b t -> f t

Sellable (Indexed i) (Molten i) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

sell :: Indexed i a (Molten i a b b)

Cosieve (Indexed i) ((,) i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

cosieve :: Indexed i a b -> (i, a) -> b

Sieve (Indexed i) ((->) i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

sieve :: Indexed i a b -> a -> i -> b

MonadFix (Indexed i a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

mfix :: (a0 -> Indexed i a a0) -> Indexed i a a0 #

Applicative (Indexed i a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

pure :: a0 -> Indexed i a a0 #

(<*>) :: Indexed i a (a0 -> b) -> Indexed i a a0 -> Indexed i a b #

liftA2 :: (a0 -> b -> c) -> Indexed i a a0 -> Indexed i a b -> Indexed i a c #

(*>) :: Indexed i a a0 -> Indexed i a b -> Indexed i a b #

(<*) :: Indexed i a a0 -> Indexed i a b -> Indexed i a a0 #

Functor (Indexed i a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

fmap :: (a0 -> b) -> Indexed i a a0 -> Indexed i a b #

(<$) :: a0 -> Indexed i a b -> Indexed i a a0 #

Monad (Indexed i a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

(>>=) :: Indexed i a a0 -> (a0 -> Indexed i a b) -> Indexed i a b #

(>>) :: Indexed i a a0 -> Indexed i a b -> Indexed i a b #

return :: a0 -> Indexed i a a0 #

Apply (Indexed i a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

(<.>) :: Indexed i a (a0 -> b) -> Indexed i a a0 -> Indexed i a b

(.>) :: Indexed i a a0 -> Indexed i a b -> Indexed i a b

(<.) :: Indexed i a a0 -> Indexed i a b -> Indexed i a a0

liftF2 :: (a0 -> b -> c) -> Indexed i a a0 -> Indexed i a b -> Indexed i a c

Bind (Indexed i a) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

(>>-) :: Indexed i a a0 -> (a0 -> Indexed i a b) -> Indexed i a b

join :: Indexed i a (Indexed i a a0) -> Indexed i a a0

type Corep (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

type Corep (Indexed i) = (,) i
type Rep (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

type Rep (Indexed i) = (->) i

class Reversing t where #

Methods

reversing :: t -> t #

Instances

Instances details
Reversing ByteString 
Instance details

Defined in Control.Lens.Internal.Iso

Reversing ByteString 
Instance details

Defined in Control.Lens.Internal.Iso

Reversing Text 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Text -> Text #

Reversing Text 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Text -> Text #

Reversing (NonEmpty a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: NonEmpty a -> NonEmpty a #

Reversing (Seq a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Seq a -> Seq a #

(Metric v, OrderedField n) => Reversing (Located (Trail v n)) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Located (Trail v n) -> Located (Trail v n) #

(Metric v, OrderedField n) => Reversing (Located (Trail' l v n)) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Located (Trail' l v n) -> Located (Trail' l v n) #

Reversing (Vector a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Vector a -> Vector a #

Prim a => Reversing (Vector a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Vector a -> Vector a #

Storable a => Reversing (Vector a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Vector a -> Vector a #

Reversing (Vector a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Vector a -> Vector a #

Unbox a => Reversing (Vector a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Vector a -> Vector a #

Reversing [a] 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: [a] -> [a] #

(Metric v, OrderedField n) => Reversing (Path v n) 
Instance details

Defined in Diagrams.Path

Methods

reversing :: Path v n -> Path v n #

Reversing (FixedSegment v n) 
Instance details

Defined in Diagrams.Segment

Methods

reversing :: FixedSegment v n -> FixedSegment v n #

(Metric v, OrderedField n) => Reversing (Trail v n) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Trail v n -> Trail v n #

(Additive v, Num n) => Reversing (Offset c v n) 
Instance details

Defined in Diagrams.Segment

Methods

reversing :: Offset c v n -> Offset c v n #

(Additive v, Num n) => Reversing (Segment Closed v n) 
Instance details

Defined in Diagrams.Segment

Methods

reversing :: Segment Closed v n -> Segment Closed v n #

(Metric v, OrderedField n) => Reversing (Trail' l v n) 
Instance details

Defined in Diagrams.Trail

Methods

reversing :: Trail' l v n -> Trail' l v n #

data Level i a #

Instances

Instances details
FoldableWithIndex i (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Level i a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Level i a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Level i a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Level i a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Level i a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Level i a -> b #

FunctorWithIndex i (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

imap :: (i -> a -> b) -> Level i a -> Level i b #

TraversableWithIndex i (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

itraverse :: Applicative f => (i -> a -> f b) -> Level i a -> f (Level i b) #

Foldable (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

fold :: Monoid m => Level i m -> m #

foldMap :: Monoid m => (a -> m) -> Level i a -> m #

foldMap' :: Monoid m => (a -> m) -> Level i a -> m #

foldr :: (a -> b -> b) -> b -> Level i a -> b #

foldr' :: (a -> b -> b) -> b -> Level i a -> b #

foldl :: (b -> a -> b) -> b -> Level i a -> b #

foldl' :: (b -> a -> b) -> b -> Level i a -> b #

foldr1 :: (a -> a -> a) -> Level i a -> a #

foldl1 :: (a -> a -> a) -> Level i a -> a #

toList :: Level i a -> [a] #

null :: Level i a -> Bool #

length :: Level i a -> Int #

elem :: Eq a => a -> Level i a -> Bool #

maximum :: Ord a => Level i a -> a #

minimum :: Ord a => Level i a -> a #

sum :: Num a => Level i a -> a #

product :: Num a => Level i a -> a #

Traversable (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

traverse :: Applicative f => (a -> f b) -> Level i a -> f (Level i b) #

sequenceA :: Applicative f => Level i (f a) -> f (Level i a) #

mapM :: Monad m => (a -> m b) -> Level i a -> m (Level i b) #

sequence :: Monad m => Level i (m a) -> m (Level i a) #

Functor (Level i) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

fmap :: (a -> b) -> Level i a -> Level i b #

(<$) :: a -> Level i b -> Level i a #

(Read i, Read a) => Read (Level i a) 
Instance details

Defined in Control.Lens.Internal.Level

(Show i, Show a) => Show (Level i a) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

showsPrec :: Int -> Level i a -> ShowS #

show :: Level i a -> String #

showList :: [Level i a] -> ShowS #

(Eq i, Eq a) => Eq (Level i a) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

(==) :: Level i a -> Level i a -> Bool #

(/=) :: Level i a -> Level i a -> Bool #

(Ord i, Ord a) => Ord (Level i a) 
Instance details

Defined in Control.Lens.Internal.Level

Methods

compare :: Level i a -> Level i a -> Ordering #

(<) :: Level i a -> Level i a -> Bool #

(<=) :: Level i a -> Level i a -> Bool #

(>) :: Level i a -> Level i a -> Bool #

(>=) :: Level i a -> Level i a -> Bool #

max :: Level i a -> Level i a -> Level i a #

min :: Level i a -> Level i a -> Level i a #

data Magma i t b a #

Instances

Instances details
FoldableWithIndex i (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Magma i t b a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Magma i t b a -> m #

ifoldr :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 #

ifoldl :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 #

ifoldr' :: (i -> a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 #

ifoldl' :: (i -> b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 #

FunctorWithIndex i (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

imap :: (i -> a -> b0) -> Magma i t b a -> Magma i t b b0 #

TraversableWithIndex i (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

itraverse :: Applicative f => (i -> a -> f b0) -> Magma i t b a -> f (Magma i t b b0) #

Foldable (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

fold :: Monoid m => Magma i t b m -> m #

foldMap :: Monoid m => (a -> m) -> Magma i t b a -> m #

foldMap' :: Monoid m => (a -> m) -> Magma i t b a -> m #

foldr :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 #

foldr' :: (a -> b0 -> b0) -> b0 -> Magma i t b a -> b0 #

foldl :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 #

foldl' :: (b0 -> a -> b0) -> b0 -> Magma i t b a -> b0 #

foldr1 :: (a -> a -> a) -> Magma i t b a -> a #

foldl1 :: (a -> a -> a) -> Magma i t b a -> a #

toList :: Magma i t b a -> [a] #

null :: Magma i t b a -> Bool #

length :: Magma i t b a -> Int #

elem :: Eq a => a -> Magma i t b a -> Bool #

maximum :: Ord a => Magma i t b a -> a #

minimum :: Ord a => Magma i t b a -> a #

sum :: Num a => Magma i t b a -> a #

product :: Num a => Magma i t b a -> a #

Traversable (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

traverse :: Applicative f => (a -> f b0) -> Magma i t b a -> f (Magma i t b b0) #

sequenceA :: Applicative f => Magma i t b (f a) -> f (Magma i t b a) #

mapM :: Monad m => (a -> m b0) -> Magma i t b a -> m (Magma i t b b0) #

sequence :: Monad m => Magma i t b (m a) -> m (Magma i t b a) #

Functor (Magma i t b) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

fmap :: (a -> b0) -> Magma i t b a -> Magma i t b b0 #

(<$) :: a -> Magma i t b b0 -> Magma i t b a #

(Show i, Show a) => Show (Magma i t b a) 
Instance details

Defined in Control.Lens.Internal.Magma

Methods

showsPrec :: Int -> Magma i t b a -> ShowS #

show :: Magma i t b a -> String #

showList :: [Magma i t b a] -> ShowS #

class (Profunctor p, Bifunctor p) => Reviewable (p :: Type -> Type -> Type) #

Instances

Instances details
(Profunctor p, Bifunctor p) => Reviewable p 
Instance details

Defined in Control.Lens.Internal.Review

class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type) #

Minimal complete definition

untainted

Instances

Instances details
Settable Identity 
Instance details

Defined in Control.Lens.Internal.Setter

Methods

untainted :: Identity a -> a

untaintedDot :: Profunctor p => p a (Identity b) -> p a b

taintedDot :: Profunctor p => p a b -> p a (Identity b)

Settable f => Settable (Backwards f) 
Instance details

Defined in Control.Lens.Internal.Setter

Methods

untainted :: Backwards f a -> a

untaintedDot :: Profunctor p => p a (Backwards f b) -> p a b

taintedDot :: Profunctor p => p a b -> p a (Backwards f b)

(Settable f, Settable g) => Settable (Compose f g) 
Instance details

Defined in Control.Lens.Internal.Setter

Methods

untainted :: Compose f g a -> a

untaintedDot :: Profunctor p => p a (Compose f g b) -> p a b

taintedDot :: Profunctor p => p a b -> p a (Compose f g b)

type AnIso s t a b = Exchange a b a (Identity b) -> Exchange a b s (Identity t) #

type AnIso' s a = AnIso s s a a #

type ALens s t a b = LensLike (Pretext (->) a b) s t a b #

type ALens' s a = ALens s s a a #

type AnIndexedLens i s t a b = Optical (Indexed i) (->) (Pretext (Indexed i) a b) s t a b #

type AnIndexedLens' i s a = AnIndexedLens i s s a a #

class GPlated a (g :: k -> Type) #

Minimal complete definition

gplate'

Instances

Instances details
GPlated a (U1 :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' (U1 p) a

GPlated a (V1 :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' (V1 p) a

GPlated a (URec b :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' (URec b p) a

(GPlated a f, GPlated a g) => GPlated a (f :*: g :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' ((f :*: g) p) a

(GPlated a f, GPlated a g) => GPlated a (f :+: g :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' ((f :+: g) p) a

GPlated a (K1 i a :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' (K1 i a p) a

GPlated a (K1 i b :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' (K1 i b p) a

GPlated a f => GPlated a (M1 i c f :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate' :: forall (p :: k). Traversal' (M1 i c f p) a

class GPlated1 (f :: k -> Type) (g :: k -> Type) #

Minimal complete definition

gplate1'

Instances

Instances details
GPlated1 (f :: Type -> Type) Par1 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: Traversal' (Par1 a) (f a)

GPlated1 (f :: k -> Type) (U1 :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k). Traversal' (U1 a) (f a)

GPlated1 (f :: k -> Type) (V1 :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k). Traversal' (V1 a) (f a)

GPlated1 (f :: k -> Type) (Rec1 f :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k). Traversal' (Rec1 f a) (f a)

GPlated1 (f :: k -> Type) (Rec1 g :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k). Traversal' (Rec1 g a) (f a)

GPlated1 (f :: k -> Type) (URec a :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a0 :: k). Traversal' (URec a a0) (f a0)

(GPlated1 f g, GPlated1 f h) => GPlated1 (f :: k -> Type) (g :*: h :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k). Traversal' ((g :*: h) a) (f a)

(GPlated1 f g, GPlated1 f h) => GPlated1 (f :: k -> Type) (g :+: h :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k). Traversal' ((g :+: h) a) (f a)

GPlated1 (f :: k -> Type) (K1 i a :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a0 :: k). Traversal' (K1 i a a0) (f a0)

GPlated1 f g => GPlated1 (f :: k -> Type) (M1 i c g :: k -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k). Traversal' (M1 i c g a) (f a)

(Traversable t, GPlated1 f g) => GPlated1 (f :: k1 -> Type) (t :.: g :: k1 -> Type) 
Instance details

Defined in Control.Lens.Plated

Methods

gplate1' :: forall (a :: k1). Traversal' ((t :.: g) a) (f a)

class Plated a where #

Minimal complete definition

Nothing

Methods

plate :: Traversal' a a #

Instances

Instances details
Plated Con 
Instance details

Defined in Control.Lens.Plated

Plated Dec 
Instance details

Defined in Control.Lens.Plated

Plated Exp 
Instance details

Defined in Control.Lens.Plated

Plated Pat 
Instance details

Defined in Control.Lens.Plated

Plated Stmt 
Instance details

Defined in Control.Lens.Plated

Plated Type 
Instance details

Defined in Control.Lens.Plated

Plated (Tree a) 
Instance details

Defined in Control.Lens.Plated

Methods

plate :: Traversal' (Tree a) (Tree a) #

Plated [a] 
Instance details

Defined in Control.Lens.Plated

Methods

plate :: Traversal' [a] [a] #

Traversable f => Plated (Cofree f a) 
Instance details

Defined in Control.Lens.Plated

Methods

plate :: Traversal' (Cofree f a) (Cofree f a) #

Traversable f => Plated (Free f a) 
Instance details

Defined in Control.Lens.Plated

Methods

plate :: Traversal' (Free f a) (Free f a) #

Traversable f => Plated (F f a) 
Instance details

Defined in Control.Lens.Plated

Methods

plate :: Traversal' (F f a) (F f a) #

(Traversable f, Traversable w) => Plated (CofreeT f w a) 
Instance details

Defined in Control.Lens.Plated

Methods

plate :: Traversal' (CofreeT f w a) (CofreeT f w a) #

(Traversable f, Traversable m) => Plated (FreeT f m a) 
Instance details

Defined in Control.Lens.Plated

Methods

plate :: Traversal' (FreeT f m a) (FreeT f m a) #

type APrism s t a b = Market a b a (Identity b) -> Market a b s (Identity t) #

type APrism' s a = APrism s s a a #

class Prefixed t where #

Methods

prefixed :: t -> Prism' t t #

Instances

Instances details
Prefixed ByteString 
Instance details

Defined in Control.Lens.Prism

Prefixed ByteString 
Instance details

Defined in Control.Lens.Prism

Prefixed Text 
Instance details

Defined in Control.Lens.Prism

Methods

prefixed :: Text -> Prism' Text Text #

Prefixed Text 
Instance details

Defined in Control.Lens.Prism

Methods

prefixed :: Text -> Prism' Text Text #

Eq a => Prefixed [a] 
Instance details

Defined in Control.Lens.Prism

Methods

prefixed :: [a] -> Prism' [a] [a] #

class Suffixed t where #

Methods

suffixed :: t -> Prism' t t #

Instances

Instances details
Suffixed ByteString 
Instance details

Defined in Control.Lens.Prism

Suffixed ByteString 
Instance details

Defined in Control.Lens.Prism

Suffixed Text 
Instance details

Defined in Control.Lens.Prism

Methods

suffixed :: Text -> Prism' Text Text #

Suffixed Text 
Instance details

Defined in Control.Lens.Prism

Methods

suffixed :: Text -> Prism' Text Text #

Eq a => Suffixed [a] 
Instance details

Defined in Control.Lens.Prism

Methods

suffixed :: [a] -> Prism' [a] [a] #

newtype ReifiedFold s a #

Constructors

Fold 

Fields

Instances

Instances details
Arrow ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

arr :: (b -> c) -> ReifiedFold b c #

first :: ReifiedFold b c -> ReifiedFold (b, d) (c, d) #

second :: ReifiedFold b c -> ReifiedFold (d, b) (d, c) #

(***) :: ReifiedFold b c -> ReifiedFold b' c' -> ReifiedFold (b, b') (c, c') #

(&&&) :: ReifiedFold b c -> ReifiedFold b c' -> ReifiedFold b (c, c') #

ArrowApply ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

app :: ReifiedFold (ReifiedFold b c, b) c #

ArrowChoice ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

left :: ReifiedFold b c -> ReifiedFold (Either b d) (Either c d) #

right :: ReifiedFold b c -> ReifiedFold (Either d b) (Either d c) #

(+++) :: ReifiedFold b c -> ReifiedFold b' c' -> ReifiedFold (Either b b') (Either c c') #

(|||) :: ReifiedFold b d -> ReifiedFold c d -> ReifiedFold (Either b c) d #

Choice ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

left' :: ReifiedFold a b -> ReifiedFold (Either a c) (Either b c) #

right' :: ReifiedFold a b -> ReifiedFold (Either c a) (Either c b) #

Representable ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Associated Types

type Rep ReifiedFold 
Instance details

Defined in Control.Lens.Reified

type Rep ReifiedFold = []

Methods

tabulate :: (d -> Rep ReifiedFold c) -> ReifiedFold d c

Strong ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

first' :: ReifiedFold a b -> ReifiedFold (a, c) (b, c)

second' :: ReifiedFold a b -> ReifiedFold (c, a) (c, b)

Profunctor ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedFold b c -> ReifiedFold a d #

lmap :: (a -> b) -> ReifiedFold b c -> ReifiedFold a c #

rmap :: (b -> c) -> ReifiedFold a b -> ReifiedFold a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedFold a b -> ReifiedFold a c

(.#) :: forall a b c q. Coercible b a => ReifiedFold b c -> q a b -> ReifiedFold a c

Category ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

id :: ReifiedFold a a #

(.) :: ReifiedFold b c -> ReifiedFold a b -> ReifiedFold a c #

Sieve ReifiedFold [] 
Instance details

Defined in Control.Lens.Reified

Methods

sieve :: ReifiedFold a b -> a -> [b]

MonadReader s (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

ask :: ReifiedFold s s #

local :: (s -> s) -> ReifiedFold s a -> ReifiedFold s a #

reader :: (s -> a) -> ReifiedFold s a #

Alternative (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

empty :: ReifiedFold s a #

(<|>) :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a #

some :: ReifiedFold s a -> ReifiedFold s [a] #

many :: ReifiedFold s a -> ReifiedFold s [a] #

Applicative (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

pure :: a -> ReifiedFold s a #

(<*>) :: ReifiedFold s (a -> b) -> ReifiedFold s a -> ReifiedFold s b #

liftA2 :: (a -> b -> c) -> ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s c #

(*>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b #

(<*) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s a #

Functor (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

fmap :: (a -> b) -> ReifiedFold s a -> ReifiedFold s b #

(<$) :: a -> ReifiedFold s b -> ReifiedFold s a #

Monad (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

(>>=) :: ReifiedFold s a -> (a -> ReifiedFold s b) -> ReifiedFold s b #

(>>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b #

return :: a -> ReifiedFold s a #

MonadPlus (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

mzero :: ReifiedFold s a #

mplus :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a #

Alt (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Apply (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

(<.>) :: ReifiedFold s (a -> b) -> ReifiedFold s a -> ReifiedFold s b

(.>) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s b

(<.) :: ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s a

liftF2 :: (a -> b -> c) -> ReifiedFold s a -> ReifiedFold s b -> ReifiedFold s c

Bind (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

(>>-) :: ReifiedFold s a -> (a -> ReifiedFold s b) -> ReifiedFold s b

join :: ReifiedFold s (ReifiedFold s a) -> ReifiedFold s a

Plus (ReifiedFold s) 
Instance details

Defined in Control.Lens.Reified

Methods

zero :: ReifiedFold s a

Monoid (ReifiedFold s a) 
Instance details

Defined in Control.Lens.Reified

Methods

mempty :: ReifiedFold s a #

mappend :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a #

mconcat :: [ReifiedFold s a] -> ReifiedFold s a #

Semigroup (ReifiedFold s a) 
Instance details

Defined in Control.Lens.Reified

Methods

(<>) :: ReifiedFold s a -> ReifiedFold s a -> ReifiedFold s a #

sconcat :: NonEmpty (ReifiedFold s a) -> ReifiedFold s a #

stimes :: Integral b => b -> ReifiedFold s a -> ReifiedFold s a #

type Rep ReifiedFold 
Instance details

Defined in Control.Lens.Reified

type Rep ReifiedFold = []

type Fold s a = forall (f :: Type -> Type). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s #

newtype ReifiedGetter s a #

Constructors

Getter 

Fields

Instances

Instances details
Arrow ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

arr :: (b -> c) -> ReifiedGetter b c #

first :: ReifiedGetter b c -> ReifiedGetter (b, d) (c, d) #

second :: ReifiedGetter b c -> ReifiedGetter (d, b) (d, c) #

(***) :: ReifiedGetter b c -> ReifiedGetter b' c' -> ReifiedGetter (b, b') (c, c') #

(&&&) :: ReifiedGetter b c -> ReifiedGetter b c' -> ReifiedGetter b (c, c') #

ArrowApply ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

app :: ReifiedGetter (ReifiedGetter b c, b) c #

ArrowChoice ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

left :: ReifiedGetter b c -> ReifiedGetter (Either b d) (Either c d) #

right :: ReifiedGetter b c -> ReifiedGetter (Either d b) (Either d c) #

(+++) :: ReifiedGetter b c -> ReifiedGetter b' c' -> ReifiedGetter (Either b b') (Either c c') #

(|||) :: ReifiedGetter b d -> ReifiedGetter c d -> ReifiedGetter (Either b c) d #

ArrowLoop ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

loop :: ReifiedGetter (b, d) (c, d) -> ReifiedGetter b c #

Conjoined ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

distrib :: Functor f => ReifiedGetter a b -> ReifiedGetter (f a) (f b) #

conjoined :: (ReifiedGetter ~ (->) => q (a -> b) r) -> q (ReifiedGetter a b) r -> q (ReifiedGetter a b) r #

Choice ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

left' :: ReifiedGetter a b -> ReifiedGetter (Either a c) (Either b c) #

right' :: ReifiedGetter a b -> ReifiedGetter (Either c a) (Either c b) #

Closed ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

closed :: ReifiedGetter a b -> ReifiedGetter (x -> a) (x -> b)

Corepresentable ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Associated Types

type Corep ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

type Corep ReifiedGetter = Identity

Methods

cotabulate :: (Corep ReifiedGetter d -> c) -> ReifiedGetter d c

Representable ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Associated Types

type Rep ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

tabulate :: (d -> Rep ReifiedGetter c) -> ReifiedGetter d c

Costrong ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

unfirst :: ReifiedGetter (a, d) (b, d) -> ReifiedGetter a b

unsecond :: ReifiedGetter (d, a) (d, b) -> ReifiedGetter a b

Strong ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

first' :: ReifiedGetter a b -> ReifiedGetter (a, c) (b, c)

second' :: ReifiedGetter a b -> ReifiedGetter (c, a) (c, b)

Profunctor ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedGetter b c -> ReifiedGetter a d #

lmap :: (a -> b) -> ReifiedGetter b c -> ReifiedGetter a c #

rmap :: (b -> c) -> ReifiedGetter a b -> ReifiedGetter a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedGetter a b -> ReifiedGetter a c

(.#) :: forall a b c q. Coercible b a => ReifiedGetter b c -> q a b -> ReifiedGetter a c

Category ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

id :: ReifiedGetter a a #

(.) :: ReifiedGetter b c -> ReifiedGetter a b -> ReifiedGetter a c #

Cosieve ReifiedGetter Identity 
Instance details

Defined in Control.Lens.Reified

Methods

cosieve :: ReifiedGetter a b -> Identity a -> b

Sieve ReifiedGetter Identity 
Instance details

Defined in Control.Lens.Reified

Methods

sieve :: ReifiedGetter a b -> a -> Identity b

MonadReader s (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

ask :: ReifiedGetter s s #

local :: (s -> s) -> ReifiedGetter s a -> ReifiedGetter s a #

reader :: (s -> a) -> ReifiedGetter s a #

Applicative (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

pure :: a -> ReifiedGetter s a #

(<*>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b #

liftA2 :: (a -> b -> c) -> ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s c #

(*>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b #

(<*) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a #

Functor (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

fmap :: (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b #

(<$) :: a -> ReifiedGetter s b -> ReifiedGetter s a #

Monad (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

(>>=) :: ReifiedGetter s a -> (a -> ReifiedGetter s b) -> ReifiedGetter s b #

(>>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b #

return :: a -> ReifiedGetter s a #

Monoid s => Comonad (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Monoid s => ComonadApply (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Distributive (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

distribute :: Functor f => f (ReifiedGetter s a) -> ReifiedGetter s (f a)

collect :: Functor f => (a -> ReifiedGetter s b) -> f a -> ReifiedGetter s (f b)

distributeM :: Monad m => m (ReifiedGetter s a) -> ReifiedGetter s (m a)

collectM :: Monad m => (a -> ReifiedGetter s b) -> m a -> ReifiedGetter s (m b)

Apply (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

(<.>) :: ReifiedGetter s (a -> b) -> ReifiedGetter s a -> ReifiedGetter s b

(.>) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s b

(<.) :: ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s a

liftF2 :: (a -> b -> c) -> ReifiedGetter s a -> ReifiedGetter s b -> ReifiedGetter s c

Bind (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

Methods

(>>-) :: ReifiedGetter s a -> (a -> ReifiedGetter s b) -> ReifiedGetter s b

join :: ReifiedGetter s (ReifiedGetter s a) -> ReifiedGetter s a

Semigroup s => Extend (ReifiedGetter s) 
Instance details

Defined in Control.Lens.Reified

type Corep ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

type Corep ReifiedGetter = Identity
type Rep ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

type Getter s a = forall (f :: Type -> Type). (Contravariant f, Functor f) => (a -> f a) -> s -> f s #

newtype ReifiedIndexedFold i s a #

Constructors

IndexedFold 

Fields

Instances

Instances details
Representable (ReifiedIndexedFold i) 
Instance details

Defined in Control.Lens.Reified

Associated Types

type Rep (ReifiedIndexedFold i) 
Instance details

Defined in Control.Lens.Reified

type Rep (ReifiedIndexedFold i) = Compose [] ((,) i)

Methods

tabulate :: (d -> Rep (ReifiedIndexedFold i) c) -> ReifiedIndexedFold i d c

Strong (ReifiedIndexedFold i) 
Instance details

Defined in Control.Lens.Reified

Methods

first' :: ReifiedIndexedFold i a b -> ReifiedIndexedFold i (a, c) (b, c)

second' :: ReifiedIndexedFold i a b -> ReifiedIndexedFold i (c, a) (c, b)

Profunctor (ReifiedIndexedFold i) 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a d #

lmap :: (a -> b) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a c #

rmap :: (b -> c) -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c

(.#) :: forall a b c q. Coercible b a => ReifiedIndexedFold i b c -> q a b -> ReifiedIndexedFold i a c

Sieve (ReifiedIndexedFold i) (Compose [] ((,) i)) 
Instance details

Defined in Control.Lens.Reified

Methods

sieve :: ReifiedIndexedFold i a b -> a -> Compose [] ((,) i) b

Functor (ReifiedIndexedFold i s) 
Instance details

Defined in Control.Lens.Reified

Methods

fmap :: (a -> b) -> ReifiedIndexedFold i s a -> ReifiedIndexedFold i s b #

(<$) :: a -> ReifiedIndexedFold i s b -> ReifiedIndexedFold i s a #

Alt (ReifiedIndexedFold i s) 
Instance details

Defined in Control.Lens.Reified

Plus (ReifiedIndexedFold i s) 
Instance details

Defined in Control.Lens.Reified

Methods

zero :: ReifiedIndexedFold i s a

Monoid (ReifiedIndexedFold i s a) 
Instance details

Defined in Control.Lens.Reified

Semigroup (ReifiedIndexedFold i s a) 
Instance details

Defined in Control.Lens.Reified

type Rep (ReifiedIndexedFold i) 
Instance details

Defined in Control.Lens.Reified

type Rep (ReifiedIndexedFold i) = Compose [] ((,) i)

type IndexedFold i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Applicative f) => p a (f a) -> s -> f s #

newtype ReifiedIndexedGetter i s a #

Constructors

IndexedGetter 

Instances

Instances details
Representable (ReifiedIndexedGetter i) 
Instance details

Defined in Control.Lens.Reified

Associated Types

type Rep (ReifiedIndexedGetter i) 
Instance details

Defined in Control.Lens.Reified

type Rep (ReifiedIndexedGetter i) = (,) i

Methods

tabulate :: (d -> Rep (ReifiedIndexedGetter i) c) -> ReifiedIndexedGetter i d c

Strong (ReifiedIndexedGetter i) 
Instance details

Defined in Control.Lens.Reified

Methods

first' :: ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i (a, c) (b, c)

second' :: ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i (c, a) (c, b)

Profunctor (ReifiedIndexedGetter i) 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a d #

lmap :: (a -> b) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a c #

rmap :: (b -> c) -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c

(.#) :: forall a b c q. Coercible b a => ReifiedIndexedGetter i b c -> q a b -> ReifiedIndexedGetter i a c

Sieve (ReifiedIndexedGetter i) ((,) i) 
Instance details

Defined in Control.Lens.Reified

Methods

sieve :: ReifiedIndexedGetter i a b -> a -> (i, b)

Functor (ReifiedIndexedGetter i s) 
Instance details

Defined in Control.Lens.Reified

Methods

fmap :: (a -> b) -> ReifiedIndexedGetter i s a -> ReifiedIndexedGetter i s b #

(<$) :: a -> ReifiedIndexedGetter i s b -> ReifiedIndexedGetter i s a #

Semigroup i => Apply (ReifiedIndexedGetter i s) 
Instance details

Defined in Control.Lens.Reified

type Rep (ReifiedIndexedGetter i) 
Instance details

Defined in Control.Lens.Reified

type Rep (ReifiedIndexedGetter i) = (,) i

type IndexedGetter i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Functor f) => p a (f a) -> s -> f s #

newtype ReifiedIndexedLens i s t a b #

Constructors

IndexedLens 

Fields

type IndexedLens i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Functor f) => p a (f b) -> s -> f t #

newtype ReifiedIndexedSetter i s t a b #

Constructors

IndexedSetter 

Fields

type IndexedSetter i s t a b = forall (f :: Type -> Type) (p :: Type -> Type -> Type). (Indexable i p, Settable f) => p a (f b) -> s -> f t #

newtype ReifiedIndexedTraversal i s t a b #

Constructors

IndexedTraversal 

type IndexedTraversal i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Applicative f) => p a (f b) -> s -> f t #

newtype ReifiedIso s t a b #

Constructors

Iso 

Fields

type Iso s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Profunctor p, Functor f) => p a (f b) -> p s (f t) #

type ReifiedIso' s a = ReifiedIso s s a a #

newtype ReifiedLens s t a b #

Constructors

Lens 

Fields

type Lens s t a b = forall (f :: Type -> Type). Functor f => (a -> f b) -> s -> f t #

type ReifiedLens' s a = ReifiedLens s s a a #

newtype ReifiedPrism s t a b #

Constructors

Prism 

Fields

type Prism s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Applicative f) => p a (f b) -> p s (f t) #

type ReifiedPrism' s a = ReifiedPrism s s a a #

newtype ReifiedSetter s t a b #

Constructors

Setter 

Fields

type Setter s t a b = forall (f :: Type -> Type). Settable f => (a -> f b) -> s -> f t #

type ReifiedSetter' s a = ReifiedSetter s s a a #

newtype ReifiedTraversal s t a b #

Constructors

Traversal 

Fields

type Traversal s t a b = forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t #

type ASetter s t a b = (a -> Identity b) -> s -> Identity t #

type ASetter' s a = ASetter s s a a #

type AnIndexedSetter i s t a b = Indexed i a (Identity b) -> s -> Identity t #

type AnIndexedSetter' i s a = AnIndexedSetter i s s a a #

type Setting (p :: Type -> Type -> Type) s t a b = p a (Identity b) -> s -> Identity t #

type Setting' (p :: Type -> Type -> Type) s a = Setting p s s a a #

type ATraversal s t a b = LensLike (Bazaar (->) a b) s t a b #

type ATraversal' s a = ATraversal s s a a #

type ATraversal1 s t a b = LensLike (Bazaar1 (->) a b) s t a b #

type ATraversal1' s a = ATraversal1 s s a a #

type AnIndexedTraversal i s t a b = Over (Indexed i) (Bazaar (Indexed i) a b) s t a b #

type AnIndexedTraversal1 i s t a b = Over (Indexed i) (Bazaar1 (Indexed i) a b) s t a b #

class Ord k => TraverseMax k (m :: Type -> Type) | m -> k where #

Methods

traverseMax :: IndexedTraversal' k (m v) v #

Instances

Instances details
TraverseMax Int IntMap 
Instance details

Defined in Control.Lens.Traversal

Ord k => TraverseMax k (Map k) 
Instance details

Defined in Control.Lens.Traversal

Methods

traverseMax :: IndexedTraversal' k (Map k v) v #

class Ord k => TraverseMin k (m :: Type -> Type) | m -> k where #

Methods

traverseMin :: IndexedTraversal' k (m v) v #

Instances

Instances details
TraverseMin Int IntMap 
Instance details

Defined in Control.Lens.Traversal

Ord k => TraverseMin k (Map k) 
Instance details

Defined in Control.Lens.Traversal

Methods

traverseMin :: IndexedTraversal' k (Map k v) v #

type Traversing (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT p f a b) s t a b #

type Traversing' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing p f s s a a #

type Traversing1 (p :: Type -> Type -> Type) (f :: Type -> Type) s t a b = Over p (BazaarT1 p f a b) s t a b #

type Traversing1' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Traversing1 p f s s a a #

class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_1 :: Lens s t a b #

Instances

Instances details
Field1 (Identity a) (Identity b) a b 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (Identity a) (Identity b) a b #

Field1 (Plucker a) (Plucker a) a a 
Instance details

Defined in Linear.Plucker

Methods

_1 :: Lens (Plucker a) (Plucker a) a a #

Field1 (Quaternion a) (Quaternion a) a a 
Instance details

Defined in Linear.Quaternion

Methods

_1 :: Lens (Quaternion a) (Quaternion a) a a #

Field1 (V1 a) (V1 b) a b 
Instance details

Defined in Linear.V1

Methods

_1 :: Lens (V1 a) (V1 b) a b #

Field1 (V2 a) (V2 a) a a 
Instance details

Defined in Linear.V2

Methods

_1 :: Lens (V2 a) (V2 a) a a #

Field1 (V3 a) (V3 a) a a 
Instance details

Defined in Linear.V3

Methods

_1 :: Lens (V3 a) (V3 a) a a #

Field1 (V4 a) (V4 a) a a 
Instance details

Defined in Linear.V4

Methods

_1 :: Lens (V4 a) (V4 a) a a #

Field1 (Pair a b) (Pair a' b) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (Pair a b) (Pair a' b) a a' #

Field1 (a, b) (a', b) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b) (a', b) a a' #

1 <= n => Field1 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_1 :: Lens (V n a) (V n a) a a #

Field1 (a, b, c) (a', b, c) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c) (a', b, c) a a' #

Field1 (a, b, c, d) (a', b, c, d) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d) (a', b, c, d) a a' #

Field1 (Product f g a) (Product f' g a) (f a) (f' a) 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (Product f g a) (Product f' g a) (f a) (f' a) #

Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) #

Field1 (a, b, c, d, e) (a', b, c, d, e) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e) (a', b, c, d, e) a a' #

Field1 (a, b, c, d, e, f) (a', b, c, d, e, f) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f) (a', b, c, d, e, f) a a' #

Field1 (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a' #

Field1 (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a' #

Field1 (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j) (a', b, c, d, e, f, g, h, i, j) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j) (a', b, c, d, e, f, g, h, i, j) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk) (a', b, c, d, e, f, g, h, i, j, kk) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a', b, c, d, e, f, g, h, i, j, kk) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l) (a', b, c, d, e, f, g, h, i, j, kk, l) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a', b, c, d, e, f, g, h, i, j, kk, l) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a', b, c, d, e, f, g, h, i, j, kk, l, m) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a', b, c, d, e, f, g, h, i, j, kk, l, m) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) a a' #

Field1 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) a a' 
Instance details

Defined in Control.Lens.Tuple

Methods

_1 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) a a' #

class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_10 :: Lens s t a b #

Instances

Instances details
10 <= n => Field10 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_10 :: Lens (V n a) (V n a) a a #

Field10 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i, j') j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i, j') j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j', kk) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j', kk) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j', kk, l) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j', kk, l) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j', kk, l, m) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j', kk, l, m) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r) j j' #

Field10 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s) j j' 
Instance details

Defined in Control.Lens.Tuple

Methods

_10 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s) j j' #

class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_11 :: Lens s t a b #

Instances

Instances details
11 <= n => Field11 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_11 :: Lens (V n a) (V n a) a a #

Field11 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j, kk') kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i, j, kk') kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk', l) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk', l) kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk', l, m) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk', l, m) kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n) kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o) kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p) kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q) kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r) kk kk' #

Field11 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s) kk kk' 
Instance details

Defined in Control.Lens.Tuple

Methods

_11 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s) kk kk' #

class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_12 :: Lens s t a b #

Instances

Instances details
12 <= n => Field12 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_12 :: Lens (V n a) (V n a) a a #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk, l') l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i, j, kk, l') l l' #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l', m) l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l', m) l l' #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n) l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n) l l' #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o) l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o) l l' #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p) l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p) l l' #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q) l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q) l l' #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r) l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r) l l' #

Field12 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s) l l' 
Instance details

Defined in Control.Lens.Tuple

Methods

_12 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s) l l' #

class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_13 :: Lens s t a b #

Instances

Instances details
13 <= n => Field13 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_13 :: Lens (V n a) (V n a) a a #

Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l, m') m m' 
Instance details

Defined in Control.Lens.Tuple

Methods

_13 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i, j, kk, l, m') m m' #

Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n) m m' 
Instance details

Defined in Control.Lens.Tuple

Methods

_13 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n) m m' #

Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o) m m' 
Instance details

Defined in Control.Lens.Tuple

Methods

_13 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o) m m' #

Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p) m m' 
Instance details

Defined in Control.Lens.Tuple

Methods

_13 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p) m m' #

Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q) m m' 
Instance details

Defined in Control.Lens.Tuple

Methods

_13 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q) m m' #

Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r) m m' 
Instance details

Defined in Control.Lens.Tuple

Methods

_13 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r) m m' #

Field13 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s) m m' 
Instance details

Defined in Control.Lens.Tuple

Methods

_13 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s) m m' #

class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_14 :: Lens s t a b #

Instances

Instances details
14 <= n => Field14 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_14 :: Lens (V n a) (V n a) a a #

Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n') n n' 
Instance details

Defined in Control.Lens.Tuple

Methods

_14 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n') n n' #

Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o) n n' 
Instance details

Defined in Control.Lens.Tuple

Methods

_14 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o) n n' #

Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p) n n' 
Instance details

Defined in Control.Lens.Tuple

Methods

_14 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p) n n' #

Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q) n n' 
Instance details

Defined in Control.Lens.Tuple

Methods

_14 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q) n n' #

Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r) n n' 
Instance details

Defined in Control.Lens.Tuple

Methods

_14 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r) n n' #

Field14 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s) n n' 
Instance details

Defined in Control.Lens.Tuple

Methods

_14 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s) n n' #

class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_15 :: Lens s t a b #

Instances

Instances details
15 <= n => Field15 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_15 :: Lens (V n a) (V n a) a a #

Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o') o o' 
Instance details

Defined in Control.Lens.Tuple

Methods

_15 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o') o o' #

Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p) o o' 
Instance details

Defined in Control.Lens.Tuple

Methods

_15 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p) o o' #

Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q) o o' 
Instance details

Defined in Control.Lens.Tuple

Methods

_15 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q) o o' #

Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r) o o' 
Instance details

Defined in Control.Lens.Tuple

Methods

_15 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r) o o' #

Field15 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s) o o' 
Instance details

Defined in Control.Lens.Tuple

Methods

_15 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s) o o' #

class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_16 :: Lens s t a b #

Instances

Instances details
16 <= n => Field16 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_16 :: Lens (V n a) (V n a) a a #

Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p') p p' 
Instance details

Defined in Control.Lens.Tuple

Methods

_16 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p') p p' #

Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q) p p' 
Instance details

Defined in Control.Lens.Tuple

Methods

_16 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q) p p' #

Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r) p p' 
Instance details

Defined in Control.Lens.Tuple

Methods

_16 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r) p p' #

Field16 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s) p p' 
Instance details

Defined in Control.Lens.Tuple

Methods

_16 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s) p p' #

class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_17 :: Lens s t a b #

Instances

Instances details
17 <= n => Field17 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_17 :: Lens (V n a) (V n a) a a #

Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q') q q' 
Instance details

Defined in Control.Lens.Tuple

Methods

_17 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q') q q' #

Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r) q q' 
Instance details

Defined in Control.Lens.Tuple

Methods

_17 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r) q q' #

Field17 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s) q q' 
Instance details

Defined in Control.Lens.Tuple

Methods

_17 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s) q q' #

class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_18 :: Lens s t a b #

Instances

Instances details
18 <= n => Field18 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_18 :: Lens (V n a) (V n a) a a #

Field18 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r') r r' 
Instance details

Defined in Control.Lens.Tuple

Methods

_18 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r') r r' #

Field18 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s) r r' 
Instance details

Defined in Control.Lens.Tuple

Methods

_18 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s) r r' #

class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_19 :: Lens s t a b #

Instances

Instances details
19 <= n => Field19 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_19 :: Lens (V n a) (V n a) a a #

Field19 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s') s s' 
Instance details

Defined in Control.Lens.Tuple

Methods

_19 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s') s s' #

class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_2 :: Lens s t a b #

Instances

Instances details
Field2 (Plucker a) (Plucker a) a a 
Instance details

Defined in Linear.Plucker

Methods

_2 :: Lens (Plucker a) (Plucker a) a a #

Field2 (Quaternion a) (Quaternion a) a a 
Instance details

Defined in Linear.Quaternion

Methods

_2 :: Lens (Quaternion a) (Quaternion a) a a #

Field2 (V2 a) (V2 a) a a 
Instance details

Defined in Linear.V2

Methods

_2 :: Lens (V2 a) (V2 a) a a #

Field2 (V3 a) (V3 a) a a 
Instance details

Defined in Linear.V3

Methods

_2 :: Lens (V3 a) (V3 a) a a #

Field2 (V4 a) (V4 a) a a 
Instance details

Defined in Linear.V4

Methods

_2 :: Lens (V4 a) (V4 a) a a #

Field2 (Pair a b) (Pair a b') b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (Pair a b) (Pair a b') b b' #

Field2 (a, b) (a, b') b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b) (a, b') b b' #

2 <= n => Field2 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_2 :: Lens (V n a) (V n a) a a #

Field2 (a, b, c) (a, b', c) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c) (a, b', c) b b' #

Field2 (a, b, c, d) (a, b', c, d) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d) (a, b', c, d) b b' #

Field2 (Product f g a) (Product f g' a) (g a) (g' a) 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (Product f g a) (Product f g' a) (g a) (g' a) #

Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens ((f :*: g) p) ((f :*: g') p) (g p) (g' p) #

Field2 (a, b, c, d, e) (a, b', c, d, e) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e) (a, b', c, d, e) b b' #

Field2 (a, b, c, d, e, f) (a, b', c, d, e, f) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f) (a, b', c, d, e, f) b b' #

Field2 (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b' #

Field2 (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b' #

Field2 (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j) (a, b', c, d, e, f, g, h, i, j) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b', c, d, e, f, g, h, i, j) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk) (a, b', c, d, e, f, g, h, i, j, kk) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b', c, d, e, f, g, h, i, j, kk) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b', c, d, e, f, g, h, i, j, kk, l) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b', c, d, e, f, g, h, i, j, kk, l) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b', c, d, e, f, g, h, i, j, kk, l, m) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b', c, d, e, f, g, h, i, j, kk, l, m) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) b b' #

Field2 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) b b' 
Instance details

Defined in Control.Lens.Tuple

Methods

_2 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) b b' #

class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_3 :: Lens s t a b #

Instances

Instances details
Field3 (Plucker a) (Plucker a) a a 
Instance details

Defined in Linear.Plucker

Methods

_3 :: Lens (Plucker a) (Plucker a) a a #

Field3 (Quaternion a) (Quaternion a) a a 
Instance details

Defined in Linear.Quaternion

Methods

_3 :: Lens (Quaternion a) (Quaternion a) a a #

Field3 (V3 a) (V3 a) a a 
Instance details

Defined in Linear.V3

Methods

_3 :: Lens (V3 a) (V3 a) a a #

Field3 (V4 a) (V4 a) a a 
Instance details

Defined in Linear.V4

Methods

_3 :: Lens (V4 a) (V4 a) a a #

3 <= n => Field3 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_3 :: Lens (V n a) (V n a) a a #

Field3 (a, b, c) (a, b, c') c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c) (a, b, c') c c' #

Field3 (a, b, c, d) (a, b, c', d) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d) (a, b, c', d) c c' #

Field3 (a, b, c, d, e) (a, b, c', d, e) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e) (a, b, c', d, e) c c' #

Field3 (a, b, c, d, e, f) (a, b, c', d, e, f) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f) (a, b, c', d, e, f) c c' #

Field3 (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c' #

Field3 (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c' #

Field3 (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j) (a, b, c', d, e, f, g, h, i, j) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c', d, e, f, g, h, i, j) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c', d, e, f, g, h, i, j, kk) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c', d, e, f, g, h, i, j, kk) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c', d, e, f, g, h, i, j, kk, l) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c', d, e, f, g, h, i, j, kk, l) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c', d, e, f, g, h, i, j, kk, l, m) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c', d, e, f, g, h, i, j, kk, l, m) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) c c' #

Field3 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) c c' 
Instance details

Defined in Control.Lens.Tuple

Methods

_3 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) c c' #

class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_4 :: Lens s t a b #

Instances

Instances details
Field4 (Plucker a) (Plucker a) a a 
Instance details

Defined in Linear.Plucker

Methods

_4 :: Lens (Plucker a) (Plucker a) a a #

Field4 (Quaternion a) (Quaternion a) a a 
Instance details

Defined in Linear.Quaternion

Methods

_4 :: Lens (Quaternion a) (Quaternion a) a a #

Field4 (V4 a) (V4 a) a a 
Instance details

Defined in Linear.V4

Methods

_4 :: Lens (V4 a) (V4 a) a a #

4 <= n => Field4 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_4 :: Lens (V n a) (V n a) a a #

Field4 (a, b, c, d) (a, b, c, d') d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d) (a, b, c, d') d d' #

Field4 (a, b, c, d, e) (a, b, c, d', e) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e) (a, b, c, d', e) d d' #

Field4 (a, b, c, d, e, f) (a, b, c, d', e, f) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f) (a, b, c, d', e, f) d d' #

Field4 (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d' #

Field4 (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d' #

Field4 (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d', e, f, g, h, i, j) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c, d', e, f, g, h, i, j) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d', e, f, g, h, i, j, kk) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d', e, f, g, h, i, j, kk) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d', e, f, g, h, i, j, kk, l) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d', e, f, g, h, i, j, kk, l) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d', e, f, g, h, i, j, kk, l, m) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d', e, f, g, h, i, j, kk, l, m) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r) d d' #

Field4 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) d d' 
Instance details

Defined in Control.Lens.Tuple

Methods

_4 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) d d' #

class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_5 :: Lens s t a b #

Instances

Instances details
Field5 (Plucker a) (Plucker a) a a 
Instance details

Defined in Linear.Plucker

Methods

_5 :: Lens (Plucker a) (Plucker a) a a #

5 <= n => Field5 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_5 :: Lens (V n a) (V n a) a a #

Field5 (a, b, c, d, e) (a, b, c, d, e') e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e) (a, b, c, d, e') e e' #

Field5 (a, b, c, d, e, f) (a, b, c, d, e', f) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f) (a, b, c, d, e', f) e e' #

Field5 (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e' #

Field5 (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e' #

Field5 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e', f, g, h, i, j) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e', f, g, h, i, j) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e', f, g, h, i, j, kk) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e', f, g, h, i, j, kk) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e', f, g, h, i, j, kk, l) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e', f, g, h, i, j, kk, l) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e', f, g, h, i, j, kk, l, m) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e', f, g, h, i, j, kk, l, m) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r) e e' #

Field5 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s) e e' 
Instance details

Defined in Control.Lens.Tuple

Methods

_5 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s) e e' #

class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_6 :: Lens s t a b #

Instances

Instances details
Field6 (Plucker a) (Plucker a) a a 
Instance details

Defined in Linear.Plucker

Methods

_6 :: Lens (Plucker a) (Plucker a) a a #

6 <= n => Field6 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_6 :: Lens (V n a) (V n a) a a #

Field6 (a, b, c, d, e, f) (a, b, c, d, e, f') f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f) (a, b, c, d, e, f') f f' #

Field6 (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f' #

Field6 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f' #

Field6 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f', g, h, i, j) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f', g, h, i, j) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f', g, h, i, j, kk) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f', g, h, i, j, kk) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f', g, h, i, j, kk, l) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f', g, h, i, j, kk, l) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f', g, h, i, j, kk, l, m) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f', g, h, i, j, kk, l, m) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r) f f' #

Field6 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s) f f' 
Instance details

Defined in Control.Lens.Tuple

Methods

_6 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s) f f' #

class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_7 :: Lens s t a b #

Instances

Instances details
7 <= n => Field7 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_7 :: Lens (V n a) (V n a) a a #

Field7 (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g' #

Field7 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g' #

Field7 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g', h, i, j) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g', h, i, j) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g', h, i, j, kk) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g', h, i, j, kk) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g', h, i, j, kk, l) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g', h, i, j, kk, l) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g', h, i, j, kk, l, m) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g', h, i, j, kk, l, m) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r) g g' #

Field7 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s) g g' 
Instance details

Defined in Control.Lens.Tuple

Methods

_7 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s) g g' #

class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_8 :: Lens s t a b #

Instances

Instances details
8 <= n => Field8 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_8 :: Lens (V n a) (V n a) a a #

Field8 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h' #

Field8 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h', i, j) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h', i, j) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h', i, j, kk) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h', i, j, kk) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h', i, j, kk, l) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h', i, j, kk, l) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h', i, j, kk, l, m) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h', i, j, kk, l, m) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r) h h' #

Field8 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s) h h' 
Instance details

Defined in Control.Lens.Tuple

Methods

_8 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s) h h' #

class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where #

Minimal complete definition

Nothing

Methods

_9 :: Lens s t a b #

Instances

Instances details
9 <= n => Field9 (V n a) (V n a) a a 
Instance details

Defined in Linear.V

Methods

_9 :: Lens (V n a) (V n a) a a #

Field9 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i' #

Field9 (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i', j) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i', j) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i', j, kk) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk) (a, b, c, d, e, f, g, h, i', j, kk) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i', j, kk, l) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l) (a, b, c, d, e, f, g, h, i', j, kk, l) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i', j, kk, l, m) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m) (a, b, c, d, e, f, g, h, i', j, kk, l, m) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r) i i' #

Field9 (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s) i i' 
Instance details

Defined in Control.Lens.Tuple

Methods

_9 :: Lens (a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s) (a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s) i i' #

type AReview t b = Optic' (Tagged :: Type -> Type -> Type) Identity t b #

type As (a :: k2) = Equality' a a #

type Equality (s :: k1) (t :: k2) (a :: k1) (b :: k2) = forall k3 (p :: k1 -> k3 -> Type) (f :: k2 -> k3). p a (f b) -> p s (f t) #

type Equality' (s :: k2) (a :: k2) = Equality s s a a #

type Fold1 s a = forall (f :: Type -> Type). (Contravariant f, Apply f) => (a -> f a) -> s -> f s #

type IndexPreservingFold s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Applicative f) => p a (f a) -> p s (f s) #

type IndexPreservingFold1 s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Apply f) => p a (f a) -> p s (f s) #

type IndexPreservingGetter s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Contravariant f, Functor f) => p a (f a) -> p s (f s) #

type IndexPreservingLens s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Functor f) => p a (f b) -> p s (f t) #

type IndexPreservingSetter s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Settable f) => p a (f b) -> p s (f t) #

type IndexPreservingTraversal s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Applicative f) => p a (f b) -> p s (f t) #

type IndexPreservingTraversal1 s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Conjoined p, Apply f) => p a (f b) -> p s (f t) #

type IndexedFold1 i s a = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Contravariant f, Apply f) => p a (f a) -> s -> f s #

type IndexedLens' i s a = IndexedLens i s s a a #

type IndexedLensLike i (f :: k -> Type) s (t :: k) a (b :: k) = forall (p :: Type -> Type -> Type). Indexable i p => p a (f b) -> s -> f t #

type IndexedLensLike' i (f :: Type -> Type) s a = IndexedLensLike i f s s a a #

type IndexedSetter' i s a = IndexedSetter i s s a a #

type IndexedTraversal' i s a = IndexedTraversal i s s a a #

type IndexedTraversal1 i s t a b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Indexable i p, Apply f) => p a (f b) -> s -> f t #

type IndexedTraversal1' i s a = IndexedTraversal1 i s s a a #

type Iso' s a = Iso s s a a #

type Lens' s a = Lens s s a a #

type LensLike (f :: k -> Type) s (t :: k) a (b :: k) = (a -> f b) -> s -> f t #

type LensLike' (f :: Type -> Type) s a = LensLike f s s a a #

type Optic (p :: k -> k1 -> Type) (f :: k2 -> k1) (s :: k) (t :: k2) (a :: k) (b :: k2) = p a (f b) -> p s (f t) #

type Optic' (p :: k -> k1 -> Type) (f :: k -> k1) (s :: k) (a :: k) = Optic p f s s a a #

type Optical (p :: k -> k1 -> Type) (q :: k2 -> k1 -> Type) (f :: k3 -> k1) (s :: k2) (t :: k3) (a :: k) (b :: k3) = p a (f b) -> q s (f t) #

type Optical' (p :: k -> k1 -> Type) (q :: k -> k1 -> Type) (f :: k -> k1) (s :: k) (a :: k) = Optical p q f s s a a #

type Over (p :: k -> Type -> Type) (f :: k1 -> Type) s (t :: k1) (a :: k) (b :: k1) = p a (f b) -> s -> f t #

type Over' (p :: Type -> Type -> Type) (f :: Type -> Type) s a = Over p f s s a a #

type Prism' s a = Prism s s a a #

type Review t b = forall (p :: Type -> Type -> Type) (f :: Type -> Type). (Choice p, Bifunctor p, Settable f) => Optic' p f t b #

type Setter' s a = Setter s s a a #

type Simple (f :: k1 -> k1 -> k2 -> k2 -> k) (s :: k1) (a :: k2) = f s s a a #

type Traversal' s a = Traversal s s a a #

type Traversal1 s t a b = forall (f :: Type -> Type). Apply f => (a -> f b) -> s -> f t #

type Traversal1' s a = Traversal1 s s a a #

class Wrapped s => Rewrapped s t #

Instances

Instances details
t ~ NoMethodError => Rewrapped NoMethodError t 
Instance details

Defined in Control.Lens.Wrapped

t ~ PatternMatchFail => Rewrapped PatternMatchFail t 
Instance details

Defined in Control.Lens.Wrapped

t ~ RecConError => Rewrapped RecConError t 
Instance details

Defined in Control.Lens.Wrapped

t ~ RecSelError => Rewrapped RecSelError t 
Instance details

Defined in Control.Lens.Wrapped

t ~ RecUpdError => Rewrapped RecUpdError t 
Instance details

Defined in Control.Lens.Wrapped

t ~ TypeError => Rewrapped TypeError t 
Instance details

Defined in Control.Lens.Wrapped

t ~ All => Rewrapped All t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Any => Rewrapped Any t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped Errno t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CBool t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CChar t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CClock t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CDouble t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CFloat t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CInt t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CIntMax t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CIntPtr t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CLLong t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CLong t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CPtrdiff t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CSChar t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CSUSeconds t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CShort t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CSigAtomic t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CSize t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CTime t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CUChar t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CUInt t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CUIntMax t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CUIntPtr t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CULLong t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CULong t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CUSeconds t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CUShort t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CWchar t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ErrorCall => Rewrapped ErrorCall t 
Instance details

Defined in Control.Lens.Wrapped

t ~ AssertionFailed => Rewrapped AssertionFailed t 
Instance details

Defined in Control.Lens.Wrapped

t ~ CompactionFailed => Rewrapped CompactionFailed t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CBlkCnt t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CBlkSize t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CCc t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CClockId t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CDev t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CFsBlkCnt t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CFsFilCnt t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CGid t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CId t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CIno t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CKey t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CMode t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CNlink t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped COff t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CPid t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CRLim t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CSpeed t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CSsize t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CTcflag t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CTimer t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped CUid t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped Fd t 
Instance details

Defined in Control.Lens.Wrapped

t ~ IntSet => Rewrapped IntSet t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped Name Name 
Instance details

Defined in Diagrams.Core.Names

Rewrapped SegCount SegCount 
Instance details

Defined in Diagrams.Segment

t ~ ZipList b => Rewrapped (ZipList a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Comparison b => Rewrapped (Comparison a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Equivalence b => Rewrapped (Equivalence a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Predicate b => Rewrapped (Predicate a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Identity b => Rewrapped (Identity a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ First b => Rewrapped (First a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Last b => Rewrapped (Last a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Down b => Rewrapped (Down a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ First b => Rewrapped (First a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Last b => Rewrapped (Last a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Max b => Rewrapped (Max a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Min b => Rewrapped (Min a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ WrappedMonoid b => Rewrapped (WrappedMonoid a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Dual b => Rewrapped (Dual a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Endo b => Rewrapped (Endo a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Product b => Rewrapped (Product a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Sum b => Rewrapped (Sum a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ NonEmpty b => Rewrapped (NonEmpty a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Par1 p' => Rewrapped (Par1 p) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ IntMap a' => Rewrapped (IntMap a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Seq a' => Rewrapped (Seq a) t 
Instance details

Defined in Control.Lens.Wrapped

(t ~ Set a', Ord a) => Rewrapped (Set a) t 
Instance details

Defined in Control.Lens.Wrapped

Clip n1 ~ t => Rewrapped (Clip n2) t 
Instance details

Defined in Diagrams.TwoD.Path

(t ~ HashSet a', Hashable a, Eq a) => Rewrapped (HashSet a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Vector a' => Rewrapped (Vector a) t 
Instance details

Defined in Control.Lens.Wrapped

(Prim a, t ~ Vector a') => Rewrapped (Vector a) t 
Instance details

Defined in Control.Lens.Wrapped

(Storable a, t ~ Vector a') => Rewrapped (Vector a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Vector a' => Rewrapped (Vector a) t 
Instance details

Defined in Control.Lens.Wrapped

(Unbox a, t ~ Vector a') => Rewrapped (Vector a) t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped (Active a) (Active b) 
Instance details

Defined in Data.Active

Rewrapped (Duration a) (Duration b) 
Instance details

Defined in Data.Active

Rewrapped (Time a) (Time b) 
Instance details

Defined in Data.Active

Rewrapped (TransInv t) (TransInv t') 
Instance details

Defined in Diagrams.Core.Transform

Rewrapped (ArcLength n) (ArcLength n') 
Instance details

Defined in Diagrams.Segment

t ~ WrappedMonad m' a' => Rewrapped (WrappedMonad m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ArrowMonad m' a' => Rewrapped (ArrowMonad m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Op a' b' => Rewrapped (Op a b) t 
Instance details

Defined in Control.Lens.Wrapped

(t ~ Map k' a', Ord k) => Rewrapped (Map k a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ CatchT m' a' => Rewrapped (CatchT m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Alt f' a' => Rewrapped (Alt f a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ CoiterT w' a' => Rewrapped (CoiterT w a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ IterT m' a' => Rewrapped (IterT m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Point g b => Rewrapped (Point f a) t 
Instance details

Defined in Linear.Affine

t ~ MaybeApply f' a' => Rewrapped (MaybeApply f a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ WrappedApplicative f' a' => Rewrapped (WrappedApplicative f a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ MaybeT n b => Rewrapped (MaybeT m a) t 
Instance details

Defined in Control.Lens.Wrapped

(t ~ HashMap k' a', Hashable k, Eq k) => Rewrapped (HashMap k a) t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped (Envelope v n) (Envelope v' n') 
Instance details

Defined in Diagrams.Core.Envelope

Rewrapped (Style v n) (Style v' n') 
Instance details

Defined in Diagrams.Core.Style

Rewrapped (Trace v n) (Trace v' n') 
Instance details

Defined in Diagrams.Core.Trace

Rewrapped (Path v n) (Path v' n') 
Instance details

Defined in Diagrams.Path

Rewrapped (TotalOffset v n) (TotalOffset v' n') 
Instance details

Defined in Diagrams.Segment

Rewrapped (SegTree v n) (SegTree v' n') 
Instance details

Defined in Diagrams.Trail

Rewrapped (Trail v n) (Trail v' n') 
Instance details

Defined in Diagrams.Trail

t ~ WrappedArrow a' b' c' => Rewrapped (WrappedArrow a b c) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Kleisli m' a' b' => Rewrapped (Kleisli m a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Const a' x' => Rewrapped (Const a x) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Ap g b => Rewrapped (Ap f a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Alt g b => Rewrapped (Alt f a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Rec1 f' p' => Rewrapped (Rec1 f p) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Fix p' a' => Rewrapped (Fix p a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Join p' a' => Rewrapped (Join p a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ TracedT m' w' a' => Rewrapped (TracedT m w a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Compose f' g' a' => Rewrapped (Compose f g a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ComposeCF f' g' a' => Rewrapped (ComposeCF f g a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ComposeFC f' g' a' => Rewrapped (ComposeFC f g a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ApT f' g' a' => Rewrapped (ApT f g a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ CofreeT f' w' a' => Rewrapped (CofreeT f w a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ FreeT f' m' a' => Rewrapped (FreeT f m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Static f' a' b' => Rewrapped (Static f a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Tagged s' a' => Rewrapped (Tagged s a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Backwards g b => Rewrapped (Backwards f a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ExceptT e' m' a' => Rewrapped (ExceptT e m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ IdentityT n b => Rewrapped (IdentityT m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ReaderT s n b => Rewrapped (ReaderT r m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ StateT s' m' a' => Rewrapped (StateT s m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ StateT s' m' a' => Rewrapped (StateT s m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ WriterT w' m' a' => Rewrapped (WriterT w m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ WriterT w' m' a' => Rewrapped (WriterT w m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Constant a' b' => Rewrapped (Constant a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Reverse g b => Rewrapped (Reverse f a) t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped (Query v a m) (Query v' a' m') 
Instance details

Defined in Diagrams.Core.Query

Rewrapped (Trail' Line v n) (Trail' Line v' n') 
Instance details

Defined in Diagrams.Trail

t ~ K1 i' c' p' => Rewrapped (K1 i c p) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Costar f' d' c' => Rewrapped (Costar f d c) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Forget r' a' b' => Rewrapped (Forget r a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Star f' d' c' => Rewrapped (Star f d c) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ ContT r' m' a' => Rewrapped (ContT r m a) t 
Instance details

Defined in Control.Lens.Wrapped

Rewrapped (QDiagram b v n m) (QDiagram b' v' n' m') 
Instance details

Defined in Diagrams.Core.Types

Rewrapped (SubMap b v n m) (SubMap b' v' n' m') 
Instance details

Defined in Diagrams.Core.Types

t ~ Compose f' g' a' => Rewrapped (Compose f g a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ (f' :.: g') p' => Rewrapped ((f :.: g) p) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ M1 i' c' f' p' => Rewrapped (M1 i c f p) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Clown f' a' b' => Rewrapped (Clown f a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Flip p' a' b' => Rewrapped (Flip p a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Joker g' a' b' => Rewrapped (Joker g a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ WrappedBifunctor p' a' b' => Rewrapped (WrappedBifunctor p a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ WrappedArrow p' a' b' => Rewrapped (WrappedArrow p a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Semi m' a' b' => Rewrapped (Semi m a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ WrappedCategory k' a' b' => Rewrapped (WrappedCategory k6 a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Dual k' a' b' => Rewrapped (Dual k6 a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ RWST r' w' s' m' a' => Rewrapped (RWST r w s m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ RWST r' w' s' m' a' => Rewrapped (RWST r w s m a) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Tannen f' p' a' b' => Rewrapped (Tannen f p a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Cayley f' p' a' b' => Rewrapped (Cayley f p a b) t 
Instance details

Defined in Control.Lens.Wrapped

t ~ Biff p' f' g' a' b' => Rewrapped (Biff p f g a b) t 
Instance details

Defined in Control.Lens.Wrapped

class (Rewrapped s t, Rewrapped t s) => Rewrapping s t #

Instances

Instances details
(Rewrapped s t, Rewrapped t s) => Rewrapping s t 
Instance details

Defined in Control.Lens.Wrapped

type family Magnified (m :: Type -> Type) :: Type -> Type -> Type #

Instances

Instances details
type Magnified (IdentityT m) 
Instance details

Defined in Control.Lens.Zoom

type Magnified (ReaderT b m) 
Instance details

Defined in Control.Lens.Zoom

type Magnified (ReaderT b m) = Effect m
type Magnified ((->) b) 
Instance details

Defined in Control.Lens.Zoom

type Magnified ((->) b) = Const :: Type -> Type -> Type
type Magnified (RWST a w s m) 
Instance details

Defined in Control.Lens.Zoom

type Magnified (RWST a w s m) = EffectRWS w s m
type Magnified (RWST a w s m) 
Instance details

Defined in Control.Lens.Zoom

type Magnified (RWST a w s m) = EffectRWS w s m
type Magnified (RWST a w s m) 
Instance details

Defined in Control.Lens.Zoom

type Magnified (RWST a w s m) = EffectRWS w s m

class (Magnified m ~ Magnified n, MonadReader b m, MonadReader a n) => Magnify (m :: Type -> Type) (n :: Type -> Type) b a | m -> b, n -> a, m a -> n, n b -> m where #

Methods

magnify :: ((Functor (Magnified m c), Contravariant (Magnified m c)) => LensLike' (Magnified m c) a b) -> m c -> n c #

Instances

Instances details
Magnify m n b a => Magnify (IdentityT m) (IdentityT n) b a 
Instance details

Defined in Control.Lens.Zoom

Monad m => Magnify (ReaderT b m) (ReaderT a m) b a 
Instance details

Defined in Control.Lens.Zoom

Methods

magnify :: ((Functor (Magnified (ReaderT b m) c), Contravariant (Magnified (ReaderT b m) c)) => LensLike' (Magnified (ReaderT b m) c) a b) -> ReaderT b m c -> ReaderT a m c #

Magnify ((->) b) ((->) a) b a 
Instance details

Defined in Control.Lens.Zoom

Methods

magnify :: ((Functor (Magnified ((->) b) c), Contravariant (Magnified ((->) b) c)) => LensLike' (Magnified ((->) b) c) a b) -> (b -> c) -> a -> c #

(Monad m, Monoid w, MonadReader b (RWST b w s m)) => Magnify (RWST b w s m) (RWST a w s m) b a 
Instance details

Defined in Control.Lens.Zoom

Methods

magnify :: ((Functor (Magnified (RWST b w s m) c), Contravariant (Magnified (RWST b w s m) c)) => LensLike' (Magnified (RWST b w s m) c) a b) -> RWST b w s m c -> RWST a w s m c #

(Monad m, Monoid w) => Magnify (RWST b w s m) (RWST a w s m) b a 
Instance details

Defined in Control.Lens.Zoom

Methods

magnify :: ((Functor (Magnified (RWST b w s m) c), Contravariant (Magnified (RWST b w s m) c)) => LensLike' (Magnified (RWST b w s m) c) a b) -> RWST b w s m c -> RWST a w s m c #

(Monad m, Monoid w) => Magnify (RWST b w s m) (RWST a w s m) b a 
Instance details

Defined in Control.Lens.Zoom

Methods

magnify :: ((Functor (Magnified (RWST b w s m) c), Contravariant (Magnified (RWST b w s m) c)) => LensLike' (Magnified (RWST b w s m) c) a b) -> RWST b w s m c -> RWST a w s m c #

class (MonadState s m, MonadState t n) => Zoom (m :: Type -> Type) (n :: Type -> Type) s t | m -> s, n -> t, m t -> n, n s -> m where #

Methods

zoom :: LensLike' (Zoomed m c) t s -> m c -> n c #

Instances

Instances details
Zoom m n s t => Zoom (MaybeT m) (MaybeT n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (MaybeT m) c) t s -> MaybeT m c -> MaybeT n c #

(Functor f, Zoom m n s t) => Zoom (FreeT f m) (FreeT f n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (FreeT f m) c) t s -> FreeT f m c -> FreeT f n c #

Zoom m n s t => Zoom (ExceptT e m) (ExceptT e n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (ExceptT e m) c) t s -> ExceptT e m c -> ExceptT e n c #

Zoom m n s t => Zoom (IdentityT m) (IdentityT n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (IdentityT m) c) t s -> IdentityT m c -> IdentityT n c #

Zoom m n s t => Zoom (ReaderT e m) (ReaderT e n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (ReaderT e m) c) t s -> ReaderT e m c -> ReaderT e n c #

Monad z => Zoom (StateT s z) (StateT t z) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (StateT s z) c) t s -> StateT s z c -> StateT t z c #

Monad z => Zoom (StateT s z) (StateT t z) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (StateT s z) c) t s -> StateT s z c -> StateT t z c #

(Monoid w, Zoom m n s t) => Zoom (WriterT w m) (WriterT w n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (WriterT w m) c) t s -> WriterT w m c -> WriterT w n c #

(Monoid w, Zoom m n s t) => Zoom (WriterT w m) (WriterT w n) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (WriterT w m) c) t s -> WriterT w m c -> WriterT w n c #

(Monoid w, Monad z) => Zoom (RWST r w s z) (RWST r w t z) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (RWST r w s z) c) t s -> RWST r w s z c -> RWST r w t z c #

(Monoid w, Monad z) => Zoom (RWST r w s z) (RWST r w t z) s t 
Instance details

Defined in Control.Lens.Zoom

Methods

zoom :: LensLike' (Zoomed (RWST r w s z) c) t s -> RWST r w s z c -> RWST r w t z c #

type family Zoomed (m :: Type -> Type) :: Type -> Type -> Type #

Instances

Instances details
type Zoomed (MaybeT m) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (MaybeT m) = FocusingMay (Zoomed m)
type Zoomed (FreeT f m) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (FreeT f m) = FocusingFree f m (Zoomed m)
type Zoomed (ExceptT e m) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (ExceptT e m) = FocusingErr e (Zoomed m)
type Zoomed (IdentityT m) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (IdentityT m) = Zoomed m
type Zoomed (ReaderT e m) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (ReaderT e m) = Zoomed m
type Zoomed (StateT s z) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (StateT s z) = Focusing z
type Zoomed (StateT s z) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (StateT s z) = Focusing z
type Zoomed (WriterT w m) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (WriterT w m) = FocusingPlus w (Zoomed m)
type Zoomed (WriterT w m) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (WriterT w m) = FocusingPlus w (Zoomed m)
type Zoomed (RWST r w s z) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (RWST r w s z) = FocusingWith w z
type Zoomed (RWST r w s z) 
Instance details

Defined in Control.Lens.Zoom

type Zoomed (RWST r w s z) = FocusingWith w z

class Additive (Diff p) => Affine (p :: Type -> Type) where #

Minimal complete definition

(.-.), (.+^)

Associated Types

type Diff (p :: Type -> Type) :: Type -> Type #

Methods

(.-.) :: Num a => p a -> p a -> Diff p a #

(.+^) :: Num a => p a -> Diff p a -> p a #

(.-^) :: Num a => p a -> Diff p a -> p a #

Instances

Instances details
Affine Time 
Instance details

Defined in Data.Active

Associated Types

type Diff Time 
Instance details

Defined in Data.Active

Methods

(.-.) :: Num a => Time a -> Time a -> Diff Time a #

(.+^) :: Num a => Time a -> Diff Time a -> Time a #

(.-^) :: Num a => Time a -> Diff Time a -> Time a #

Affine ZipList 
Instance details

Defined in Linear.Affine

Associated Types

type Diff ZipList 
Instance details

Defined in Linear.Affine

Methods

(.-.) :: Num a => ZipList a -> ZipList a -> Diff ZipList a #

(.+^) :: Num a => ZipList a -> Diff ZipList a -> ZipList a #

(.-^) :: Num a => ZipList a -> Diff ZipList a -> ZipList a #

Affine Complex 
Instance details

Defined in Linear.Affine

Associated Types

type Diff Complex 
Instance details

Defined in Linear.Affine

Methods

(.-.) :: Num a => Complex a -> Complex a -> Diff Complex a #

(.+^) :: Num a => Complex a -> Diff Complex a -> Complex a #

(.-^) :: Num a => Complex a -> Diff Complex a -> Complex a #

Affine Identity 
Instance details

Defined in Linear.Affine

Associated Types

type Diff Identity 
Instance details

Defined in Linear.Affine

Methods

(.-.) :: Num a => Identity a -> Identity a -> Diff Identity a #

(.+^) :: Num a => Identity a -> Diff Identity a -> Identity a #

(.-^) :: Num a => Identity a -> Diff Identity a -> Identity a #

Affine IntMap 
Instance details

Defined in Linear.Affine

Associated Types

type Diff IntMap 
Instance details

Defined in Linear.Affine

Methods

(.-.) :: Num a => IntMap a -> IntMap a -> Diff IntMap a #

(.+^) :: Num a => IntMap a -> Diff IntMap a -> IntMap a #

(.-^) :: Num a => IntMap a -> Diff IntMap a -> IntMap a #

Affine Plucker 
Instance details

Defined in Linear.Affine

Associated Types

type Diff Plucker 
Instance details

Defined in Linear.Affine

type Diff Plucker = Plucker

Methods

(.-.) :: Num a => Plucker a -> Plucker a -> Diff Plucker a #

(.+^) :: Num a => Plucker a -> Diff Plucker a -> Plucker a #

(.-^) :: Num a => Plucker a -> Diff Plucker a -> Plucker a #

Affine Quaternion 
Instance details

Defined in Linear.Affine

Associated Types

type Diff Quaternion 
Instance details

Defined in Linear.Affine

type Diff Quaternion = Quaternion

Methods

(.-.) :: Num a => Quaternion a -> Quaternion a -> Diff Quaternion a #

(.+^) :: Num a => Quaternion a -> Diff Quaternion a -> Quaternion a #

(.-^) :: Num a => Quaternion a -> Diff Quaternion a -> Quaternion a #

Affine V0 
Instance details

Defined in Linear.Affine

Associated Types

type Diff V0 
Instance details

Defined in Linear.Affine

type Diff V0 = V0

Methods

(.-.) :: Num a => V0 a -> V0 a -> Diff V0 a #

(.+^) :: Num a => V0 a -> Diff V0 a -> V0 a #

(.-^) :: Num a => V0 a -> Diff V0 a -> V0 a #

Affine V1 
Instance details

Defined in Linear.Affine

Associated Types

type Diff V1 
Instance details

Defined in Linear.Affine

type Diff V1 = V1

Methods

(.-.) :: Num a => V1 a -> V1 a -> Diff V1 a #

(.+^) :: Num a => V1 a -> Diff V1 a -> V1 a #

(.-^) :: Num a => V1 a -> Diff V1 a -> V1 a #

Affine V2 
Instance details

Defined in Linear.Affine

Associated Types

type Diff V2 
Instance details

Defined in Linear.Affine

type Diff V2 = V2

Methods

(.-.) :: Num a => V2 a -> V2 a -> Diff V2 a #

(.+^) :: Num a => V2 a -> Diff V2 a -> V2 a #

(.-^) :: Num a => V2 a -> Diff V2 a -> V2 a #

Affine V3 
Instance details

Defined in Linear.Affine

Associated Types

type Diff V3 
Instance details

Defined in Linear.Affine

type Diff V3 = V3

Methods

(.-.) :: Num a => V3 a -> V3 a -> Diff V3 a #

(.+^) :: Num a => V3 a -> Diff V3 a -> V3 a #

(.-^) :: Num a => V3 a -> Diff V3 a -> V3 a #

Affine V4 
Instance details

Defined in Linear.Affine

Associated Types

type Diff V4 
Instance details

Defined in Linear.Affine

type Diff V4 = V4

Methods

(.-.) :: Num a => V4 a -> V4 a -> Diff V4 a #

(.+^) :: Num a => V4 a -> Diff V4 a -> V4 a #

(.-^) :: Num a => V4 a -> Diff V4 a -> V4 a #

Affine Vector 
Instance details

Defined in Linear.Affine

Associated Types

type Diff Vector 
Instance details

Defined in Linear.Affine

type Diff Vector = Vector

Methods

(.-.) :: Num a => Vector a -> Vector a -> Diff Vector a #

(.+^) :: Num a => Vector a -> Diff Vector a -> Vector a #

(.-^) :: Num a => Vector a -> Diff Vector a -> Vector a #

Affine Maybe 
Instance details

Defined in Linear.Affine

Associated Types

type Diff Maybe 
Instance details

Defined in Linear.Affine

Methods

(.-.) :: Num a => Maybe a -> Maybe a -> Diff Maybe a #

(.+^) :: Num a => Maybe a -> Diff Maybe a -> Maybe a #

(.-^) :: Num a => Maybe a -> Diff Maybe a -> Maybe a #

Affine [] 
Instance details

Defined in Linear.Affine

Associated Types

type Diff [] 
Instance details

Defined in Linear.Affine

type Diff [] = []

Methods

(.-.) :: Num a => [a] -> [a] -> Diff [] a #

(.+^) :: Num a => [a] -> Diff [] a -> [a] #

(.-^) :: Num a => [a] -> Diff [] a -> [a] #

Ord k => Affine (Map k) 
Instance details

Defined in Linear.Affine

Associated Types

type Diff (Map k) 
Instance details

Defined in Linear.Affine

type Diff (Map k) = Map k

Methods

(.-.) :: Num a => Map k a -> Map k a -> Diff (Map k) a #

(.+^) :: Num a => Map k a -> Diff (Map k) a -> Map k a #

(.-^) :: Num a => Map k a -> Diff (Map k) a -> Map k a #

Additive f => Affine (Point f) 
Instance details

Defined in Linear.Affine

Associated Types

type Diff (Point f) 
Instance details

Defined in Linear.Affine

type Diff (Point f) = f

Methods

(.-.) :: Num a => Point f a -> Point f a -> Diff (Point f) a #

(.+^) :: Num a => Point f a -> Diff (Point f) a -> Point f a #

(.-^) :: Num a => Point f a -> Diff (Point f) a -> Point f a #

(Eq k, Hashable k) => Affine (HashMap k) 
Instance details

Defined in Linear.Affine

Associated Types

type Diff (HashMap k) 
Instance details

Defined in Linear.Affine

type Diff (HashMap k) = HashMap k

Methods

(.-.) :: Num a => HashMap k a -> HashMap k a -> Diff (HashMap k) a #

(.+^) :: Num a => HashMap k a -> Diff (HashMap k) a -> HashMap k a #

(.-^) :: Num a => HashMap k a -> Diff (HashMap k) a -> HashMap k a #

Dim n => Affine (V n) 
Instance details

Defined in Linear.Affine

Associated Types

type Diff (V n) 
Instance details

Defined in Linear.Affine

type Diff (V n) = V n

Methods

(.-.) :: Num a => V n a -> V n a -> Diff (V n) a #

(.+^) :: Num a => V n a -> Diff (V n) a -> V n a #

(.-^) :: Num a => V n a -> Diff (V n) a -> V n a #

(Affine f, Affine g) => Affine (Product f g) 
Instance details

Defined in Linear.Affine

Associated Types

type Diff (Product f g) 
Instance details

Defined in Linear.Affine

type Diff (Product f g) = Product (Diff f) (Diff g)

Methods

(.-.) :: Num a => Product f g a -> Product f g a -> Diff (Product f g) a #

(.+^) :: Num a => Product f g a -> Diff (Product f g) a -> Product f g a #

(.-^) :: Num a => Product f g a -> Diff (Product f g) a -> Product f g a #

Affine ((->) b) 
Instance details

Defined in Linear.Affine

Associated Types

type Diff ((->) b) 
Instance details

Defined in Linear.Affine

type Diff ((->) b) = (->) b

Methods

(.-.) :: Num a => (b -> a) -> (b -> a) -> Diff ((->) b) a #

(.+^) :: Num a => (b -> a) -> Diff ((->) b) a -> b -> a #

(.-^) :: Num a => (b -> a) -> Diff ((->) b) a -> b -> a #

type family Diff (p :: Type -> Type) :: Type -> Type #

Instances

Instances details
type Diff Time 
Instance details

Defined in Data.Active

type Diff ZipList 
Instance details

Defined in Linear.Affine

type Diff Complex 
Instance details

Defined in Linear.Affine

type Diff Identity 
Instance details

Defined in Linear.Affine

type Diff IntMap 
Instance details

Defined in Linear.Affine

type Diff Plucker 
Instance details

Defined in Linear.Affine

type Diff Plucker = Plucker
type Diff Quaternion 
Instance details

Defined in Linear.Affine

type Diff Quaternion = Quaternion
type Diff V0 
Instance details

Defined in Linear.Affine

type Diff V0 = V0
type Diff V1 
Instance details

Defined in Linear.Affine

type Diff V1 = V1
type Diff V2 
Instance details

Defined in Linear.Affine

type Diff V2 = V2
type Diff V3 
Instance details

Defined in Linear.Affine

type Diff V3 = V3
type Diff V4 
Instance details

Defined in Linear.Affine

type Diff V4 = V4
type Diff Vector 
Instance details

Defined in Linear.Affine

type Diff Vector = Vector
type Diff Maybe 
Instance details

Defined in Linear.Affine

type Diff [] 
Instance details

Defined in Linear.Affine

type Diff [] = []
type Diff (Map k) 
Instance details

Defined in Linear.Affine

type Diff (Map k) = Map k
type Diff (Point f) 
Instance details

Defined in Linear.Affine

type Diff (Point f) = f
type Diff (HashMap k) 
Instance details

Defined in Linear.Affine

type Diff (HashMap k) = HashMap k
type Diff (V n) 
Instance details

Defined in Linear.Affine

type Diff (V n) = V n
type Diff (Product f g) 
Instance details

Defined in Linear.Affine

type Diff (Product f g) = Product (Diff f) (Diff g)
type Diff ((->) b) 
Instance details

Defined in Linear.Affine

type Diff ((->) b) = (->) b

class R1 t => R2 (t :: Type -> Type) where #

Minimal complete definition

_xy

Methods

_y :: Lens' (t a) a #

_xy :: Lens' (t a) (V2 a) #

Instances

Instances details
R2 Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

_y :: Lens' (Quaternion a) a #

_xy :: Lens' (Quaternion a) (V2 a) #

R2 V2 
Instance details

Defined in Linear.V2

Methods

_y :: Lens' (V2 a) a #

_xy :: Lens' (V2 a) (V2 a) #

R2 V3 
Instance details

Defined in Linear.V3

Methods

_y :: Lens' (V3 a) a #

_xy :: Lens' (V3 a) (V2 a) #

R2 V4 
Instance details

Defined in Linear.V4

Methods

_y :: Lens' (V4 a) a #

_xy :: Lens' (V4 a) (V2 a) #

R2 f => R2 (Point f) 
Instance details

Defined in Linear.Affine

Methods

_y :: Lens' (Point f a) a #

_xy :: Lens' (Point f a) (V2 a) #

class R2 t => R3 (t :: Type -> Type) where #

Methods

_z :: Lens' (t a) a #

_xyz :: Lens' (t a) (V3 a) #

Instances

Instances details
R3 Quaternion 
Instance details

Defined in Linear.Quaternion

Methods

_z :: Lens' (Quaternion a) a #

_xyz :: Lens' (Quaternion a) (V3 a) #

R3 V3 
Instance details

Defined in Linear.V3

Methods

_z :: Lens' (V3 a) a #

_xyz :: Lens' (V3 a) (V3 a) #

R3 V4 
Instance details

Defined in Linear.V4

Methods

_z :: Lens' (V4 a) a #

_xyz :: Lens' (V4 a) (V3 a) #

R3 f => R3 (Point f) 
Instance details

Defined in Linear.Affine

Methods

_z :: Lens' (Point f a) a #

_xyz :: Lens' (Point f a) (V3 a) #

data V3 a #

Constructors

V3 !a !a !a 

Instances

Instances details
Representable V3 
Instance details

Defined in Linear.V3

Associated Types

type Rep V3 
Instance details

Defined in Linear.V3

type Rep V3 = E V3

Methods

tabulate :: (Rep V3 -> a) -> V3 a

index :: V3 a -> Rep V3 -> a

MonadFix V3 
Instance details

Defined in Linear.V3

Methods

mfix :: (a -> V3 a) -> V3 a #

MonadZip V3 
Instance details

Defined in Linear.V3

Methods

mzip :: V3 a -> V3 b -> V3 (a, b) #

mzipWith :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

munzip :: V3 (a, b) -> (V3 a, V3 b) #

Foldable V3 
Instance details

Defined in Linear.V3

Methods

fold :: Monoid m => V3 m -> m #

foldMap :: Monoid m => (a -> m) -> V3 a -> m #

foldMap' :: Monoid m => (a -> m) -> V3 a -> m #

foldr :: (a -> b -> b) -> b -> V3 a -> b #

foldr' :: (a -> b -> b) -> b -> V3 a -> b #

foldl :: (b -> a -> b) -> b -> V3 a -> b #

foldl' :: (b -> a -> b) -> b -> V3 a -> b #

foldr1 :: (a -> a -> a) -> V3 a -> a #

foldl1 :: (a -> a -> a) -> V3 a -> a #

toList :: V3 a -> [a] #

null :: V3 a -> Bool #

length :: V3 a -> Int #

elem :: Eq a => a -> V3 a -> Bool #

maximum :: Ord a => V3 a -> a #

minimum :: Ord a => V3 a -> a #

sum :: Num a => V3 a -> a #

product :: Num a => V3 a -> a #

Foldable1 V3 
Instance details

Defined in Linear.V3

Methods

fold1 :: Semigroup m => V3 m -> m #

foldMap1 :: Semigroup m => (a -> m) -> V3 a -> m #

foldMap1' :: Semigroup m => (a -> m) -> V3 a -> m #

toNonEmpty :: V3 a -> NonEmpty a #

maximum :: Ord a => V3 a -> a #

minimum :: Ord a => V3 a -> a #

head :: V3 a -> a #

last :: V3 a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> V3 a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> V3 a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> V3 a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> V3 a -> b #

Eq1 V3 
Instance details

Defined in Linear.V3

Methods

liftEq :: (a -> b -> Bool) -> V3 a -> V3 b -> Bool #

Ord1 V3 
Instance details

Defined in Linear.V3

Methods

liftCompare :: (a -> b -> Ordering) -> V3 a -> V3 b -> Ordering #

Read1 V3 
Instance details

Defined in Linear.V3

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (V3 a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [V3 a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (V3 a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [V3 a] #

Show1 V3 
Instance details

Defined in Linear.V3

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> V3 a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [V3 a] -> ShowS #

Traversable V3 
Instance details

Defined in Linear.V3

Methods

traverse :: Applicative f => (a -> f b) -> V3 a -> f (V3 b) #

sequenceA :: Applicative f => V3 (f a) -> f (V3 a) #

mapM :: Monad m => (a -> m b) -> V3 a -> m (V3 b) #

sequence :: Monad m => V3 (m a) -> m (V3 a) #

Applicative V3 
Instance details

Defined in Linear.V3

Methods

pure :: a -> V3 a #

(<*>) :: V3 (a -> b) -> V3 a -> V3 b #

liftA2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

(*>) :: V3 a -> V3 b -> V3 b #

(<*) :: V3 a -> V3 b -> V3 a #

Functor V3 
Instance details

Defined in Linear.V3

Methods

fmap :: (a -> b) -> V3 a -> V3 b #

(<$) :: a -> V3 b -> V3 a #

Monad V3 
Instance details

Defined in Linear.V3

Methods

(>>=) :: V3 a -> (a -> V3 b) -> V3 b #

(>>) :: V3 a -> V3 b -> V3 b #

return :: a -> V3 a #

Serial1 V3 
Instance details

Defined in Linear.V3

Methods

serializeWith :: MonadPut m => (a -> m ()) -> V3 a -> m ()

deserializeWith :: MonadGet m => m a -> m (V3 a)

Distributive V3 
Instance details

Defined in Linear.V3

Methods

distribute :: Functor f => f (V3 a) -> V3 (f a)

collect :: Functor f => (a -> V3 b) -> f a -> V3 (f b)

distributeM :: Monad m => m (V3 a) -> V3 (m a)

collectM :: Monad m => (a -> V3 b) -> m a -> V3 (m b)

Hashable1 V3 
Instance details

Defined in Linear.V3

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> V3 a -> Int

Affine V3 
Instance details

Defined in Linear.Affine

Associated Types

type Diff V3 
Instance details

Defined in Linear.Affine

type Diff V3 = V3

Methods

(.-.) :: Num a => V3 a -> V3 a -> Diff V3 a #

(.+^) :: Num a => V3 a -> Diff V3 a -> V3 a #

(.-^) :: Num a => V3 a -> Diff V3 a -> V3 a #

Metric V3 
Instance details

Defined in Linear.V3

Methods

dot :: Num a => V3 a -> V3 a -> a #

quadrance :: Num a => V3 a -> a #

qd :: Num a => V3 a -> V3 a -> a #

distance :: Floating a => V3 a -> V3 a -> a #

norm :: Floating a => V3 a -> a #

signorm :: Floating a => V3 a -> V3 a #

Finite V3 
Instance details

Defined in Linear.V3

Associated Types

type Size V3 
Instance details

Defined in Linear.V3

type Size V3 = 3

Methods

toV :: V3 a -> V (Size V3) a

fromV :: V (Size V3) a -> V3 a

R1 V3 
Instance details

Defined in Linear.V3

Methods

_x :: Lens' (V3 a) a #

R2 V3 
Instance details

Defined in Linear.V3

Methods

_y :: Lens' (V3 a) a #

_xy :: Lens' (V3 a) (V2 a) #

R3 V3 
Instance details

Defined in Linear.V3

Methods

_z :: Lens' (V3 a) a #

_xyz :: Lens' (V3 a) (V3 a) #

Additive V3 
Instance details

Defined in Linear.V3

Methods

zero :: Num a => V3 a #

(^+^) :: Num a => V3 a -> V3 a -> V3 a #

(^-^) :: Num a => V3 a -> V3 a -> V3 a #

lerp :: Num a => a -> V3 a -> V3 a -> V3 a #

liftU2 :: (a -> a -> a) -> V3 a -> V3 a -> V3 a #

liftI2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

Apply V3 
Instance details

Defined in Linear.V3

Methods

(<.>) :: V3 (a -> b) -> V3 a -> V3 b

(.>) :: V3 a -> V3 b -> V3 b

(<.) :: V3 a -> V3 b -> V3 a

liftF2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c

Bind V3 
Instance details

Defined in Linear.V3

Methods

(>>-) :: V3 a -> (a -> V3 b) -> V3 b

join :: V3 (V3 a) -> V3 a

Traversable1 V3 
Instance details

Defined in Linear.V3

Methods

traverse1 :: Apply f => (a -> f b) -> V3 a -> f (V3 b) #

sequence1 :: Apply f => V3 (f b) -> f (V3 b)

Generic1 V3 
Instance details

Defined in Linear.V3

Associated Types

type Rep1 V3 
Instance details

Defined in Linear.V3

Methods

from1 :: V3 a -> Rep1 V3 a #

to1 :: Rep1 V3 a -> V3 a #

Lift a => Lift (V3 a :: Type) 
Instance details

Defined in Linear.V3

Methods

lift :: Quote m => V3 a -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => V3 a -> Code m (V3 a) #

Unbox a => Vector Vector (V3 a) 
Instance details

Defined in Linear.V3

Methods

basicUnsafeFreeze :: Mutable Vector s (V3 a) -> ST s (Vector (V3 a))

basicUnsafeThaw :: Vector (V3 a) -> ST s (Mutable Vector s (V3 a))

basicLength :: Vector (V3 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V3 a) -> Vector (V3 a)

basicUnsafeIndexM :: Vector (V3 a) -> Int -> Box (V3 a)

basicUnsafeCopy :: Mutable Vector s (V3 a) -> Vector (V3 a) -> ST s ()

elemseq :: Vector (V3 a) -> V3 a -> b -> b

Unbox a => MVector MVector (V3 a) 
Instance details

Defined in Linear.V3

Methods

basicLength :: MVector s (V3 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V3 a) -> MVector s (V3 a)

basicOverlaps :: MVector s (V3 a) -> MVector s (V3 a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V3 a))

basicInitialize :: MVector s (V3 a) -> ST s ()

basicUnsafeReplicate :: Int -> V3 a -> ST s (MVector s (V3 a))

basicUnsafeRead :: MVector s (V3 a) -> Int -> ST s (V3 a)

basicUnsafeWrite :: MVector s (V3 a) -> Int -> V3 a -> ST s ()

basicClear :: MVector s (V3 a) -> ST s ()

basicSet :: MVector s (V3 a) -> V3 a -> ST s ()

basicUnsafeCopy :: MVector s (V3 a) -> MVector s (V3 a) -> ST s ()

basicUnsafeMove :: MVector s (V3 a) -> MVector s (V3 a) -> ST s ()

basicUnsafeGrow :: MVector s (V3 a) -> Int -> ST s (MVector s (V3 a))

Data a => Data (V3 a) 
Instance details

Defined in Linear.V3

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V3 a -> c (V3 a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V3 a) #

toConstr :: V3 a -> Constr #

dataTypeOf :: V3 a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V3 a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V3 a)) #

gmapT :: (forall b. Data b => b -> b) -> V3 a -> V3 a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r #

gmapQ :: (forall d. Data d => d -> u) -> V3 a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V3 a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

Storable a => Storable (V3 a) 
Instance details

Defined in Linear.V3

Methods

sizeOf :: V3 a -> Int #

alignment :: V3 a -> Int #

peekElemOff :: Ptr (V3 a) -> Int -> IO (V3 a) #

pokeElemOff :: Ptr (V3 a) -> Int -> V3 a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (V3 a) #

pokeByteOff :: Ptr b -> Int -> V3 a -> IO () #

peek :: Ptr (V3 a) -> IO (V3 a) #

poke :: Ptr (V3 a) -> V3 a -> IO () #

Monoid a => Monoid (V3 a) 
Instance details

Defined in Linear.V3

Methods

mempty :: V3 a #

mappend :: V3 a -> V3 a -> V3 a #

mconcat :: [V3 a] -> V3 a #

Semigroup a => Semigroup (V3 a) 
Instance details

Defined in Linear.V3

Methods

(<>) :: V3 a -> V3 a -> V3 a #

sconcat :: NonEmpty (V3 a) -> V3 a #

stimes :: Integral b => b -> V3 a -> V3 a #

Bounded a => Bounded (V3 a) 
Instance details

Defined in Linear.V3

Methods

minBound :: V3 a #

maxBound :: V3 a #

Floating a => Floating (V3 a) 
Instance details

Defined in Linear.V3

Methods

pi :: V3 a #

exp :: V3 a -> V3 a #

log :: V3 a -> V3 a #

sqrt :: V3 a -> V3 a #

(**) :: V3 a -> V3 a -> V3 a #

logBase :: V3 a -> V3 a -> V3 a #

sin :: V3 a -> V3 a #

cos :: V3 a -> V3 a #

tan :: V3 a -> V3 a #

asin :: V3 a -> V3 a #

acos :: V3 a -> V3 a #

atan :: V3 a -> V3 a #

sinh :: V3 a -> V3 a #

cosh :: V3 a -> V3 a #

tanh :: V3 a -> V3 a #

asinh :: V3 a -> V3 a #

acosh :: V3 a -> V3 a #

atanh :: V3 a -> V3 a #

log1p :: V3 a -> V3 a #

expm1 :: V3 a -> V3 a #

log1pexp :: V3 a -> V3 a #

log1mexp :: V3 a -> V3 a #

Generic (V3 a) 
Instance details

Defined in Linear.V3

Associated Types

type Rep (V3 a) 
Instance details

Defined in Linear.V3

Methods

from :: V3 a -> Rep (V3 a) x #

to :: Rep (V3 a) x -> V3 a #

Ix a => Ix (V3 a) 
Instance details

Defined in Linear.V3

Methods

range :: (V3 a, V3 a) -> [V3 a] #

index :: (V3 a, V3 a) -> V3 a -> Int #

unsafeIndex :: (V3 a, V3 a) -> V3 a -> Int #

inRange :: (V3 a, V3 a) -> V3 a -> Bool #

rangeSize :: (V3 a, V3 a) -> Int #

unsafeRangeSize :: (V3 a, V3 a) -> Int #

Num a => Num (V3 a) 
Instance details

Defined in Linear.V3

Methods

(+) :: V3 a -> V3 a -> V3 a #

(-) :: V3 a -> V3 a -> V3 a #

(*) :: V3 a -> V3 a -> V3 a #

negate :: V3 a -> V3 a #

abs :: V3 a -> V3 a #

signum :: V3 a -> V3 a #

fromInteger :: Integer -> V3 a #

Read a => Read (V3 a) 
Instance details

Defined in Linear.V3

Fractional a => Fractional (V3 a) 
Instance details

Defined in Linear.V3

Methods

(/) :: V3 a -> V3 a -> V3 a #

recip :: V3 a -> V3 a #

fromRational :: Rational -> V3 a #

Show a => Show (V3 a) 
Instance details

Defined in Linear.V3

Methods

showsPrec :: Int -> V3 a -> ShowS #

show :: V3 a -> String #

showList :: [V3 a] -> ShowS #

Binary a => Binary (V3 a) 
Instance details

Defined in Linear.V3

Methods

put :: V3 a -> Put #

get :: Get (V3 a) #

putList :: [V3 a] -> Put #

Serial a => Serial (V3 a) 
Instance details

Defined in Linear.V3

Methods

serialize :: MonadPut m => V3 a -> m ()

deserialize :: MonadGet m => m (V3 a)

Serialize a => Serialize (V3 a) 
Instance details

Defined in Linear.V3

Methods

put :: Putter (V3 a)

get :: Get (V3 a)

NFData a => NFData (V3 a) 
Instance details

Defined in Linear.V3

Methods

rnf :: V3 a -> () #

Coordinates (V3 n) 
Instance details

Defined in Diagrams.Coordinates

Associated Types

type FinalCoord (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V3 n) = n
type PrevDim (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V3 n) = V2 n
type Decomposition (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V3 n) = (n :& n) :& n

Methods

(^&) :: PrevDim (V3 n) -> FinalCoord (V3 n) -> V3 n #

pr :: PrevDim (V3 n) -> FinalCoord (V3 n) -> V3 n #

coords :: V3 n -> Decomposition (V3 n) #

Eq a => Eq (V3 a) 
Instance details

Defined in Linear.V3

Methods

(==) :: V3 a -> V3 a -> Bool #

(/=) :: V3 a -> V3 a -> Bool #

Ord a => Ord (V3 a) 
Instance details

Defined in Linear.V3

Methods

compare :: V3 a -> V3 a -> Ordering #

(<) :: V3 a -> V3 a -> Bool #

(<=) :: V3 a -> V3 a -> Bool #

(>) :: V3 a -> V3 a -> Bool #

(>=) :: V3 a -> V3 a -> Bool #

max :: V3 a -> V3 a -> V3 a #

min :: V3 a -> V3 a -> V3 a #

Hashable a => Hashable (V3 a) 
Instance details

Defined in Linear.V3

Methods

hashWithSalt :: Int -> V3 a -> Int

hash :: V3 a -> Int

Ixed (V3 a) 
Instance details

Defined in Linear.V3

Methods

ix :: Index (V3 a) -> Traversal' (V3 a) (IxValue (V3 a)) #

Epsilon a => Epsilon (V3 a) 
Instance details

Defined in Linear.V3

Methods

nearZero :: V3 a -> Bool

Random a => Random (V3 a) 
Instance details

Defined in Linear.V3

Methods

randomR :: RandomGen g => (V3 a, V3 a) -> g -> (V3 a, g)

random :: RandomGen g => g -> (V3 a, g)

randomRs :: RandomGen g => (V3 a, V3 a) -> g -> [V3 a]

randoms :: RandomGen g => g -> [V3 a]

Uniform a => Uniform (V3 a) 
Instance details

Defined in Linear.V3

Methods

uniformM :: StatefulGen g m => g -> m (V3 a)

UniformRange a => UniformRange (V3 a) 
Instance details

Defined in Linear.V3

Methods

uniformRM :: StatefulGen g m => (V3 a, V3 a) -> g -> m (V3 a)

Unbox a => Unbox (V3 a) 
Instance details

Defined in Linear.V3

FoldableWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

ifoldMap :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifoldMap' :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifoldr :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

ifoldr' :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl' :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

FunctorWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

imap :: (E V3 -> a -> b) -> V3 a -> V3 b #

TraversableWithIndex (E V3) V3 
Instance details

Defined in Linear.V3

Methods

itraverse :: Applicative f => (E V3 -> a -> f b) -> V3 a -> f (V3 b) #

Each (V3 a) (V3 b) a b 
Instance details

Defined in Linear.V3

Methods

each :: Traversal (V3 a) (V3 b) a b #

Field1 (V3 a) (V3 a) a a 
Instance details

Defined in Linear.V3

Methods

_1 :: Lens (V3 a) (V3 a) a a #

Field2 (V3 a) (V3 a) a a 
Instance details

Defined in Linear.V3

Methods

_2 :: Lens (V3 a) (V3 a) a a #

Field3 (V3 a) (V3 a) a a 
Instance details

Defined in Linear.V3

Methods

_3 :: Lens (V3 a) (V3 a) a a #

TypeableFloat n => Traced (BoundingBox V3 n) 
Instance details

Defined in Diagrams.BoundingBox

Methods

getTrace :: BoundingBox V3 n -> Trace (V (BoundingBox V3 n)) (N (BoundingBox V3 n)) #

type Rep V3 
Instance details

Defined in Linear.V3

type Rep V3 = E V3
type Diff V3 
Instance details

Defined in Linear.Affine

type Diff V3 = V3
type Size V3 
Instance details

Defined in Linear.V3

type Size V3 = 3
type Rep1 V3 
Instance details

Defined in Linear.V3

data MVector s (V3 a) 
Instance details

Defined in Linear.V3

data MVector s (V3 a) = MV_V3 !Int !(MVector s a)
type Rep (V3 a) 
Instance details

Defined in Linear.V3

type N (V3 n) 
Instance details

Defined in Diagrams.ThreeD.Types

type N (V3 n) = n
type V (V3 n) 
Instance details

Defined in Diagrams.ThreeD.Types

type V (V3 n) = V3
type Decomposition (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type Decomposition (V3 n) = (n :& n) :& n
type FinalCoord (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type FinalCoord (V3 n) = n
type PrevDim (V3 n) 
Instance details

Defined in Diagrams.Coordinates

type PrevDim (V3 n) = V2 n
type Index (V3 a) 
Instance details

Defined in Linear.V3

type Index (V3 a) = E V3
type IxValue (V3 a) 
Instance details

Defined in Linear.V3

type IxValue (V3 a) = a
data Vector (V3 a) 
Instance details

Defined in Linear.V3

data Vector (V3 a) = V_V3 !Int !(Vector a)

class Profunctor p => Choice (p :: Type -> Type -> Type) where #

Minimal complete definition

left' | right'

Methods

left' :: p a b -> p (Either a c) (Either b c) #

right' :: p a b -> p (Either c a) (Either c b) #

Instances

Instances details
Choice ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

left' :: ReifiedFold a b -> ReifiedFold (Either a c) (Either b c) #

right' :: ReifiedFold a b -> ReifiedFold (Either c a) (Either c b) #

Choice ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

left' :: ReifiedGetter a b -> ReifiedGetter (Either a c) (Either b c) #

right' :: ReifiedGetter a b -> ReifiedGetter (Either c a) (Either c b) #

Monad m => Choice (Kleisli m) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Kleisli m a b -> Kleisli m (Either a c) (Either b c) #

right' :: Kleisli m a b -> Kleisli m (Either c a) (Either c b) #

Choice (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

left' :: Indexed i a b -> Indexed i (Either a c) (Either b c) #

right' :: Indexed i a b -> Indexed i (Either c a) (Either c b) #

Choice (PastroSum p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: PastroSum p a b -> PastroSum p (Either a c) (Either b c) #

right' :: PastroSum p a b -> PastroSum p (Either c a) (Either c b) #

Profunctor p => Choice (TambaraSum p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: TambaraSum p a b -> TambaraSum p (Either a c) (Either b c) #

right' :: TambaraSum p a b -> TambaraSum p (Either c a) (Either c b) #

Choice p => Choice (Tambara p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Tambara p a b -> Tambara p (Either a c) (Either b c) #

right' :: Tambara p a b -> Tambara p (Either c a) (Either c b) #

Choice (Tagged :: Type -> Type -> Type) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Tagged a b -> Tagged (Either a c) (Either b c) #

right' :: Tagged a b -> Tagged (Either c a) (Either c b) #

Comonad w => Choice (Cokleisli w) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Cokleisli w a b -> Cokleisli w (Either a c) (Either b c) #

right' :: Cokleisli w a b -> Cokleisli w (Either c a) (Either c b) #

Monoid r => Choice (Forget r :: Type -> Type -> Type) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Forget r a b -> Forget r (Either a c) (Either b c) #

right' :: Forget r a b -> Forget r (Either c a) (Either c b) #

Applicative f => Choice (Star f) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Star f a b -> Star f (Either a c) (Either b c) #

right' :: Star f a b -> Star f (Either c a) (Either c b) #

Choice (->) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: (a -> b) -> Either a c -> Either b c #

right' :: (a -> b) -> Either c a -> Either c b #

Functor f => Choice (Joker f :: Type -> Type -> Type) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Joker f a b -> Joker f (Either a c) (Either b c) #

right' :: Joker f a b -> Joker f (Either c a) (Either c b) #

ArrowChoice p => Choice (WrappedArrow p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: WrappedArrow p a b -> WrappedArrow p (Either a c) (Either b c) #

right' :: WrappedArrow p a b -> WrappedArrow p (Either c a) (Either c b) #

(Choice p, Choice q) => Choice (Product p q) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Product p q a b -> Product p q (Either a c) (Either b c) #

right' :: Product p q a b -> Product p q (Either c a) (Either c b) #

(Choice p, Choice q) => Choice (Sum p q) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Sum p q a b -> Sum p q (Either a c) (Either b c) #

right' :: Sum p q a b -> Sum p q (Either c a) (Either c b) #

(Functor f, Choice p) => Choice (Tannen f p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

left' :: Tannen f p a b -> Tannen f p (Either a c) (Either b c) #

right' :: Tannen f p a b -> Tannen f p (Either c a) (Either c b) #

(Choice p, Choice q) => Choice (Procompose p q) 
Instance details

Defined in Data.Profunctor.Composition

Methods

left' :: Procompose p q a b -> Procompose p q (Either a c) (Either b c) #

right' :: Procompose p q a b -> Procompose p q (Either c a) (Either c b) #

class Profunctor (p :: Type -> Type -> Type) where #

Minimal complete definition

dimap | lmap, rmap

Methods

dimap :: (a -> b) -> (c -> d) -> p b c -> p a d #

lmap :: (a -> b) -> p b c -> p a c #

rmap :: (b -> c) -> p a b -> p a c #

Instances

Instances details
Profunctor Measured 
Instance details

Defined in Diagrams.Core.Measure

Methods

dimap :: (a -> b) -> (c -> d) -> Measured b c -> Measured a d #

lmap :: (a -> b) -> Measured b c -> Measured a c #

rmap :: (b -> c) -> Measured a b -> Measured a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Measured a b -> Measured a c

(.#) :: forall a b c q. Coercible b a => Measured b c -> q a b -> Measured a c

Profunctor ReifiedFold 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedFold b c -> ReifiedFold a d #

lmap :: (a -> b) -> ReifiedFold b c -> ReifiedFold a c #

rmap :: (b -> c) -> ReifiedFold a b -> ReifiedFold a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedFold a b -> ReifiedFold a c

(.#) :: forall a b c q. Coercible b a => ReifiedFold b c -> q a b -> ReifiedFold a c

Profunctor ReifiedGetter 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedGetter b c -> ReifiedGetter a d #

lmap :: (a -> b) -> ReifiedGetter b c -> ReifiedGetter a c #

rmap :: (b -> c) -> ReifiedGetter a b -> ReifiedGetter a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedGetter a b -> ReifiedGetter a c

(.#) :: forall a b c q. Coercible b a => ReifiedGetter b c -> q a b -> ReifiedGetter a c

Monad m => Profunctor (Kleisli m) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Kleisli m b c -> Kleisli m a d #

lmap :: (a -> b) -> Kleisli m b c -> Kleisli m a c #

rmap :: (b -> c) -> Kleisli m a b -> Kleisli m a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Kleisli m a b -> Kleisli m a c

(.#) :: forall a b c q. Coercible b a => Kleisli m b c -> q a b -> Kleisli m a c

Functor v => Profunctor (Query v) 
Instance details

Defined in Diagrams.Core.Query

Methods

dimap :: (a -> b) -> (c -> d) -> Query v b c -> Query v a d #

lmap :: (a -> b) -> Query v b c -> Query v a c #

rmap :: (b -> c) -> Query v a b -> Query v a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Query v a b -> Query v a c

(.#) :: forall a b c q. Coercible b a => Query v b c -> q a b -> Query v a c

Profunctor (Indexed i) 
Instance details

Defined in Control.Lens.Internal.Indexed

Methods

dimap :: (a -> b) -> (c -> d) -> Indexed i b c -> Indexed i a d #

lmap :: (a -> b) -> Indexed i b c -> Indexed i a c #

rmap :: (b -> c) -> Indexed i a b -> Indexed i a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Indexed i a b -> Indexed i a c

(.#) :: forall a b c q. Coercible b a => Indexed i b c -> q a b -> Indexed i a c

Profunctor (ReifiedIndexedFold i) 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a d #

lmap :: (a -> b) -> ReifiedIndexedFold i b c -> ReifiedIndexedFold i a c #

rmap :: (b -> c) -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedFold i a b -> ReifiedIndexedFold i a c

(.#) :: forall a b c q. Coercible b a => ReifiedIndexedFold i b c -> q a b -> ReifiedIndexedFold i a c

Profunctor (ReifiedIndexedGetter i) 
Instance details

Defined in Control.Lens.Reified

Methods

dimap :: (a -> b) -> (c -> d) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a d #

lmap :: (a -> b) -> ReifiedIndexedGetter i b c -> ReifiedIndexedGetter i a c #

rmap :: (b -> c) -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c #

(#.) :: forall a b c q. Coercible c b => q b c -> ReifiedIndexedGetter i a b -> ReifiedIndexedGetter i a c

(.#) :: forall a b c q. Coercible b a => ReifiedIndexedGetter i b c -> q a b -> ReifiedIndexedGetter i a c

Profunctor (CopastroSum p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

dimap :: (a -> b) -> (c -> d) -> CopastroSum p b c -> CopastroSum p a d #

lmap :: (a -> b) -> CopastroSum p b c -> CopastroSum p a c #

rmap :: (b -> c) -> CopastroSum p a b -> CopastroSum p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> CopastroSum p a b -> CopastroSum p a c

(.#) :: forall a b c q. Coercible b a => CopastroSum p b c -> q a b -> CopastroSum p a c

Profunctor (CotambaraSum p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

dimap :: (a -> b) -> (c -> d) -> CotambaraSum p b c -> CotambaraSum p a d #

lmap :: (a -> b) -> CotambaraSum p b c -> CotambaraSum p a c #

rmap :: (b -> c) -> CotambaraSum p a b -> CotambaraSum p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> CotambaraSum p a b -> CotambaraSum p a c

(.#) :: forall a b c q. Coercible b a => CotambaraSum p b c -> q a b -> CotambaraSum p a c

Profunctor (PastroSum p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

dimap :: (a -> b) -> (c -> d) -> PastroSum p b c -> PastroSum p a d #

lmap :: (a -> b) -> PastroSum p b c -> PastroSum p a c #

rmap :: (b -> c) -> PastroSum p a b -> PastroSum p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> PastroSum p a b -> PastroSum p a c

(.#) :: forall a b c q. Coercible b a => PastroSum p b c -> q a b -> PastroSum p a c

Profunctor p => Profunctor (TambaraSum p) 
Instance details

Defined in Data.Profunctor.Choice

Methods

dimap :: (a -> b) -> (c -> d) -> TambaraSum p b c -> TambaraSum p a d #

lmap :: (a -> b) -> TambaraSum p b c -> TambaraSum p a c #

rmap :: (b -> c) -> TambaraSum p a b -> TambaraSum p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> TambaraSum p a b -> TambaraSum p a c

(.#) :: forall a b c q. Coercible b a => TambaraSum p b c -> q a b -> TambaraSum p a c

Profunctor (Copastro p) 
Instance details

Defined in Data.Profunctor.Strong

Methods

dimap :: (a -> b) -> (c -> d) -> Copastro p b c -> Copastro p a d #

lmap :: (a -> b) -> Copastro p b c -> Copastro p a c #

rmap :: (b -> c) -> Copastro p a b -> Copastro p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Copastro p a b -> Copastro p a c

(.#) :: forall a b c q. Coercible b a => Copastro p b c -> q a b -> Copastro p a c

Profunctor (Cotambara p) 
Instance details

Defined in Data.Profunctor.Strong

Methods

dimap :: (a -> b) -> (c -> d) -> Cotambara p b c -> Cotambara p a d #

lmap :: (a -> b) -> Cotambara p b c -> Cotambara p a c #

rmap :: (b -> c) -> Cotambara p a b -> Cotambara p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Cotambara p a b -> Cotambara p a c

(.#) :: forall a b c q. Coercible b a => Cotambara p b c -> q a b -> Cotambara p a c

Profunctor (Pastro p) 
Instance details

Defined in Data.Profunctor.Strong

Methods

dimap :: (a -> b) -> (c -> d) -> Pastro p b c -> Pastro p a d #

lmap :: (a -> b) -> Pastro p b c -> Pastro p a c #

rmap :: (b -> c) -> Pastro p a b -> Pastro p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Pastro p a b -> Pastro p a c

(.#) :: forall a b c q. Coercible b a => Pastro p b c -> q a b -> Pastro p a c

Profunctor p => Profunctor (Tambara p) 
Instance details

Defined in Data.Profunctor.Strong

Methods

dimap :: (a -> b) -> (c -> d) -> Tambara p b c -> Tambara p a d #

lmap :: (a -> b) -> Tambara p b c -> Tambara p a c #

rmap :: (b -> c) -> Tambara p a b -> Tambara p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Tambara p a b -> Tambara p a c

(.#) :: forall a b c q. Coercible b a => Tambara p b c -> q a b -> Tambara p a c

Profunctor (Tagged :: Type -> Type -> Type) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Tagged b c -> Tagged a d #

lmap :: (a -> b) -> Tagged b c -> Tagged a c #

rmap :: (b -> c) -> Tagged a b -> Tagged a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Tagged a b -> Tagged a c

(.#) :: forall a b c q. Coercible b a => Tagged b c -> q a b -> Tagged a c

Functor w => Profunctor (Cokleisli w) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Cokleisli w b c -> Cokleisli w a d #

lmap :: (a -> b) -> Cokleisli w b c -> Cokleisli w a c #

rmap :: (b -> c) -> Cokleisli w a b -> Cokleisli w a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Cokleisli w a b -> Cokleisli w a c

(.#) :: forall a b c q. Coercible b a => Cokleisli w b c -> q a b -> Cokleisli w a c

Profunctor (Exchange a b) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

dimap :: (a0 -> b0) -> (c -> d) -> Exchange a b b0 c -> Exchange a b a0 d #

lmap :: (a0 -> b0) -> Exchange a b b0 c -> Exchange a b a0 c #

rmap :: (b0 -> c) -> Exchange a b a0 b0 -> Exchange a b a0 c #

(#.) :: forall a0 b0 c q. Coercible c b0 => q b0 c -> Exchange a b a0 b0 -> Exchange a b a0 c

(.#) :: forall a0 b0 c q. Coercible b0 a0 => Exchange a b b0 c -> q a0 b0 -> Exchange a b a0 c

Functor f => Profunctor (Costar f) 
Instance details

Defined in Data.Profunctor.Types

Methods

dimap :: (a -> b) -> (c -> d) -> Costar f b c -> Costar f a d #

lmap :: (a -> b) -> Costar f b c -> Costar f a c #

rmap :: (b -> c) -> Costar f a b -> Costar f a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Costar f a b -> Costar f a c

(.#) :: forall a b c q. Coercible b a => Costar f b c -> q a b -> Costar f a c

Profunctor (Forget r :: Type -> Type -> Type) 
Instance details

Defined in Data.Profunctor.Types

Methods

dimap :: (a -> b) -> (c -> d) -> Forget r b c -> Forget r a d #

lmap :: (a -> b) -> Forget r b c -> Forget r a c #

rmap :: (b -> c) -> Forget r a b -> Forget r a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Forget r a b -> Forget r a c

(.#) :: forall a b c q. Coercible b a => Forget r b c -> q a b -> Forget r a c

Functor f => Profunctor (Star f) 
Instance details

Defined in Data.Profunctor.Types

Methods

dimap :: (a -> b) -> (c -> d) -> Star f b c -> Star f a d #

lmap :: (a -> b) -> Star f b c -> Star f a c #

rmap :: (b -> c) -> Star f a b -> Star f a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Star f a b -> Star f a c

(.#) :: forall a b c q. Coercible b a => Star f b c -> q a b -> Star f a c

Profunctor (->) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> (b -> c) -> a -> d #

lmap :: (a -> b) -> (b -> c) -> a -> c #

rmap :: (b -> c) -> (a -> b) -> a -> c #

(#.) :: forall a b c q. Coercible c b => q b c -> (a -> b) -> a -> c

(.#) :: forall a b c q. Coercible b a => (b -> c) -> q a b -> a -> c

Contravariant f => Profunctor (Clown f :: Type -> Type -> Type) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Clown f b c -> Clown f a d #

lmap :: (a -> b) -> Clown f b c -> Clown f a c #

rmap :: (b -> c) -> Clown f a b -> Clown f a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Clown f a b -> Clown f a c

(.#) :: forall a b c q. Coercible b a => Clown f b c -> q a b -> Clown f a c

Functor f => Profunctor (Joker f :: Type -> Type -> Type) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Joker f b c -> Joker f a d #

lmap :: (a -> b) -> Joker f b c -> Joker f a c #

rmap :: (b -> c) -> Joker f a b -> Joker f a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Joker f a b -> Joker f a c

(.#) :: forall a b c q. Coercible b a => Joker f b c -> q a b -> Joker f a c

Arrow p => Profunctor (WrappedArrow p) 
Instance details

Defined in Data.Profunctor.Types

Methods

dimap :: (a -> b) -> (c -> d) -> WrappedArrow p b c -> WrappedArrow p a d #

lmap :: (a -> b) -> WrappedArrow p b c -> WrappedArrow p a c #

rmap :: (b -> c) -> WrappedArrow p a b -> WrappedArrow p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> WrappedArrow p a b -> WrappedArrow p a c

(.#) :: forall a b c q. Coercible b a => WrappedArrow p b c -> q a b -> WrappedArrow p a c

(Profunctor p, Profunctor q) => Profunctor (Product p q) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Product p q b c -> Product p q a d #

lmap :: (a -> b) -> Product p q b c -> Product p q a c #

rmap :: (b -> c) -> Product p q a b -> Product p q a c #

(#.) :: forall a b c q0. Coercible c b => q0 b c -> Product p q a b -> Product p q a c

(.#) :: forall a b c q0. Coercible b a => Product p q b c -> q0 a b -> Product p q a c

(Profunctor p, Profunctor q) => Profunctor (Sum p q) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Sum p q b c -> Sum p q a d #

lmap :: (a -> b) -> Sum p q b c -> Sum p q a c #

rmap :: (b -> c) -> Sum p q a b -> Sum p q a c #

(#.) :: forall a b c q0. Coercible c b => q0 b c -> Sum p q a b -> Sum p q a c

(.#) :: forall a b c q0. Coercible b a => Sum p q b c -> q0 a b -> Sum p q a c

(Functor f, Profunctor p) => Profunctor (Tannen f p) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Tannen f p b c -> Tannen f p a d #

lmap :: (a -> b) -> Tannen f p b c -> Tannen f p a c #

rmap :: (b -> c) -> Tannen f p a b -> Tannen f p a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Tannen f p a b -> Tannen f p a c

(.#) :: forall a b c q. Coercible b a => Tannen f p b c -> q a b -> Tannen f p a c

(Profunctor p, Profunctor q) => Profunctor (Procompose p q) 
Instance details

Defined in Data.Profunctor.Composition

Methods

dimap :: (a -> b) -> (c -> d) -> Procompose p q b c -> Procompose p q a d #

lmap :: (a -> b) -> Procompose p q b c -> Procompose p q a c #

rmap :: (b -> c) -> Procompose p q a b -> Procompose p q a c #

(#.) :: forall a b c q0. Coercible c b => q0 b c -> Procompose p q a b -> Procompose p q a c

(.#) :: forall a b c q0. Coercible b a => Procompose p q b c -> q0 a b -> Procompose p q a c

(Profunctor p, Profunctor q) => Profunctor (Rift p q) 
Instance details

Defined in Data.Profunctor.Composition

Methods

dimap :: (a -> b) -> (c -> d) -> Rift p q b c -> Rift p q a d #

lmap :: (a -> b) -> Rift p q b c -> Rift p q a c #

rmap :: (b -> c) -> Rift p q a b -> Rift p q a c #

(#.) :: forall a b c q0. Coercible c b => q0 b c -> Rift p q a b -> Rift p q a c

(.#) :: forall a b c q0. Coercible b a => Rift p q b c -> q0 a b -> Rift p q a c

(Profunctor p, Functor f, Functor g) => Profunctor (Biff p f g) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Biff p f g b c -> Biff p f g a d #

lmap :: (a -> b) -> Biff p f g b c -> Biff p f g a c #

rmap :: (b -> c) -> Biff p f g a b -> Biff p f g a c #

(#.) :: forall a b c q. Coercible c b => q b c -> Biff p f g a b -> Biff p f g a c

(.#) :: forall a b c q. Coercible b a => Biff p f g b c -> q a b -> Biff p f g a c

class (Foldable1 t, Traversable t) => Traversable1 (t :: Type -> Type) where #

Minimal complete definition

traverse1 | sequence1

Methods

traverse1 :: Apply f => (a -> f b) -> t a -> f (t b) #

Instances

Instances details
Traversable1 Complex 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Complex a -> f (Complex b) #

sequence1 :: Apply f => Complex (f b) -> f (Complex b)

Traversable1 Identity 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Identity a -> f (Identity b) #

sequence1 :: Apply f => Identity (f b) -> f (Identity b)

Traversable1 First 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> First a -> f (First b) #

sequence1 :: Apply f => First (f b) -> f (First b)

Traversable1 Last 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Last a -> f (Last b) #

sequence1 :: Apply f => Last (f b) -> f (Last b)

Traversable1 Max 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Max a -> f (Max b) #

sequence1 :: Apply f => Max (f b) -> f (Max b)

Traversable1 Min 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Min a -> f (Min b) #

sequence1 :: Apply f => Min (f b) -> f (Min b)

Traversable1 Dual 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Dual a -> f (Dual b) #

sequence1 :: Apply f => Dual (f b) -> f (Dual b)

Traversable1 Product 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Product a -> f (Product b) #

sequence1 :: Apply f => Product (f b) -> f (Product b)

Traversable1 Sum 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Sum a -> f (Sum b) #

sequence1 :: Apply f => Sum (f b) -> f (Sum b)

Traversable1 NonEmpty 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequence1 :: Apply f => NonEmpty (f b) -> f (NonEmpty b)

Traversable1 Par1 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequence1 :: Apply f => Par1 (f b) -> f (Par1 b)

Traversable1 Tree 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Tree a -> f (Tree b) #

sequence1 :: Apply f => Tree (f b) -> f (Tree b)

Traversable1 Plucker 
Instance details

Defined in Linear.Plucker

Methods

traverse1 :: Apply f => (a -> f b) -> Plucker a -> f (Plucker b) #

sequence1 :: Apply f => Plucker (f b) -> f (Plucker b)

Traversable1 V1 
Instance details

Defined in Linear.V1

Methods

traverse1 :: Apply f => (a -> f b) -> V1 a -> f (V1 b) #

sequence1 :: Apply f => V1 (f b) -> f (V1 b)

Traversable1 V2 
Instance details

Defined in Linear.V2

Methods

traverse1 :: Apply f => (a -> f b) -> V2 a -> f (V2 b) #

sequence1 :: Apply f => V2 (f b) -> f (V2 b)

Traversable1 V3 
Instance details

Defined in Linear.V3

Methods

traverse1 :: Apply f => (a -> f b) -> V3 a -> f (V3 b) #

sequence1 :: Apply f => V3 (f b) -> f (V3 b)

Traversable1 V4 
Instance details

Defined in Linear.V4

Methods

traverse1 :: Apply f => (a -> f b) -> V4 a -> f (V4 b) #

sequence1 :: Apply f => V4 (f b) -> f (V4 b)

Traversable1 (V1 :: Type -> Type) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> V1 a -> f (V1 b) #

sequence1 :: Apply f => V1 (f b) -> f (V1 b)

Traversable1 f => Traversable1 (Cofree f) 
Instance details

Defined in Control.Comonad.Cofree

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Cofree f a -> f0 (Cofree f b) #

sequence1 :: Apply f0 => Cofree f (f0 b) -> f0 (Cofree f b)

Traversable1 f => Traversable1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Free f a -> f0 (Free f b) #

sequence1 :: Apply f0 => Free f (f0 b) -> f0 (Free f b)

Traversable1 f => Traversable1 (Yoneda f) 
Instance details

Defined in Data.Functor.Yoneda

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Yoneda f a -> f0 (Yoneda f b) #

sequence1 :: Apply f0 => Yoneda f (f0 b) -> f0 (Yoneda f b)

Traversable1 f => Traversable1 (Lift f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Lift f a -> f0 (Lift f b) #

sequence1 :: Apply f0 => Lift f (f0 b) -> f0 (Lift f b)

Traversable1 ((,) a) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a0 -> f b) -> (a, a0) -> f (a, b) #

sequence1 :: Apply f => (a, f b) -> f (a, b)

Traversable1 f => Traversable1 (Alt f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) #

sequence1 :: Apply f0 => Alt f (f0 b) -> f0 (Alt f b)

Traversable1 f => Traversable1 (Rec1 f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

sequence1 :: Apply f0 => Rec1 f (f0 b) -> f0 (Rec1 f b)

Bitraversable1 p => Traversable1 (Join p) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> Join p a -> f (Join p b) #

sequence1 :: Apply f => Join p (f b) -> f (Join p b)

Traversable1 f => Traversable1 (AlongsideLeft f b) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

traverse1 :: Apply f0 => (a -> f0 b0) -> AlongsideLeft f b a -> f0 (AlongsideLeft f b b0) #

sequence1 :: Apply f0 => AlongsideLeft f b (f0 b0) -> f0 (AlongsideLeft f b b0)

Traversable1 f => Traversable1 (AlongsideRight f a) 
Instance details

Defined in Control.Lens.Internal.Getter

Methods

traverse1 :: Apply f0 => (a0 -> f0 b) -> AlongsideRight f a a0 -> f0 (AlongsideRight f a b) #

sequence1 :: Apply f0 => AlongsideRight f a (f0 b) -> f0 (AlongsideRight f a b)

Traversable1 (Tagged a) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a0 -> f b) -> Tagged a a0 -> f (Tagged a b) #

sequence1 :: Apply f => Tagged a (f b) -> f (Tagged a b)

Traversable1 f => Traversable1 (Backwards f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Backwards f a -> f0 (Backwards f b) #

sequence1 :: Apply f0 => Backwards f (f0 b) -> f0 (Backwards f b)

Traversable1 f => Traversable1 (IdentityT f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequence1 :: Apply f0 => IdentityT f (f0 b) -> f0 (IdentityT f b)

Traversable1 f => Traversable1 (Reverse f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Reverse f a -> f0 (Reverse f b) #

sequence1 :: Apply f0 => Reverse f (f0 b) -> f0 (Reverse f b)

(Traversable1 f, Traversable1 g) => Traversable1 (Product f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Product f g a -> f0 (Product f g b) #

sequence1 :: Apply f0 => Product f g (f0 b) -> f0 (Product f g b)

(Traversable1 f, Traversable1 g) => Traversable1 (Sum f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

sequence1 :: Apply f0 => Sum f g (f0 b) -> f0 (Sum f g b)

(Traversable1 f, Traversable1 g) => Traversable1 (f :*: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequence1 :: Apply f0 => (f :*: g) (f0 b) -> f0 ((f :*: g) b)

(Traversable1 f, Traversable1 g) => Traversable1 (f :+: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequence1 :: Apply f0 => (f :+: g) (f0 b) -> f0 ((f :+: g) b)

(Traversable1 f, Traversable1 g) => Traversable1 (Compose f g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

sequence1 :: Apply f0 => Compose f g (f0 b) -> f0 (Compose f g b)

(Traversable1 f, Traversable1 g) => Traversable1 (f :.: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

sequence1 :: Apply f0 => (f :.: g) (f0 b) -> f0 ((f :.: g) b)

Traversable1 f => Traversable1 (M1 i c f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) #

sequence1 :: Apply f0 => M1 i c f (f0 b) -> f0 (M1 i c f b)

Traversable1 g => Traversable1 (Joker g a) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a0 -> f b) -> Joker g a a0 -> f (Joker g a b) #

sequence1 :: Apply f => Joker g a (f b) -> f (Joker g a b)

data family MVector s a #

Instances

Instances details
MVector MVector All 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Any 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector () 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s () -> Int

basicUnsafeSlice :: Int -> Int -> MVector s () -> MVector s ()

basicOverlaps :: MVector s () -> MVector s () -> Bool

basicUnsafeNew :: Int -> ST s (MVector s ())

basicInitialize :: MVector s () -> ST s ()

basicUnsafeReplicate :: Int -> () -> ST s (MVector s ())

basicUnsafeRead :: MVector s () -> Int -> ST s ()

basicUnsafeWrite :: MVector s () -> Int -> () -> ST s ()

basicClear :: MVector s () -> ST s ()

basicSet :: MVector s () -> () -> ST s ()

basicUnsafeCopy :: MVector s () -> MVector s () -> ST s ()

basicUnsafeMove :: MVector s () -> MVector s () -> ST s ()

basicUnsafeGrow :: MVector s () -> Int -> ST s (MVector s ())

MVector MVector Bool 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Char 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Double 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Float 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Int 
Instance details

Defined in Data.Vector.Unboxed.Base

MVector MVector Word 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Down a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Down a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Down a) -> MVector s (Down a)

basicOverlaps :: MVector s (Down a) -> MVector s (Down a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Down a))

basicInitialize :: MVector s (Down a) -> ST s ()

basicUnsafeReplicate :: Int -> Down a -> ST s (MVector s (Down a))

basicUnsafeRead :: MVector s (Down a) -> Int -> ST s (Down a)

basicUnsafeWrite :: MVector s (Down a) -> Int -> Down a -> ST s ()

basicClear :: MVector s (Down a) -> ST s ()

basicSet :: MVector s (Down a) -> Down a -> ST s ()

basicUnsafeCopy :: MVector s (Down a) -> MVector s (Down a) -> ST s ()

basicUnsafeMove :: MVector s (Down a) -> MVector s (Down a) -> ST s ()

basicUnsafeGrow :: MVector s (Down a) -> Int -> ST s (MVector s (Down a))

Unbox a => MVector MVector (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (First a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (First a) -> MVector s (First a)

basicOverlaps :: MVector s (First a) -> MVector s (First a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (First a))

basicInitialize :: MVector s (First a) -> ST s ()

basicUnsafeReplicate :: Int -> First a -> ST s (MVector s (First a))

basicUnsafeRead :: MVector s (First a) -> Int -> ST s (First a)

basicUnsafeWrite :: MVector s (First a) -> Int -> First a -> ST s ()

basicClear :: MVector s (First a) -> ST s ()

basicSet :: MVector s (First a) -> First a -> ST s ()

basicUnsafeCopy :: MVector s (First a) -> MVector s (First a) -> ST s ()

basicUnsafeMove :: MVector s (First a) -> MVector s (First a) -> ST s ()

basicUnsafeGrow :: MVector s (First a) -> Int -> ST s (MVector s (First a))

Unbox a => MVector MVector (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Last a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Last a) -> MVector s (Last a)

basicOverlaps :: MVector s (Last a) -> MVector s (Last a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Last a))

basicInitialize :: MVector s (Last a) -> ST s ()

basicUnsafeReplicate :: Int -> Last a -> ST s (MVector s (Last a))

basicUnsafeRead :: MVector s (Last a) -> Int -> ST s (Last a)

basicUnsafeWrite :: MVector s (Last a) -> Int -> Last a -> ST s ()

basicClear :: MVector s (Last a) -> ST s ()

basicSet :: MVector s (Last a) -> Last a -> ST s ()

basicUnsafeCopy :: MVector s (Last a) -> MVector s (Last a) -> ST s ()

basicUnsafeMove :: MVector s (Last a) -> MVector s (Last a) -> ST s ()

basicUnsafeGrow :: MVector s (Last a) -> Int -> ST s (MVector s (Last a))

Unbox a => MVector MVector (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Max a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Max a) -> MVector s (Max a)

basicOverlaps :: MVector s (Max a) -> MVector s (Max a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Max a))

basicInitialize :: MVector s (Max a) -> ST s ()

basicUnsafeReplicate :: Int -> Max a -> ST s (MVector s (Max a))

basicUnsafeRead :: MVector s (Max a) -> Int -> ST s (Max a)

basicUnsafeWrite :: MVector s (Max a) -> Int -> Max a -> ST s ()

basicClear :: MVector s (Max a) -> ST s ()

basicSet :: MVector s (Max a) -> Max a -> ST s ()

basicUnsafeCopy :: MVector s (Max a) -> MVector s (Max a) -> ST s ()

basicUnsafeMove :: MVector s (Max a) -> MVector s (Max a) -> ST s ()

basicUnsafeGrow :: MVector s (Max a) -> Int -> ST s (MVector s (Max a))

Unbox a => MVector MVector (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Min a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Min a) -> MVector s (Min a)

basicOverlaps :: MVector s (Min a) -> MVector s (Min a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Min a))

basicInitialize :: MVector s (Min a) -> ST s ()

basicUnsafeReplicate :: Int -> Min a -> ST s (MVector s (Min a))

basicUnsafeRead :: MVector s (Min a) -> Int -> ST s (Min a)

basicUnsafeWrite :: MVector s (Min a) -> Int -> Min a -> ST s ()

basicClear :: MVector s (Min a) -> ST s ()

basicSet :: MVector s (Min a) -> Min a -> ST s ()

basicUnsafeCopy :: MVector s (Min a) -> MVector s (Min a) -> ST s ()

basicUnsafeMove :: MVector s (Min a) -> MVector s (Min a) -> ST s ()

basicUnsafeGrow :: MVector s (Min a) -> Int -> ST s (MVector s (Min a))

Unbox a => MVector MVector (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Dual a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Dual a) -> MVector s (Dual a)

basicOverlaps :: MVector s (Dual a) -> MVector s (Dual a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Dual a))

basicInitialize :: MVector s (Dual a) -> ST s ()

basicUnsafeReplicate :: Int -> Dual a -> ST s (MVector s (Dual a))

basicUnsafeRead :: MVector s (Dual a) -> Int -> ST s (Dual a)

basicUnsafeWrite :: MVector s (Dual a) -> Int -> Dual a -> ST s ()

basicClear :: MVector s (Dual a) -> ST s ()

basicSet :: MVector s (Dual a) -> Dual a -> ST s ()

basicUnsafeCopy :: MVector s (Dual a) -> MVector s (Dual a) -> ST s ()

basicUnsafeMove :: MVector s (Dual a) -> MVector s (Dual a) -> ST s ()

basicUnsafeGrow :: MVector s (Dual a) -> Int -> ST s (MVector s (Dual a))

Unbox a => MVector MVector (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => MVector MVector (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Sum a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Sum a) -> MVector s (Sum a)

basicOverlaps :: MVector s (Sum a) -> MVector s (Sum a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Sum a))

basicInitialize :: MVector s (Sum a) -> ST s ()

basicUnsafeReplicate :: Int -> Sum a -> ST s (MVector s (Sum a))

basicUnsafeRead :: MVector s (Sum a) -> Int -> ST s (Sum a)

basicUnsafeWrite :: MVector s (Sum a) -> Int -> Sum a -> ST s ()

basicClear :: MVector s (Sum a) -> ST s ()

basicSet :: MVector s (Sum a) -> Sum a -> ST s ()

basicUnsafeCopy :: MVector s (Sum a) -> MVector s (Sum a) -> ST s ()

basicUnsafeMove :: MVector s (Sum a) -> MVector s (Sum a) -> ST s ()

basicUnsafeGrow :: MVector s (Sum a) -> Int -> ST s (MVector s (Sum a))

Unbox a => MVector MVector (Plucker a) 
Instance details

Defined in Linear.Plucker

Methods

basicLength :: MVector s (Plucker a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Plucker a) -> MVector s (Plucker a)

basicOverlaps :: MVector s (Plucker a) -> MVector s (Plucker a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Plucker a))

basicInitialize :: MVector s (Plucker a) -> ST s ()

basicUnsafeReplicate :: Int -> Plucker a -> ST s (MVector s (Plucker a))

basicUnsafeRead :: MVector s (Plucker a) -> Int -> ST s (Plucker a)

basicUnsafeWrite :: MVector s (Plucker a) -> Int -> Plucker a -> ST s ()

basicClear :: MVector s (Plucker a) -> ST s ()

basicSet :: MVector s (Plucker a) -> Plucker a -> ST s ()

basicUnsafeCopy :: MVector s (Plucker a) -> MVector s (Plucker a) -> ST s ()

basicUnsafeMove :: MVector s (Plucker a) -> MVector s (Plucker a) -> ST s ()

basicUnsafeGrow :: MVector s (Plucker a) -> Int -> ST s (MVector s (Plucker a))

Unbox a => MVector MVector (Quaternion a) 
Instance details

Defined in Linear.Quaternion

Methods

basicLength :: MVector s (Quaternion a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Quaternion a) -> MVector s (Quaternion a)

basicOverlaps :: MVector s (Quaternion a) -> MVector s (Quaternion a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Quaternion a))

basicInitialize :: MVector s (Quaternion a) -> ST s ()

basicUnsafeReplicate :: Int -> Quaternion a -> ST s (MVector s (Quaternion a))

basicUnsafeRead :: MVector s (Quaternion a) -> Int -> ST s (Quaternion a)

basicUnsafeWrite :: MVector s (Quaternion a) -> Int -> Quaternion a -> ST s ()

basicClear :: MVector s (Quaternion a) -> ST s ()

basicSet :: MVector s (Quaternion a) -> Quaternion a -> ST s ()

basicUnsafeCopy :: MVector s (Quaternion a) -> MVector s (Quaternion a) -> ST s ()

basicUnsafeMove :: MVector s (Quaternion a) -> MVector s (Quaternion a) -> ST s ()

basicUnsafeGrow :: MVector s (Quaternion a) -> Int -> ST s (MVector s (Quaternion a))

MVector MVector (V0 a) 
Instance details

Defined in Linear.V0

Methods

basicLength :: MVector s (V0 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V0 a) -> MVector s (V0 a)

basicOverlaps :: MVector s (V0 a) -> MVector s (V0 a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V0 a))

basicInitialize :: MVector s (V0 a) -> ST s ()

basicUnsafeReplicate :: Int -> V0 a -> ST s (MVector s (V0 a))

basicUnsafeRead :: MVector s (V0 a) -> Int -> ST s (V0 a)

basicUnsafeWrite :: MVector s (V0 a) -> Int -> V0 a -> ST s ()

basicClear :: MVector s (V0 a) -> ST s ()

basicSet :: MVector s (V0 a) -> V0 a -> ST s ()

basicUnsafeCopy :: MVector s (V0 a) -> MVector s (V0 a) -> ST s ()

basicUnsafeMove :: MVector s (V0 a) -> MVector s (V0 a) -> ST s ()

basicUnsafeGrow :: MVector s (V0 a) -> Int -> ST s (MVector s (V0 a))

Unbox a => MVector MVector (V1 a) 
Instance details

Defined in Linear.V1

Methods

basicLength :: MVector s (V1 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V1 a) -> MVector s (V1 a)

basicOverlaps :: MVector s (V1 a) -> MVector s (V1 a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V1 a))

basicInitialize :: MVector s (V1 a) -> ST s ()

basicUnsafeReplicate :: Int -> V1 a -> ST s (MVector s (V1 a))

basicUnsafeRead :: MVector s (V1 a) -> Int -> ST s (V1 a)

basicUnsafeWrite :: MVector s (V1 a) -> Int -> V1 a -> ST s ()

basicClear :: MVector s (V1 a) -> ST s ()

basicSet :: MVector s (V1 a) -> V1 a -> ST s ()

basicUnsafeCopy :: MVector s (V1 a) -> MVector s (V1 a) -> ST s ()

basicUnsafeMove :: MVector s (V1 a) -> MVector s (V1 a) -> ST s ()

basicUnsafeGrow :: MVector s (V1 a) -> Int -> ST s (MVector s (V1 a))

Unbox a => MVector MVector (V2 a) 
Instance details

Defined in Linear.V2

Methods

basicLength :: MVector s (V2 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V2 a) -> MVector s (V2 a)

basicOverlaps :: MVector s (V2 a) -> MVector s (V2 a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V2 a))

basicInitialize :: MVector s (V2 a) -> ST s ()

basicUnsafeReplicate :: Int -> V2 a -> ST s (MVector s (V2 a))

basicUnsafeRead :: MVector s (V2 a) -> Int -> ST s (V2 a)

basicUnsafeWrite :: MVector s (V2 a) -> Int -> V2 a -> ST s ()

basicClear :: MVector s (V2 a) -> ST s ()

basicSet :: MVector s (V2 a) -> V2 a -> ST s ()

basicUnsafeCopy :: MVector s (V2 a) -> MVector s (V2 a) -> ST s ()

basicUnsafeMove :: MVector s (V2 a) -> MVector s (V2 a) -> ST s ()

basicUnsafeGrow :: MVector s (V2 a) -> Int -> ST s (MVector s (V2 a))

Unbox a => MVector MVector (V3 a) 
Instance details

Defined in Linear.V3

Methods

basicLength :: MVector s (V3 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V3 a) -> MVector s (V3 a)

basicOverlaps :: MVector s (V3 a) -> MVector s (V3 a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V3 a))

basicInitialize :: MVector s (V3 a) -> ST s ()

basicUnsafeReplicate :: Int -> V3 a -> ST s (MVector s (V3 a))

basicUnsafeRead :: MVector s (V3 a) -> Int -> ST s (V3 a)

basicUnsafeWrite :: MVector s (V3 a) -> Int -> V3 a -> ST s ()

basicClear :: MVector s (V3 a) -> ST s ()

basicSet :: MVector s (V3 a) -> V3 a -> ST s ()

basicUnsafeCopy :: MVector s (V3 a) -> MVector s (V3 a) -> ST s ()

basicUnsafeMove :: MVector s (V3 a) -> MVector s (V3 a) -> ST s ()

basicUnsafeGrow :: MVector s (V3 a) -> Int -> ST s (MVector s (V3 a))

Unbox a => MVector MVector (V4 a) 
Instance details

Defined in Linear.V4

Methods

basicLength :: MVector s (V4 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V4 a) -> MVector s (V4 a)

basicOverlaps :: MVector s (V4 a) -> MVector s (V4 a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V4 a))

basicInitialize :: MVector s (V4 a) -> ST s ()

basicUnsafeReplicate :: Int -> V4 a -> ST s (MVector s (V4 a))

basicUnsafeRead :: MVector s (V4 a) -> Int -> ST s (V4 a)

basicUnsafeWrite :: MVector s (V4 a) -> Int -> V4 a -> ST s ()

basicClear :: MVector s (V4 a) -> ST s ()

basicSet :: MVector s (V4 a) -> V4 a -> ST s ()

basicUnsafeCopy :: MVector s (V4 a) -> MVector s (V4 a) -> ST s ()

basicUnsafeMove :: MVector s (V4 a) -> MVector s (V4 a) -> ST s ()

basicUnsafeGrow :: MVector s (V4 a) -> Int -> ST s (MVector s (V4 a))

MVector MVector (DoNotUnboxLazy a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (DoNotUnboxLazy a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a)

basicOverlaps :: MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (DoNotUnboxLazy a))

basicInitialize :: MVector s (DoNotUnboxLazy a) -> ST s ()

basicUnsafeReplicate :: Int -> DoNotUnboxLazy a -> ST s (MVector s (DoNotUnboxLazy a))

basicUnsafeRead :: MVector s (DoNotUnboxLazy a) -> Int -> ST s (DoNotUnboxLazy a)

basicUnsafeWrite :: MVector s (DoNotUnboxLazy a) -> Int -> DoNotUnboxLazy a -> ST s ()

basicClear :: MVector s (DoNotUnboxLazy a) -> ST s ()

basicSet :: MVector s (DoNotUnboxLazy a) -> DoNotUnboxLazy a -> ST s ()

basicUnsafeCopy :: MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a) -> ST s ()

basicUnsafeMove :: MVector s (DoNotUnboxLazy a) -> MVector s (DoNotUnboxLazy a) -> ST s ()

basicUnsafeGrow :: MVector s (DoNotUnboxLazy a) -> Int -> ST s (MVector s (DoNotUnboxLazy a))

NFData a => MVector MVector (DoNotUnboxNormalForm a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (DoNotUnboxNormalForm a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a)

basicOverlaps :: MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (DoNotUnboxNormalForm a))

basicInitialize :: MVector s (DoNotUnboxNormalForm a) -> ST s ()

basicUnsafeReplicate :: Int -> DoNotUnboxNormalForm a -> ST s (MVector s (DoNotUnboxNormalForm a))

basicUnsafeRead :: MVector s (DoNotUnboxNormalForm a) -> Int -> ST s (DoNotUnboxNormalForm a)

basicUnsafeWrite :: MVector s (DoNotUnboxNormalForm a) -> Int -> DoNotUnboxNormalForm a -> ST s ()

basicClear :: MVector s (DoNotUnboxNormalForm a) -> ST s ()

basicSet :: MVector s (DoNotUnboxNormalForm a) -> DoNotUnboxNormalForm a -> ST s ()

basicUnsafeCopy :: MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a) -> ST s ()

basicUnsafeMove :: MVector s (DoNotUnboxNormalForm a) -> MVector s (DoNotUnboxNormalForm a) -> ST s ()

basicUnsafeGrow :: MVector s (DoNotUnboxNormalForm a) -> Int -> ST s (MVector s (DoNotUnboxNormalForm a))

MVector MVector (DoNotUnboxStrict a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (DoNotUnboxStrict a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a)

basicOverlaps :: MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (DoNotUnboxStrict a))

basicInitialize :: MVector s (DoNotUnboxStrict a) -> ST s ()

basicUnsafeReplicate :: Int -> DoNotUnboxStrict a -> ST s (MVector s (DoNotUnboxStrict a))

basicUnsafeRead :: MVector s (DoNotUnboxStrict a) -> Int -> ST s (DoNotUnboxStrict a)

basicUnsafeWrite :: MVector s (DoNotUnboxStrict a) -> Int -> DoNotUnboxStrict a -> ST s ()

basicClear :: MVector s (DoNotUnboxStrict a) -> ST s ()

basicSet :: MVector s (DoNotUnboxStrict a) -> DoNotUnboxStrict a -> ST s ()

basicUnsafeCopy :: MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a) -> ST s ()

basicUnsafeMove :: MVector s (DoNotUnboxStrict a) -> MVector s (DoNotUnboxStrict a) -> ST s ()

basicUnsafeGrow :: MVector s (DoNotUnboxStrict a) -> Int -> ST s (MVector s (DoNotUnboxStrict a))

Prim a => MVector MVector (UnboxViaPrim a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (UnboxViaPrim a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a)

basicOverlaps :: MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (UnboxViaPrim a))

basicInitialize :: MVector s (UnboxViaPrim a) -> ST s ()

basicUnsafeReplicate :: Int -> UnboxViaPrim a -> ST s (MVector s (UnboxViaPrim a))

basicUnsafeRead :: MVector s (UnboxViaPrim a) -> Int -> ST s (UnboxViaPrim a)

basicUnsafeWrite :: MVector s (UnboxViaPrim a) -> Int -> UnboxViaPrim a -> ST s ()

basicClear :: MVector s (UnboxViaPrim a) -> ST s ()

basicSet :: MVector s (UnboxViaPrim a) -> UnboxViaPrim a -> ST s ()

basicUnsafeCopy :: MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a) -> ST s ()

basicUnsafeMove :: MVector s (UnboxViaPrim a) -> MVector s (UnboxViaPrim a) -> ST s ()

basicUnsafeGrow :: MVector s (UnboxViaPrim a) -> Int -> ST s (MVector s (UnboxViaPrim a))

(Unbox a, Unbox b) => MVector MVector (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Arg a b) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Arg a b) -> MVector s (Arg a b)

basicOverlaps :: MVector s (Arg a b) -> MVector s (Arg a b) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Arg a b))

basicInitialize :: MVector s (Arg a b) -> ST s ()

basicUnsafeReplicate :: Int -> Arg a b -> ST s (MVector s (Arg a b))

basicUnsafeRead :: MVector s (Arg a b) -> Int -> ST s (Arg a b)

basicUnsafeWrite :: MVector s (Arg a b) -> Int -> Arg a b -> ST s ()

basicClear :: MVector s (Arg a b) -> ST s ()

basicSet :: MVector s (Arg a b) -> Arg a b -> ST s ()

basicUnsafeCopy :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s ()

basicUnsafeMove :: MVector s (Arg a b) -> MVector s (Arg a b) -> ST s ()

basicUnsafeGrow :: MVector s (Arg a b) -> Int -> ST s (MVector s (Arg a b))

Unbox (f a) => MVector MVector (Point f a) 
Instance details

Defined in Linear.Affine

Methods

basicLength :: MVector s (Point f a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Point f a) -> MVector s (Point f a)

basicOverlaps :: MVector s (Point f a) -> MVector s (Point f a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Point f a))

basicInitialize :: MVector s (Point f a) -> ST s ()

basicUnsafeReplicate :: Int -> Point f a -> ST s (MVector s (Point f a))

basicUnsafeRead :: MVector s (Point f a) -> Int -> ST s (Point f a)

basicUnsafeWrite :: MVector s (Point f a) -> Int -> Point f a -> ST s ()

basicClear :: MVector s (Point f a) -> ST s ()

basicSet :: MVector s (Point f a) -> Point f a -> ST s ()

basicUnsafeCopy :: MVector s (Point f a) -> MVector s (Point f a) -> ST s ()

basicUnsafeMove :: MVector s (Point f a) -> MVector s (Point f a) -> ST s ()

basicUnsafeGrow :: MVector s (Point f a) -> Int -> ST s (MVector s (Point f a))

(IsoUnbox a b, Unbox b) => MVector MVector (As a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (As a b) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (As a b) -> MVector s (As a b)

basicOverlaps :: MVector s (As a b) -> MVector s (As a b) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (As a b))

basicInitialize :: MVector s (As a b) -> ST s ()

basicUnsafeReplicate :: Int -> As a b -> ST s (MVector s (As a b))

basicUnsafeRead :: MVector s (As a b) -> Int -> ST s (As a b)

basicUnsafeWrite :: MVector s (As a b) -> Int -> As a b -> ST s ()

basicClear :: MVector s (As a b) -> ST s ()

basicSet :: MVector s (As a b) -> As a b -> ST s ()

basicUnsafeCopy :: MVector s (As a b) -> MVector s (As a b) -> ST s ()

basicUnsafeMove :: MVector s (As a b) -> MVector s (As a b) -> ST s ()

basicUnsafeGrow :: MVector s (As a b) -> Int -> ST s (MVector s (As a b))

(Unbox a, Unbox b) => MVector MVector (a, b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (a, b) -> MVector s (a, b)

basicOverlaps :: MVector s (a, b) -> MVector s (a, b) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (a, b))

basicInitialize :: MVector s (a, b) -> ST s ()

basicUnsafeReplicate :: Int -> (a, b) -> ST s (MVector s (a, b))

basicUnsafeRead :: MVector s (a, b) -> Int -> ST s (a, b)

basicUnsafeWrite :: MVector s (a, b) -> Int -> (a, b) -> ST s ()

basicClear :: MVector s (a, b) -> ST s ()

basicSet :: MVector s (a, b) -> (a, b) -> ST s ()

basicUnsafeCopy :: MVector s (a, b) -> MVector s (a, b) -> ST s ()

basicUnsafeMove :: MVector s (a, b) -> MVector s (a, b) -> ST s ()

basicUnsafeGrow :: MVector s (a, b) -> Int -> ST s (MVector s (a, b))

Unbox a => MVector MVector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Const a b) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b)

basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Const a b))

basicInitialize :: MVector s (Const a b) -> ST s ()

basicUnsafeReplicate :: Int -> Const a b -> ST s (MVector s (Const a b))

basicUnsafeRead :: MVector s (Const a b) -> Int -> ST s (Const a b)

basicUnsafeWrite :: MVector s (Const a b) -> Int -> Const a b -> ST s ()

basicClear :: MVector s (Const a b) -> ST s ()

basicSet :: MVector s (Const a b) -> Const a b -> ST s ()

basicUnsafeCopy :: MVector s (Const a b) -> MVector s (Const a b) -> ST s ()

basicUnsafeMove :: MVector s (Const a b) -> MVector s (Const a b) -> ST s ()

basicUnsafeGrow :: MVector s (Const a b) -> Int -> ST s (MVector s (Const a b))

Unbox (f a) => MVector MVector (Alt f a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Alt f a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Alt f a) -> MVector s (Alt f a)

basicOverlaps :: MVector s (Alt f a) -> MVector s (Alt f a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Alt f a))

basicInitialize :: MVector s (Alt f a) -> ST s ()

basicUnsafeReplicate :: Int -> Alt f a -> ST s (MVector s (Alt f a))

basicUnsafeRead :: MVector s (Alt f a) -> Int -> ST s (Alt f a)

basicUnsafeWrite :: MVector s (Alt f a) -> Int -> Alt f a -> ST s ()

basicClear :: MVector s (Alt f a) -> ST s ()

basicSet :: MVector s (Alt f a) -> Alt f a -> ST s ()

basicUnsafeCopy :: MVector s (Alt f a) -> MVector s (Alt f a) -> ST s ()

basicUnsafeMove :: MVector s (Alt f a) -> MVector s (Alt f a) -> ST s ()

basicUnsafeGrow :: MVector s (Alt f a) -> Int -> ST s (MVector s (Alt f a))

(Dim n, Unbox a) => MVector MVector (V n a) 
Instance details

Defined in Linear.V

Methods

basicLength :: MVector s (V n a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V n a) -> MVector s (V n a)

basicOverlaps :: MVector s (V n a) -> MVector s (V n a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (V n a))

basicInitialize :: MVector s (V n a) -> ST s ()

basicUnsafeReplicate :: Int -> V n a -> ST s (MVector s (V n a))

basicUnsafeRead :: MVector s (V n a) -> Int -> ST s (V n a)

basicUnsafeWrite :: MVector s (V n a) -> Int -> V n a -> ST s ()

basicClear :: MVector s (V n a) -> ST s ()

basicSet :: MVector s (V n a) -> V n a -> ST s ()

basicUnsafeCopy :: MVector s (V n a) -> MVector s (V n a) -> ST s ()

basicUnsafeMove :: MVector s (V n a) -> MVector s (V n a) -> ST s ()

basicUnsafeGrow :: MVector s (V n a) -> Int -> ST s (MVector s (V n a))

(Unbox a, Unbox b, Unbox c) => MVector MVector (a, b, c) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c) -> MVector s (a, b, c)

basicOverlaps :: MVector s (a, b, c) -> MVector s (a, b, c) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c))

basicInitialize :: MVector s (a, b, c) -> ST s ()

basicUnsafeReplicate :: Int -> (a, b, c) -> ST s (MVector s (a, b, c))

basicUnsafeRead :: MVector s (a, b, c) -> Int -> ST s (a, b, c)

basicUnsafeWrite :: MVector s (a, b, c) -> Int -> (a, b, c) -> ST s ()

basicClear :: MVector s (a, b, c) -> ST s ()

basicSet :: MVector s (a, b, c) -> (a, b, c) -> ST s ()

basicUnsafeCopy :: MVector s (a, b, c) -> MVector s (a, b, c) -> ST s ()

basicUnsafeMove :: MVector s (a, b, c) -> MVector s (a, b, c) -> ST s ()

basicUnsafeGrow :: MVector s (a, b, c) -> Int -> ST s (MVector s (a, b, c))

(Unbox a, Unbox b, Unbox c, Unbox d) => MVector MVector (a, b, c, d) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c, d) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d) -> MVector s (a, b, c, d)

basicOverlaps :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d))

basicInitialize :: MVector s (a, b, c, d) -> ST s ()

basicUnsafeReplicate :: Int -> (a, b, c, d) -> ST s (MVector s (a, b, c, d))

basicUnsafeRead :: MVector s (a, b, c, d) -> Int -> ST s (a, b, c, d)

basicUnsafeWrite :: MVector s (a, b, c, d) -> Int -> (a, b, c, d) -> ST s ()

basicClear :: MVector s (a, b, c, d) -> ST s ()

basicSet :: MVector s (a, b, c, d) -> (a, b, c, d) -> ST s ()

basicUnsafeCopy :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> ST s ()

basicUnsafeMove :: MVector s (a, b, c, d) -> MVector s (a, b, c, d) -> ST s ()

basicUnsafeGrow :: MVector s (a, b, c, d) -> Int -> ST s (MVector s (a, b, c, d))

Unbox (f (g a)) => MVector MVector (Compose f g a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (Compose f g a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (Compose f g a) -> MVector s (Compose f g a)

basicOverlaps :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (Compose f g a))

basicInitialize :: MVector s (Compose f g a) -> ST s ()

basicUnsafeReplicate :: Int -> Compose f g a -> ST s (MVector s (Compose f g a))

basicUnsafeRead :: MVector s (Compose f g a) -> Int -> ST s (Compose f g a)

basicUnsafeWrite :: MVector s (Compose f g a) -> Int -> Compose f g a -> ST s ()

basicClear :: MVector s (Compose f g a) -> ST s ()

basicSet :: MVector s (Compose f g a) -> Compose f g a -> ST s ()

basicUnsafeCopy :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> ST s ()

basicUnsafeMove :: MVector s (Compose f g a) -> MVector s (Compose f g a) -> ST s ()

basicUnsafeGrow :: MVector s (Compose f g a) -> Int -> ST s (MVector s (Compose f g a))

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => MVector MVector (a, b, c, d, e) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c, d, e) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e)

basicOverlaps :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d, e))

basicInitialize :: MVector s (a, b, c, d, e) -> ST s ()

basicUnsafeReplicate :: Int -> (a, b, c, d, e) -> ST s (MVector s (a, b, c, d, e))

basicUnsafeRead :: MVector s (a, b, c, d, e) -> Int -> ST s (a, b, c, d, e)

basicUnsafeWrite :: MVector s (a, b, c, d, e) -> Int -> (a, b, c, d, e) -> ST s ()

basicClear :: MVector s (a, b, c, d, e) -> ST s ()

basicSet :: MVector s (a, b, c, d, e) -> (a, b, c, d, e) -> ST s ()

basicUnsafeCopy :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> ST s ()

basicUnsafeMove :: MVector s (a, b, c, d, e) -> MVector s (a, b, c, d, e) -> ST s ()

basicUnsafeGrow :: MVector s (a, b, c, d, e) -> Int -> ST s (MVector s (a, b, c, d, e))

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => MVector MVector (a, b, c, d, e, f) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicLength :: MVector s (a, b, c, d, e, f) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f)

basicOverlaps :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> Bool

basicUnsafeNew :: Int -> ST s (MVector s (a, b, c, d, e, f))

basicInitialize :: MVector s (a, b, c, d, e, f) -> ST s ()

basicUnsafeReplicate :: Int -> (a, b, c, d, e, f) -> ST s (MVector s (a, b, c, d, e, f))

basicUnsafeRead :: MVector s (a, b, c, d, e, f) -> Int -> ST s (a, b, c, d, e, f)

basicUnsafeWrite :: MVector s (a, b, c, d, e, f) -> Int -> (a, b, c, d, e, f) -> ST s ()

basicClear :: MVector s (a, b, c, d, e, f) -> ST s ()

basicSet :: MVector s (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> ST s ()

basicUnsafeCopy :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> ST s ()

basicUnsafeMove :: MVector s (a, b, c, d, e, f) -> MVector s (a, b, c, d, e, f) -> ST s ()

basicUnsafeGrow :: MVector s (a, b, c, d, e, f) -> Int -> ST s (MVector s (a, b, c, d, e, f))

NFData1 (MVector s) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

liftRnf :: (a -> ()) -> MVector s a -> () #

NFData (MVector s a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

rnf :: MVector s a -> () #

newtype MVector s All 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s All = MV_All (MVector s Bool)
newtype MVector s Any 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Any = MV_Any (MVector s Bool)
newtype MVector s Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int16 = MV_Int16 (MVector s Int16)
newtype MVector s Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int32 = MV_Int32 (MVector s Int32)
newtype MVector s Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int64 = MV_Int64 (MVector s Int64)
newtype MVector s Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int8 = MV_Int8 (MVector s Int8)
newtype MVector s Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word16 = MV_Word16 (MVector s Word16)
newtype MVector s Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word32 = MV_Word32 (MVector s Word32)
newtype MVector s Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word64 = MV_Word64 (MVector s Word64)
newtype MVector s Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word8 = MV_Word8 (MVector s Word8)
newtype MVector s () 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s () = MV_Unit Int
newtype MVector s Bool 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Bool = MV_Bool (MVector s Word8)
newtype MVector s Char 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Char = MV_Char (MVector s Char)
newtype MVector s Double 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Double = MV_Double (MVector s Double)
newtype MVector s Float 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Float = MV_Float (MVector s Float)
newtype MVector s Int 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Int = MV_Int (MVector s Int)
newtype MVector s Word 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s Word = MV_Word (MVector s Word)
newtype MVector s (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Complex a) = MV_Complex (MVector s (a, a))
newtype MVector s (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Identity a) = MV_Identity (MVector s a)
newtype MVector s (Down a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Down a) = MV_Down (MVector s a)
newtype MVector s (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (First a) = MV_First (MVector s a)
newtype MVector s (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Last a) = MV_Last (MVector s a)
newtype MVector s (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Max a) = MV_Max (MVector s a)
newtype MVector s (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Min a) = MV_Min (MVector s a)
newtype MVector s (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Dual a) = MV_Dual (MVector s a)
newtype MVector s (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Product a) = MV_Product (MVector s a)
newtype MVector s (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Sum a) = MV_Sum (MVector s a)
data MVector s (Plucker a) 
Instance details

Defined in Linear.Plucker

data MVector s (Plucker a) = MV_Plucker !Int (MVector s a)
data MVector s (Quaternion a) 
Instance details

Defined in Linear.Quaternion

data MVector s (Quaternion a) = MV_Quaternion !Int (MVector s a)
newtype MVector s (V0 a) 
Instance details

Defined in Linear.V0

newtype MVector s (V0 a) = MV_V0 Int
newtype MVector s (V1 a) 
Instance details

Defined in Linear.V1

newtype MVector s (V1 a) = MV_V1 (MVector s a)
data MVector s (V2 a) 
Instance details

Defined in Linear.V2

data MVector s (V2 a) = MV_V2 !Int !(MVector s a)
data MVector s (V3 a) 
Instance details

Defined in Linear.V3

data MVector s (V3 a) = MV_V3 !Int !(MVector s a)
data MVector s (V4 a) 
Instance details

Defined in Linear.V4

data MVector s (V4 a) = MV_V4 !Int !(MVector s a)
newtype MVector s (DoNotUnboxLazy a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (DoNotUnboxLazy a) = MV_DoNotUnboxLazy (MVector s a)
newtype MVector s (DoNotUnboxNormalForm a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (DoNotUnboxNormalForm a) = MV_DoNotUnboxNormalForm (MVector s a)
newtype MVector s (DoNotUnboxStrict a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (DoNotUnboxStrict a) = MV_DoNotUnboxStrict (MVector s a)
newtype MVector s (UnboxViaPrim a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (UnboxViaPrim a) = MV_UnboxViaPrim (MVector s a)
newtype MVector s (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Arg a b) = MV_Arg (MVector s (a, b))
newtype MVector s (Point f a) 
Instance details

Defined in Linear.Affine

newtype MVector s (Point f a) = MV_P (MVector s (f a))
newtype MVector s (As a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (As a b) = MV_UnboxAs (MVector s b)
data MVector s (a, b) 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b) = MV_2 !Int !(MVector s a) !(MVector s b)
newtype MVector s (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Const a b) = MV_Const (MVector s a)
newtype MVector s (Alt f a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Alt f a) = MV_Alt (MVector s (f a))
data MVector s (V n a) 
Instance details

Defined in Linear.V

data MVector s (V n a) = MV_VN !Int !(MVector s a)
data MVector s (a, b, c) 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c) = MV_3 !Int !(MVector s a) !(MVector s b) !(MVector s c)
data MVector s (a, b, c, d) 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c, d) = MV_4 !Int !(MVector s a) !(MVector s b) !(MVector s c) !(MVector s d)
newtype MVector s (Compose f g a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype MVector s (Compose f g a) = MV_Compose (MVector s (f (g a)))
data MVector s (a, b, c, d, e) 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c, d, e) = MV_5 !Int !(MVector s a) !(MVector s b) !(MVector s c) !(MVector s d) !(MVector s e)
data MVector s (a, b, c, d, e, f) 
Instance details

Defined in Data.Vector.Unboxed.Base

data MVector s (a, b, c, d, e, f) = MV_6 !Int !(MVector s a) !(MVector s b) !(MVector s c) !(MVector s d) !(MVector s e) !(MVector s f)

data family Vector a #

Instances

Instances details
NFData1 Vector 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

liftRnf :: (a -> ()) -> Vector a -> () #

Vector Vector All 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s All -> ST s (Vector All)

basicUnsafeThaw :: Vector All -> ST s (Mutable Vector s All)

basicLength :: Vector All -> Int

basicUnsafeSlice :: Int -> Int -> Vector All -> Vector All

basicUnsafeIndexM :: Vector All -> Int -> Box All

basicUnsafeCopy :: Mutable Vector s All -> Vector All -> ST s ()

elemseq :: Vector All -> All -> b -> b

Vector Vector Any 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s Any -> ST s (Vector Any)

basicUnsafeThaw :: Vector Any -> ST s (Mutable Vector s Any)

basicLength :: Vector Any -> Int

basicUnsafeSlice :: Int -> Int -> Vector Any -> Vector Any

basicUnsafeIndexM :: Vector Any -> Int -> Box Any

basicUnsafeCopy :: Mutable Vector s Any -> Vector Any -> ST s ()

elemseq :: Vector Any -> Any -> b -> b

Vector Vector Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector () 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s () -> ST s (Vector ())

basicUnsafeThaw :: Vector () -> ST s (Mutable Vector s ())

basicLength :: Vector () -> Int

basicUnsafeSlice :: Int -> Int -> Vector () -> Vector ()

basicUnsafeIndexM :: Vector () -> Int -> Box ()

basicUnsafeCopy :: Mutable Vector s () -> Vector () -> ST s ()

elemseq :: Vector () -> () -> b -> b

Vector Vector Bool 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Char 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Double 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Float 
Instance details

Defined in Data.Vector.Unboxed.Base

Vector Vector Int 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s Int -> ST s (Vector Int)

basicUnsafeThaw :: Vector Int -> ST s (Mutable Vector s Int)

basicLength :: Vector Int -> Int

basicUnsafeSlice :: Int -> Int -> Vector Int -> Vector Int

basicUnsafeIndexM :: Vector Int -> Int -> Box Int

basicUnsafeCopy :: Mutable Vector s Int -> Vector Int -> ST s ()

elemseq :: Vector Int -> Int -> b -> b

Vector Vector Word 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Vector Vector (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Complex a) -> ST s (Vector (Complex a))

basicUnsafeThaw :: Vector (Complex a) -> ST s (Mutable Vector s (Complex a))

basicLength :: Vector (Complex a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Complex a) -> Vector (Complex a)

basicUnsafeIndexM :: Vector (Complex a) -> Int -> Box (Complex a)

basicUnsafeCopy :: Mutable Vector s (Complex a) -> Vector (Complex a) -> ST s ()

elemseq :: Vector (Complex a) -> Complex a -> b -> b

Unbox a => Vector Vector (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Identity a) -> ST s (Vector (Identity a))

basicUnsafeThaw :: Vector (Identity a) -> ST s (Mutable Vector s (Identity a))

basicLength :: Vector (Identity a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Identity a) -> Vector (Identity a)

basicUnsafeIndexM :: Vector (Identity a) -> Int -> Box (Identity a)

basicUnsafeCopy :: Mutable Vector s (Identity a) -> Vector (Identity a) -> ST s ()

elemseq :: Vector (Identity a) -> Identity a -> b -> b

Unbox a => Vector Vector (Down a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Down a) -> ST s (Vector (Down a))

basicUnsafeThaw :: Vector (Down a) -> ST s (Mutable Vector s (Down a))

basicLength :: Vector (Down a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Down a) -> Vector (Down a)

basicUnsafeIndexM :: Vector (Down a) -> Int -> Box (Down a)

basicUnsafeCopy :: Mutable Vector s (Down a) -> Vector (Down a) -> ST s ()

elemseq :: Vector (Down a) -> Down a -> b -> b

Unbox a => Vector Vector (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (First a) -> ST s (Vector (First a))

basicUnsafeThaw :: Vector (First a) -> ST s (Mutable Vector s (First a))

basicLength :: Vector (First a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (First a) -> Vector (First a)

basicUnsafeIndexM :: Vector (First a) -> Int -> Box (First a)

basicUnsafeCopy :: Mutable Vector s (First a) -> Vector (First a) -> ST s ()

elemseq :: Vector (First a) -> First a -> b -> b

Unbox a => Vector Vector (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Last a) -> ST s (Vector (Last a))

basicUnsafeThaw :: Vector (Last a) -> ST s (Mutable Vector s (Last a))

basicLength :: Vector (Last a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Last a) -> Vector (Last a)

basicUnsafeIndexM :: Vector (Last a) -> Int -> Box (Last a)

basicUnsafeCopy :: Mutable Vector s (Last a) -> Vector (Last a) -> ST s ()

elemseq :: Vector (Last a) -> Last a -> b -> b

Unbox a => Vector Vector (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Max a) -> ST s (Vector (Max a))

basicUnsafeThaw :: Vector (Max a) -> ST s (Mutable Vector s (Max a))

basicLength :: Vector (Max a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Max a) -> Vector (Max a)

basicUnsafeIndexM :: Vector (Max a) -> Int -> Box (Max a)

basicUnsafeCopy :: Mutable Vector s (Max a) -> Vector (Max a) -> ST s ()

elemseq :: Vector (Max a) -> Max a -> b -> b

Unbox a => Vector Vector (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Min a) -> ST s (Vector (Min a))

basicUnsafeThaw :: Vector (Min a) -> ST s (Mutable Vector s (Min a))

basicLength :: Vector (Min a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Min a) -> Vector (Min a)

basicUnsafeIndexM :: Vector (Min a) -> Int -> Box (Min a)

basicUnsafeCopy :: Mutable Vector s (Min a) -> Vector (Min a) -> ST s ()

elemseq :: Vector (Min a) -> Min a -> b -> b

Unbox a => Vector Vector (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Unbox a => Vector Vector (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Dual a) -> ST s (Vector (Dual a))

basicUnsafeThaw :: Vector (Dual a) -> ST s (Mutable Vector s (Dual a))

basicLength :: Vector (Dual a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Dual a) -> Vector (Dual a)

basicUnsafeIndexM :: Vector (Dual a) -> Int -> Box (Dual a)

basicUnsafeCopy :: Mutable Vector s (Dual a) -> Vector (Dual a) -> ST s ()

elemseq :: Vector (Dual a) -> Dual a -> b -> b

Unbox a => Vector Vector (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Product a) -> ST s (Vector (Product a))

basicUnsafeThaw :: Vector (Product a) -> ST s (Mutable Vector s (Product a))

basicLength :: Vector (Product a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Product a) -> Vector (Product a)

basicUnsafeIndexM :: Vector (Product a) -> Int -> Box (Product a)

basicUnsafeCopy :: Mutable Vector s (Product a) -> Vector (Product a) -> ST s ()

elemseq :: Vector (Product a) -> Product a -> b -> b

Unbox a => Vector Vector (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Sum a) -> ST s (Vector (Sum a))

basicUnsafeThaw :: Vector (Sum a) -> ST s (Mutable Vector s (Sum a))

basicLength :: Vector (Sum a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Sum a) -> Vector (Sum a)

basicUnsafeIndexM :: Vector (Sum a) -> Int -> Box (Sum a)

basicUnsafeCopy :: Mutable Vector s (Sum a) -> Vector (Sum a) -> ST s ()

elemseq :: Vector (Sum a) -> Sum a -> b -> b

Unbox a => Vector Vector (Plucker a) 
Instance details

Defined in Linear.Plucker

Methods

basicUnsafeFreeze :: Mutable Vector s (Plucker a) -> ST s (Vector (Plucker a))

basicUnsafeThaw :: Vector (Plucker a) -> ST s (Mutable Vector s (Plucker a))

basicLength :: Vector (Plucker a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Plucker a) -> Vector (Plucker a)

basicUnsafeIndexM :: Vector (Plucker a) -> Int -> Box (Plucker a)

basicUnsafeCopy :: Mutable Vector s (Plucker a) -> Vector (Plucker a) -> ST s ()

elemseq :: Vector (Plucker a) -> Plucker a -> b -> b

Unbox a => Vector Vector (Quaternion a) 
Instance details

Defined in Linear.Quaternion

Methods

basicUnsafeFreeze :: Mutable Vector s (Quaternion a) -> ST s (Vector (Quaternion a))

basicUnsafeThaw :: Vector (Quaternion a) -> ST s (Mutable Vector s (Quaternion a))

basicLength :: Vector (Quaternion a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Quaternion a) -> Vector (Quaternion a)

basicUnsafeIndexM :: Vector (Quaternion a) -> Int -> Box (Quaternion a)

basicUnsafeCopy :: Mutable Vector s (Quaternion a) -> Vector (Quaternion a) -> ST s ()

elemseq :: Vector (Quaternion a) -> Quaternion a -> b -> b

Vector Vector (V0 a) 
Instance details

Defined in Linear.V0

Methods

basicUnsafeFreeze :: Mutable Vector s (V0 a) -> ST s (Vector (V0 a))

basicUnsafeThaw :: Vector (V0 a) -> ST s (Mutable Vector s (V0 a))

basicLength :: Vector (V0 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V0 a) -> Vector (V0 a)

basicUnsafeIndexM :: Vector (V0 a) -> Int -> Box (V0 a)

basicUnsafeCopy :: Mutable Vector s (V0 a) -> Vector (V0 a) -> ST s ()

elemseq :: Vector (V0 a) -> V0 a -> b -> b

Unbox a => Vector Vector (V1 a) 
Instance details

Defined in Linear.V1

Methods

basicUnsafeFreeze :: Mutable Vector s (V1 a) -> ST s (Vector (V1 a))

basicUnsafeThaw :: Vector (V1 a) -> ST s (Mutable Vector s (V1 a))

basicLength :: Vector (V1 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V1 a) -> Vector (V1 a)

basicUnsafeIndexM :: Vector (V1 a) -> Int -> Box (V1 a)

basicUnsafeCopy :: Mutable Vector s (V1 a) -> Vector (V1 a) -> ST s ()

elemseq :: Vector (V1 a) -> V1 a -> b -> b

Unbox a => Vector Vector (V2 a) 
Instance details

Defined in Linear.V2

Methods

basicUnsafeFreeze :: Mutable Vector s (V2 a) -> ST s (Vector (V2 a))

basicUnsafeThaw :: Vector (V2 a) -> ST s (Mutable Vector s (V2 a))

basicLength :: Vector (V2 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V2 a) -> Vector (V2 a)

basicUnsafeIndexM :: Vector (V2 a) -> Int -> Box (V2 a)

basicUnsafeCopy :: Mutable Vector s (V2 a) -> Vector (V2 a) -> ST s ()

elemseq :: Vector (V2 a) -> V2 a -> b -> b

Unbox a => Vector Vector (V3 a) 
Instance details

Defined in Linear.V3

Methods

basicUnsafeFreeze :: Mutable Vector s (V3 a) -> ST s (Vector (V3 a))

basicUnsafeThaw :: Vector (V3 a) -> ST s (Mutable Vector s (V3 a))

basicLength :: Vector (V3 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V3 a) -> Vector (V3 a)

basicUnsafeIndexM :: Vector (V3 a) -> Int -> Box (V3 a)

basicUnsafeCopy :: Mutable Vector s (V3 a) -> Vector (V3 a) -> ST s ()

elemseq :: Vector (V3 a) -> V3 a -> b -> b

Unbox a => Vector Vector (V4 a) 
Instance details

Defined in Linear.V4

Methods

basicUnsafeFreeze :: Mutable Vector s (V4 a) -> ST s (Vector (V4 a))

basicUnsafeThaw :: Vector (V4 a) -> ST s (Mutable Vector s (V4 a))

basicLength :: Vector (V4 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V4 a) -> Vector (V4 a)

basicUnsafeIndexM :: Vector (V4 a) -> Int -> Box (V4 a)

basicUnsafeCopy :: Mutable Vector s (V4 a) -> Vector (V4 a) -> ST s ()

elemseq :: Vector (V4 a) -> V4 a -> b -> b

Vector Vector (DoNotUnboxLazy a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (DoNotUnboxLazy a) -> ST s (Vector (DoNotUnboxLazy a))

basicUnsafeThaw :: Vector (DoNotUnboxLazy a) -> ST s (Mutable Vector s (DoNotUnboxLazy a))

basicLength :: Vector (DoNotUnboxLazy a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (DoNotUnboxLazy a) -> Vector (DoNotUnboxLazy a)

basicUnsafeIndexM :: Vector (DoNotUnboxLazy a) -> Int -> Box (DoNotUnboxLazy a)

basicUnsafeCopy :: Mutable Vector s (DoNotUnboxLazy a) -> Vector (DoNotUnboxLazy a) -> ST s ()

elemseq :: Vector (DoNotUnboxLazy a) -> DoNotUnboxLazy a -> b -> b

NFData a => Vector Vector (DoNotUnboxNormalForm a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (DoNotUnboxNormalForm a) -> ST s (Vector (DoNotUnboxNormalForm a))

basicUnsafeThaw :: Vector (DoNotUnboxNormalForm a) -> ST s (Mutable Vector s (DoNotUnboxNormalForm a))

basicLength :: Vector (DoNotUnboxNormalForm a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (DoNotUnboxNormalForm a) -> Vector (DoNotUnboxNormalForm a)

basicUnsafeIndexM :: Vector (DoNotUnboxNormalForm a) -> Int -> Box (DoNotUnboxNormalForm a)

basicUnsafeCopy :: Mutable Vector s (DoNotUnboxNormalForm a) -> Vector (DoNotUnboxNormalForm a) -> ST s ()

elemseq :: Vector (DoNotUnboxNormalForm a) -> DoNotUnboxNormalForm a -> b -> b

Vector Vector (DoNotUnboxStrict a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (DoNotUnboxStrict a) -> ST s (Vector (DoNotUnboxStrict a))

basicUnsafeThaw :: Vector (DoNotUnboxStrict a) -> ST s (Mutable Vector s (DoNotUnboxStrict a))

basicLength :: Vector (DoNotUnboxStrict a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (DoNotUnboxStrict a) -> Vector (DoNotUnboxStrict a)

basicUnsafeIndexM :: Vector (DoNotUnboxStrict a) -> Int -> Box (DoNotUnboxStrict a)

basicUnsafeCopy :: Mutable Vector s (DoNotUnboxStrict a) -> Vector (DoNotUnboxStrict a) -> ST s ()

elemseq :: Vector (DoNotUnboxStrict a) -> DoNotUnboxStrict a -> b -> b

Prim a => Vector Vector (UnboxViaPrim a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (UnboxViaPrim a) -> ST s (Vector (UnboxViaPrim a))

basicUnsafeThaw :: Vector (UnboxViaPrim a) -> ST s (Mutable Vector s (UnboxViaPrim a))

basicLength :: Vector (UnboxViaPrim a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (UnboxViaPrim a) -> Vector (UnboxViaPrim a)

basicUnsafeIndexM :: Vector (UnboxViaPrim a) -> Int -> Box (UnboxViaPrim a)

basicUnsafeCopy :: Mutable Vector s (UnboxViaPrim a) -> Vector (UnboxViaPrim a) -> ST s ()

elemseq :: Vector (UnboxViaPrim a) -> UnboxViaPrim a -> b -> b

(Unbox a, Unbox b) => Vector Vector (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Arg a b) -> ST s (Vector (Arg a b))

basicUnsafeThaw :: Vector (Arg a b) -> ST s (Mutable Vector s (Arg a b))

basicLength :: Vector (Arg a b) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Arg a b) -> Vector (Arg a b)

basicUnsafeIndexM :: Vector (Arg a b) -> Int -> Box (Arg a b)

basicUnsafeCopy :: Mutable Vector s (Arg a b) -> Vector (Arg a b) -> ST s ()

elemseq :: Vector (Arg a b) -> Arg a b -> b0 -> b0

Unbox (f a) => Vector Vector (Point f a) 
Instance details

Defined in Linear.Affine

Methods

basicUnsafeFreeze :: Mutable Vector s (Point f a) -> ST s (Vector (Point f a))

basicUnsafeThaw :: Vector (Point f a) -> ST s (Mutable Vector s (Point f a))

basicLength :: Vector (Point f a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Point f a) -> Vector (Point f a)

basicUnsafeIndexM :: Vector (Point f a) -> Int -> Box (Point f a)

basicUnsafeCopy :: Mutable Vector s (Point f a) -> Vector (Point f a) -> ST s ()

elemseq :: Vector (Point f a) -> Point f a -> b -> b

(IsoUnbox a b, Unbox b) => Vector Vector (As a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (As a b) -> ST s (Vector (As a b))

basicUnsafeThaw :: Vector (As a b) -> ST s (Mutable Vector s (As a b))

basicLength :: Vector (As a b) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (As a b) -> Vector (As a b)

basicUnsafeIndexM :: Vector (As a b) -> Int -> Box (As a b)

basicUnsafeCopy :: Mutable Vector s (As a b) -> Vector (As a b) -> ST s ()

elemseq :: Vector (As a b) -> As a b -> b0 -> b0

(Unbox a, Unbox b) => Vector Vector (a, b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (a, b) -> ST s (Vector (a, b))

basicUnsafeThaw :: Vector (a, b) -> ST s (Mutable Vector s (a, b))

basicLength :: Vector (a, b) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (a, b) -> Vector (a, b)

basicUnsafeIndexM :: Vector (a, b) -> Int -> Box (a, b)

basicUnsafeCopy :: Mutable Vector s (a, b) -> Vector (a, b) -> ST s ()

elemseq :: Vector (a, b) -> (a, b) -> b0 -> b0

Unbox a => Vector Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Const a b) -> ST s (Vector (Const a b))

basicUnsafeThaw :: Vector (Const a b) -> ST s (Mutable Vector s (Const a b))

basicLength :: Vector (Const a b) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b)

basicUnsafeIndexM :: Vector (Const a b) -> Int -> Box (Const a b)

basicUnsafeCopy :: Mutable Vector s (Const a b) -> Vector (Const a b) -> ST s ()

elemseq :: Vector (Const a b) -> Const a b -> b0 -> b0

Unbox (f a) => Vector Vector (Alt f a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Alt f a) -> ST s (Vector (Alt f a))

basicUnsafeThaw :: Vector (Alt f a) -> ST s (Mutable Vector s (Alt f a))

basicLength :: Vector (Alt f a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Alt f a) -> Vector (Alt f a)

basicUnsafeIndexM :: Vector (Alt f a) -> Int -> Box (Alt f a)

basicUnsafeCopy :: Mutable Vector s (Alt f a) -> Vector (Alt f a) -> ST s ()

elemseq :: Vector (Alt f a) -> Alt f a -> b -> b

(Dim n, Unbox a) => Vector Vector (V n a) 
Instance details

Defined in Linear.V

Methods

basicUnsafeFreeze :: Mutable Vector s (V n a) -> ST s (Vector (V n a))

basicUnsafeThaw :: Vector (V n a) -> ST s (Mutable Vector s (V n a))

basicLength :: Vector (V n a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V n a) -> Vector (V n a)

basicUnsafeIndexM :: Vector (V n a) -> Int -> Box (V n a)

basicUnsafeCopy :: Mutable Vector s (V n a) -> Vector (V n a) -> ST s ()

elemseq :: Vector (V n a) -> V n a -> b -> b

(Unbox a, Unbox b, Unbox c) => Vector Vector (a, b, c) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (a, b, c) -> ST s (Vector (a, b, c))

basicUnsafeThaw :: Vector (a, b, c) -> ST s (Mutable Vector s (a, b, c))

basicLength :: Vector (a, b, c) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (a, b, c) -> Vector (a, b, c)

basicUnsafeIndexM :: Vector (a, b, c) -> Int -> Box (a, b, c)

basicUnsafeCopy :: Mutable Vector s (a, b, c) -> Vector (a, b, c) -> ST s ()

elemseq :: Vector (a, b, c) -> (a, b, c) -> b0 -> b0

(Unbox a, Unbox b, Unbox c, Unbox d) => Vector Vector (a, b, c, d) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (a, b, c, d) -> ST s (Vector (a, b, c, d))

basicUnsafeThaw :: Vector (a, b, c, d) -> ST s (Mutable Vector s (a, b, c, d))

basicLength :: Vector (a, b, c, d) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (a, b, c, d) -> Vector (a, b, c, d)

basicUnsafeIndexM :: Vector (a, b, c, d) -> Int -> Box (a, b, c, d)

basicUnsafeCopy :: Mutable Vector s (a, b, c, d) -> Vector (a, b, c, d) -> ST s ()

elemseq :: Vector (a, b, c, d) -> (a, b, c, d) -> b0 -> b0

Unbox (f (g a)) => Vector Vector (Compose f g a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (Compose f g a) -> ST s (Vector (Compose f g a))

basicUnsafeThaw :: Vector (Compose f g a) -> ST s (Mutable Vector s (Compose f g a))

basicLength :: Vector (Compose f g a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (Compose f g a) -> Vector (Compose f g a)

basicUnsafeIndexM :: Vector (Compose f g a) -> Int -> Box (Compose f g a)

basicUnsafeCopy :: Mutable Vector s (Compose f g a) -> Vector (Compose f g a) -> ST s ()

elemseq :: Vector (Compose f g a) -> Compose f g a -> b -> b

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e) => Vector Vector (a, b, c, d, e) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (a, b, c, d, e) -> ST s (Vector (a, b, c, d, e))

basicUnsafeThaw :: Vector (a, b, c, d, e) -> ST s (Mutable Vector s (a, b, c, d, e))

basicLength :: Vector (a, b, c, d, e) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (a, b, c, d, e) -> Vector (a, b, c, d, e)

basicUnsafeIndexM :: Vector (a, b, c, d, e) -> Int -> Box (a, b, c, d, e)

basicUnsafeCopy :: Mutable Vector s (a, b, c, d, e) -> Vector (a, b, c, d, e) -> ST s ()

elemseq :: Vector (a, b, c, d, e) -> (a, b, c, d, e) -> b0 -> b0

(Unbox a, Unbox b, Unbox c, Unbox d, Unbox e, Unbox f) => Vector Vector (a, b, c, d, e, f) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

basicUnsafeFreeze :: Mutable Vector s (a, b, c, d, e, f) -> ST s (Vector (a, b, c, d, e, f))

basicUnsafeThaw :: Vector (a, b, c, d, e, f) -> ST s (Mutable Vector s (a, b, c, d, e, f))

basicLength :: Vector (a, b, c, d, e, f) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (a, b, c, d, e, f) -> Vector (a, b, c, d, e, f)

basicUnsafeIndexM :: Vector (a, b, c, d, e, f) -> Int -> Box (a, b, c, d, e, f)

basicUnsafeCopy :: Mutable Vector s (a, b, c, d, e, f) -> Vector (a, b, c, d, e, f) -> ST s ()

elemseq :: Vector (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> b0 -> b0

(Data a, Unbox a) => Data (Vector a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) #

toConstr :: Vector a -> Constr #

dataTypeOf :: Vector a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) #

gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) #

NFData (Vector a) 
Instance details

Defined in Data.Vector.Unboxed.Base

Methods

rnf :: Vector a -> () #

Unbox a => Ixed (Vector a) 
Instance details

Defined in Control.Lens.At

Methods

ix :: Index (Vector a) -> Traversal' (Vector a) (IxValue (Vector a)) #

Unbox a => AsEmpty (Vector a) 
Instance details

Defined in Control.Lens.Empty

Methods

_Empty :: Prism' (Vector a) () #

Unbox a => Reversing (Vector a) 
Instance details

Defined in Control.Lens.Internal.Iso

Methods

reversing :: Vector a -> Vector a #

Unbox a => Wrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

Associated Types

type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]

Methods

_Wrapped' :: Iso' (Vector a) (Unwrapped (Vector a)) #

(Unbox a, t ~ Vector a') => Rewrapped (Vector a) t 
Instance details

Defined in Control.Lens.Wrapped

(Unbox a, Unbox b) => Cons (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Cons :: Prism (Vector a) (Vector b) (a, Vector a) (b, Vector b) #

(Unbox a, Unbox b) => Snoc (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Cons

Methods

_Snoc :: Prism (Vector a) (Vector b) (Vector a, a) (Vector b, b) #

(Unbox a, Unbox b) => Each (Vector a) (Vector b) a b 
Instance details

Defined in Control.Lens.Each

Methods

each :: Traversal (Vector a) (Vector b) a b #

type Mutable Vector 
Instance details

Defined in Data.Vector.Unboxed.Base

type Mutable Vector = MVector
newtype Vector All 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector All = V_All (Vector Bool)
newtype Vector Any 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Any = V_Any (Vector Bool)
newtype Vector Int16 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Int16 = V_Int16 (Vector Int16)
newtype Vector Int32 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Int32 = V_Int32 (Vector Int32)
newtype Vector Int64 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Int64 = V_Int64 (Vector Int64)
newtype Vector Int8 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Int8 = V_Int8 (Vector Int8)
newtype Vector Word16 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Word16 = V_Word16 (Vector Word16)
newtype Vector Word32 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Word32 = V_Word32 (Vector Word32)
newtype Vector Word64 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Word64 = V_Word64 (Vector Word64)
newtype Vector Word8 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Word8 = V_Word8 (Vector Word8)
newtype Vector () 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector () = V_Unit Int
newtype Vector Bool 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Bool = V_Bool (Vector Word8)
newtype Vector Char 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Char = V_Char (Vector Char)
newtype Vector Double 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Double = V_Double (Vector Double)
newtype Vector Float 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Float = V_Float (Vector Float)
newtype Vector Int 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Int = V_Int (Vector Int)
newtype Vector Word 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector Word = V_Word (Vector Word)
type Item (Vector e) 
Instance details

Defined in Data.Vector.Unboxed

type Item (Vector e) = e
type Index (Vector a) 
Instance details

Defined in Control.Lens.At

type Index (Vector a) = Int
type IxValue (Vector a) 
Instance details

Defined in Control.Lens.At

type IxValue (Vector a) = a
type Unwrapped (Vector a) 
Instance details

Defined in Control.Lens.Wrapped

type Unwrapped (Vector a) = [a]
newtype Vector (Complex a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Complex a) = V_Complex (Vector (a, a))
newtype Vector (Identity a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Identity a) = V_Identity (Vector a)
newtype Vector (Down a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Down a) = V_Down (Vector a)
newtype Vector (First a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (First a) = V_First (Vector a)
newtype Vector (Last a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Last a) = V_Last (Vector a)
newtype Vector (Max a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Max a) = V_Max (Vector a)
newtype Vector (Min a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Min a) = V_Min (Vector a)
newtype Vector (WrappedMonoid a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Dual a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Dual a) = V_Dual (Vector a)
newtype Vector (Product a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Product a) = V_Product (Vector a)
newtype Vector (Sum a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Sum a) = V_Sum (Vector a)
data Vector (Plucker a) 
Instance details

Defined in Linear.Plucker

data Vector (Plucker a) = V_Plucker !Int (Vector a)
data Vector (Quaternion a) 
Instance details

Defined in Linear.Quaternion

data Vector (Quaternion a) = V_Quaternion !Int (Vector a)
newtype Vector (V0 a) 
Instance details

Defined in Linear.V0

newtype Vector (V0 a) = V_V0 Int
newtype Vector (V1 a) 
Instance details

Defined in Linear.V1

newtype Vector (V1 a) = V_V1 (Vector a)
data Vector (V2 a) 
Instance details

Defined in Linear.V2

data Vector (V2 a) = V_V2 !Int !(Vector a)
data Vector (V3 a) 
Instance details

Defined in Linear.V3

data Vector (V3 a) = V_V3 !Int !(Vector a)
data Vector (V4 a) 
Instance details

Defined in Linear.V4

data Vector (V4 a) = V_V4 !Int !(Vector a)
newtype Vector (DoNotUnboxLazy a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (DoNotUnboxLazy a) = V_DoNotUnboxLazy (Vector a)
newtype Vector (DoNotUnboxNormalForm a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (DoNotUnboxNormalForm a) = V_DoNotUnboxNormalForm (Vector a)
newtype Vector (DoNotUnboxStrict a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (DoNotUnboxStrict a) = V_DoNotUnboxStrict (Vector a)
newtype Vector (UnboxViaPrim a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (UnboxViaPrim a) = V_UnboxViaPrim (Vector a)
newtype Vector (Arg a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Arg a b) = V_Arg (Vector (a, b))
newtype Vector (Point f a) 
Instance details

Defined in Linear.Affine

newtype Vector (Point f a) = V_P (Vector (f a))
newtype Vector (As a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (As a b) = V_UnboxAs (Vector b)
data Vector (a, b) 
Instance details

Defined in Data.Vector.Unboxed.Base

data Vector (a, b) = V_2 !Int !(Vector a) !(Vector b)
newtype Vector (Const a b) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Const a b) = V_Const (Vector a)
newtype Vector (Alt f a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Alt f a) = V_Alt (Vector (f a))
data Vector (V n a) 
Instance details

Defined in Linear.V

data Vector (V n a) = V_VN !Int !(Vector a)
data Vector (a, b, c) 
Instance details

Defined in Data.Vector.Unboxed.Base

data Vector (a, b, c) = V_3 !Int !(Vector a) !(Vector b) !(Vector c)
data Vector (a, b, c, d) 
Instance details

Defined in Data.Vector.Unboxed.Base

data Vector (a, b, c, d) = V_4 !Int !(Vector a) !(Vector b) !(Vector c) !(Vector d)
newtype Vector (Compose f g a) 
Instance details

Defined in Data.Vector.Unboxed.Base

newtype Vector (Compose f g a) = V_Compose (Vector (f (g a)))
data Vector (a, b, c, d, e) 
Instance details

Defined in Data.Vector.Unboxed.Base

data Vector (a, b, c, d, e) = V_5 !Int !(Vector a) !(Vector b) !(Vector c) !(Vector d) !(Vector e)
data Vector (a, b, c, d, e, f) 
Instance details

Defined in Data.Vector.Unboxed.Base

data Vector (a, b, c, d, e, f) = V_6 !Int !(Vector a) !(Vector b) !(Vector c) !(Vector d) !(Vector e) !(Vector f)

type B = SVG #

data SVG #

Constructors

SVG 

Instances

Instances details
Show SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

showsPrec :: Int -> SVG -> ShowS #

show :: SVG -> String #

showList :: [SVG] -> ShowS #

SVGFloat n => Backend SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

Associated Types

newtype Render SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n = R (SvgRenderM n)
type Result SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type Result SVG V2 n = Element
data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

Methods

adjustDia :: (Additive V2, Monoid' m, Num n) => SVG -> Options SVG V2 n -> QDiagram SVG V2 n m -> (Options SVG V2 n, Transformation V2 n, QDiagram SVG V2 n m) #

renderRTree :: SVG -> Options SVG V2 n -> RTree SVG V2 n Annotation -> Result SVG V2 n #

SVGFloat n => Renderable (Text n) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> Text n -> Render SVG (V (Text n)) (N (Text n)) #

SVGFloat n => Renderable (Path V2 n) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> Path V2 n -> Render SVG (V (Path V2 n)) (N (Path V2 n)) #

SVGFloat n => Renderable (DImage n Embedded) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n Embedded -> Render SVG (V (DImage n Embedded)) (N (DImage n Embedded)) #

SVGFloat n => Renderable (DImage n (Native Img)) SVG 
Instance details

Defined in Diagrams.Backend.SVG

Methods

render :: SVG -> DImage n (Native Img) -> Render SVG (V (DImage n (Native Img))) (N (DImage n (Native Img))) #

Monoid (Render SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

mempty :: Render SVG V2 n #

mappend :: Render SVG V2 n -> Render SVG V2 n -> Render SVG V2 n #

mconcat :: [Render SVG V2 n] -> Render SVG V2 n #

Semigroup (Render SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(<>) :: Render SVG V2 n -> Render SVG V2 n -> Render SVG V2 n #

sconcat :: NonEmpty (Render SVG V2 n) -> Render SVG V2 n #

stimes :: Integral b => b -> Render SVG V2 n -> Render SVG V2 n #

Eq n => Eq (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(==) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

(/=) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

Hashable n => Hashable (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

hashWithSalt :: Int -> Options SVG V2 n -> Int

hash :: Options SVG V2 n -> Int

type N SVG 
Instance details

Defined in Diagrams.Backend.SVG

type N SVG = Double
type V SVG 
Instance details

Defined in Diagrams.Backend.SVG

type V SVG = V2
data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

newtype Render SVG V2 n = R (SvgRenderM n)
type Result SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type Result SVG V2 n = Element
type MainOpts [(String, QDiagram SVG V2 n Any)] 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts [(String, QDiagram SVG V2 n Any)] = (MainOpts (QDiagram SVG V2 n Any), DiagramMultiOpts)
type MainOpts (QDiagram SVG V2 n Any) 
Instance details

Defined in Diagrams.Backend.SVG.CmdLine

type MainOpts (QDiagram SVG V2 n Any) = (DiagramOpts, DiagramLoopOpts, PrettyOpt)

data family Options b (v :: Type -> Type) n #

Instances

Instances details
Eq n => Eq (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(==) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

(/=) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

Hashable n => Hashable (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

hashWithSalt :: Int -> Options SVG V2 n -> Int

hash :: Options SVG V2 n -> Int

data Options NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

data family Options b (v :: Type -> Type) n #

Instances

Instances details
Eq n => Eq (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

(==) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

(/=) :: Options SVG V2 n -> Options SVG V2 n -> Bool #

Hashable n => Hashable (Options SVG V2 n) 
Instance details

Defined in Diagrams.Backend.SVG

Methods

hashWithSalt :: Int -> Options SVG V2 n -> Int

hash :: Options SVG V2 n -> Int

data Options NullBackend v n 
Instance details

Defined in Diagrams.Core.Types

data Options SVG V2 n 
Instance details

Defined in Diagrams.Backend.SVG

type SVGFloat n = (Show n, TypeableFloat n) #

generateDoctype :: forall n f. Functor f => (Bool -> f Bool) -> Options SVG V2 n -> f (Options SVG V2 n) #

idPrefix :: forall n f. Functor f => (Text -> f Text) -> Options SVG V2 n -> f (Options SVG V2 n) #

sizeSpec :: forall n f. Functor f => (SizeSpec V2 n -> f (SizeSpec V2 n)) -> Options SVG V2 n -> f (Options SVG V2 n) #

svgAttributes :: forall n f. Functor f => ([Attribute] -> f [Attribute]) -> Options SVG V2 n -> f (Options SVG V2 n) #

svgDefinitions :: forall n f. Functor f => (Maybe Element -> f (Maybe Element)) -> Options SVG V2 n -> f (Options SVG V2 n) #